
ICE-BA: Incremental, Consistent and Efficient Bundle Adjustment for

Visual-Inertial SLAM

Haomin Liu1 Mingyu Chen1 Guofeng Zhang2 Hujun Bao2 Yingze Bao1

1Baidu 2State Key Lab of CAD&CG, Zhejiang University

{liuhaomin,chenmingyu01,baoyingze}@baidu.com {zhangguofeng,bao}@cad.zju.edu.cn

Abstract

Modern visual-inertial SLAM (VI-SLAM) achieves

higher accuracy and robustness than pure visual SLAM,

thanks to the complementariness of visual features and in-

ertial measurements. However, jointly using visual and in-

ertial measurements to optimize SLAM objective functions

is a problem of high computational complexity. In many VI-

SLAM applications, the conventional optimization solvers

can only use a very limited number of recent measure-

ments for real time pose estimation, at the cost of subop-

timal localization accuracy. In this work, we renovate the

numerical solver for VI-SLAM. Compared to conventional

solvers, our proposal provides an exact solution with sig-

nificantly higher computational efficiency. Our solver al-

lows us to use remarkably larger number of measurements

to achieve higher accuracy and robustness. Furthermore,

our method resolves the global consistency problem that

is unaddressed by many state-of-the-art SLAM systems: to

guarantee the minimization of re-projection function and in-

ertial constraint function during loop closure. Experiments

demonstrate our novel formulation renders lower localiza-

tion error and more than 10x speedup compared to alterna-

tives. We release the source code of our implementation to

benefit the community 1.

1. Introduction

Simultaneous localization and mapping (SLAM) is a

classic but ongoing research problem in many applications.

In recent years, due to the mass availability of imaging and

inertial sensors, visual-inertial SLAM (VI-SLAM) is in-

creasingly adopted in products such as mobile augmented

reality, drones, autonomous driving, robotics etc. Similar to

pure visual SLAM, VI-SLAM extracts and establishes fea-

ture correspondences across image frames. But it further

utilizes inertial measurement (e.g. acceleration and angular

1https://github.com/baidu/ICE-BA

Figure 1: Our SLAM trajectory overlaid with an apartment floor

map. The temporal sliding window (green solid line) for our real

time pose solver is significantly longer than other methods. Our

novel algorithm allows us to use remarkably higher number of

measurements without surrendering efficiency. The black dashed

line is the full trajectory that is globally optimized and consistent

with local optimization.

velocity readings) as constraints in motion estimation. Iner-

tial measurements are very effective for motion estimation

especially when the motion is rapid and irregular, which is

notoriously challenging for visual feature matching. Given

sufficient computation capacity, state-of-the-arts VI-SLAM

[22, 26] have shown excellent results in terms of 6 degree of

freedom (DOF) accuracy by using a large number of mea-

surements.

Since most applications of SLAM are mobile and time

critical, the computational complexity of VI-SLAM also de-

serves great attention. Only a minority of VI-SLAM sys-

tems [24, 28, 11] can be deployed onto embedded devices.

Improving the efficiency of VI-SLAM computation is in-

evitably the key to popularizing its applications. There are

two major computational tasks in VI-SLAM: front-end task

and solver task. Front-end task includes visual feature ex-

traction and matching. Front-end tasks are generally par-

allelizable, and thus can be accomplished efficiently using

modern heterogeneous computing architecture. The goal of

1974

the solver task is to optimize the pose parameters by mini-

mizing the VI-SLAM objective functions given a set of vi-

sual features and inertial measurements. The solver task is

usually the speed bottleneck to VI-SLAM.

Most previous VI-SLAM frameworks simply applied

conventional numeric solvers to solve the objective func-

tion. Bundle adjustment (BA) is an example of the solver

task given only visual measurements. In this work, we

generalize the term BA to denote the joint optimization

of visual and inertial measurements. These conventional

solvers such as Gauss-Newton and Levenberg-Marquardt

are designed to provide numerically accurate results with-

out much consideration for real time issues. Consequently,

real time VI-SLAM applications [24, 7, 22] based on these

solvers are only capable of using the most recent measure-

ments to estimate the latest device pose (i.e. apply a very

short sliding window in local BA). Theoretically, longer

measurement history leads to higher estimation accuracy.

The efficiency of BA is apparently one of the most crucial

factors to the performance of VI-SLAM.

We renovate the BA process for VI-SLAM, as we con-

siderably improve the local and global optimization effi-

ciency and solve the inconsistency issue during loop clo-

sure. In the SLAM problem, the incoming visual and in-

ertial measurements arrive sequentially. We leverage this

fact and propose to effectively re-use the intermediate re-

sults of previous optimization to avoid redundant new com-

putation. Our generalizable algorithm remarkably increases

the solver speed and can be applied to most sliding-window

based VI-SLAM.

Furthermore, our method addresses the global consis-

tency problem, which is critical to applications such as AR.

A global map is considered to be consistent if loops can

be closed and the re-projection error is sufficiently mini-

mized. For visual SLAM, global consistency can be main-

tained by running global BA or its pose graph approxima-

tion [9, 25]. However, the problem is more complicated

for VI-SLAM, where the constraints of velocity and IMU

bias between frames create many local minimals in the op-

timization problem. When measurements are removed from

a temporal sliding window, naive marginalization accumu-

lates error over time, which would finally conflict with the

loop constraint. Previous methods either skip marginaliza-

tion [26], or apply marginalization without resolving the

conflict [28].

This paper proposes a novel solver algorithm for visual-

inertial SLAM with the following contributions: a new

sliding window based solver that leverages the incremen-

tal nature of SLAM measurements to achieve more than

10x efficiency compared to the state-of-the-arts; a new rel-

ative marginalization algorithm that resolves the conflicts

between sliding window marginalization bias and global

loop closure constraints; our experimentally validated im-

plementation will be open sourced.

2. Related Work

Early SLAM are mostly EKF (Extended Kalman Fil-

ter) based [6, 8]. The 6 DOF motion parameters and 3D

landmarks are probabilistically represented as a single state

vector. The complexity of classic EKF grows quadratically

with the number of landmarks, restricting its scalability.

Visual SLAM [20, 25, 9] solves the SLAM problem us-

ing only visual features. By carefully extracting and match-

ing a very large number of sophisticated visual features,

these methods are capable of providing high tracking ac-

curacy.

Visual-inertial SLAM usually does not a require large

number of image features to achieve reasonable accuracy,

since inertial measurement (angular velocity and acceler-

ation) provides additional constraints. [24, 32] improve

early EKF SLAM by excluding 3D landmarks from the

state vector. Thereby, they are capable of modeling multiple

frames in the state. However, as a common behavior of EKF

algorithms, they only maintain the most recent state, and

thus they are sensitive to measurement error and difficult to

be recovered from unstable tracking status. [7, 22, 28, 26]

use a temporally sliding window to select the most recent

visual and inertial measurements for optimizing SLAM ob-

jective functions. They show that in many cases sliding

window based VI-SLAM is more robust and accurate than

filter based methods. However, the objective function opti-

mization is of high computational complexity. The perfor-

mance of sliding window based VI-SLAM highly depends

on the computational availability, which is strictly limited

on mobile devices and drones. Our proposed novel method

intends to address this problem by greatly improving effi-

ciency of the optimization solver.

Optimization Solvers are commonly shared by various

SLAM implementations, although their front-end systems

and frameworks are very different. BA [30] of visual SLAM

utilizes the sparseness structure of re-projection function

and Hessian. In this work, the term BA is generalized to de-

note joint optimization of visual and inertial measurements

for VI-SLAM. [2, 4, 31] improve the efficiency of BA in

large-scale setup. [17] shows that the block-based precon-

ditioned conjugate gradient (PCG) can be used to solve the

Schur complement for efficiency gain. There are also ex-

cellently engineered implementations of BA [1, 21] that are

commonly used by state-of-the-art SLAM systems. How-

ever, all these methods suffer from the fact that its complex-

ity grows quadratically w.r.t the number of cameras. Thus,

the SLAM systems built upon these solvers can only use a

very limited number of recent measurements for real time

pose estimation.

Incremental Solvers are recently being explored by re-

searchers in attempts to exploit the previous optimization

1975

Figure 2: Local and global optimization framework

result to reduce the amount of new computation. Kaess et

al. [19, 18] propose to solve the optimization by QR fac-

torization of the measurement matrix. Each new optimiza-

tion iteration only updates a small portion of the factoriza-

tion results instead of factorizing the entire graph. Simi-

larly, Ila et al. [16] propose to incrementally recover the

estimate and covariance, and recently propose to update

Schur complement incrementally in BA [15]. However,

the aforementioned methods are only suitable for solving

”sparse” camera problem (i.e. most key points are only ob-

servable in a small number of cameras). While this is true

for large scale structure-from-motion, in SLAM problems,

most frames in local sliding window share a large num-

ber of common points, which degenerates those incremen-

tal solvers into regular BA solver. As a result, they do not

show better localization accuracy than other state-of-the-

art SLAM. In this work, we propose a novel incremental

solver that better leverages the specific block matrix struc-

ture in SLAM, and shows superior performance in terms

of speed and accuracy. As a major extension to our early

work [23], this paper further discusses the acceleration of

local BA and the relative marginalization for the global con-

sistency. We also provide substantially more experimental

results. To our best knowledge, this paper describes the first

BA based VI-SLAM solver, achieving unprecedented ef-

ficiency with state-of-the-art accuracy, and simultaneously

ensuring global consistency.

3. Framework
We first define the constraint functions, and next explain

our local and global optimization framework.

3.1. Constraint Functions

The goal of visual-inertial SLAM is defined as using vi-

sual and inertial measurements up to time point t to esti-

mate the motion state Ct, as well as a set of 3D points

{X1, · · · ,Xnt
}. Ct = (Tt,Mt), where Tt = (Rt,pt)

is the camera pose, and Mt = (vt,bt) is the IMU state

including velocity vt and sensor bias bt. A 3D point Xj

is projected onto the i-th image plane corresponding to a

2D feature measurement xij = π(Ti ◦ Xj) + nij , where

nij is Gaussian noise nij ∼ N (0,Σvis
ij). The 3D point is

parametrized using inverse depth [5] as Xj = T−1
sj

◦ 1
ρj
x̄sjj ,

where ρj is the inverse depth of j-th point, sj is the source

frame from which j-th point is extracted. x̄ is the homoge-

nous coordinate of x. The visual constraint is defined as

f vis
ij (Ti,Tsj , ρj) = π(Ti◦T

−1
sj

◦
1

ρj
x̄sjj)−xij ∼ N (0,Σvis

ij).

(1)

IMU measurements Zij obtained between frame i and j
provide relative motion constraint. The IMU constraint is

defined as

f
imu
ij (Ci,Cj) = (eT

r , e
T
v , e

T
p , e

T
b)

T ∼ N (0,Σimu
ij)

er = Log((Exp(∆J
r
ij(bi − b̂i))∆Rij)

T
RjR

T
i)

ev = Ri(vj − vi − g∆tij)− (∆vij +∆J
v
ij(bi − b̂i))

ep = Ri(pj − pi − vi∆tij −
1

2
g∆t

2
ij)

− (∆pij +∆J
p
ij(bi − b̂i))

eb = bj − bi

(2)
The ∆’s and the covariance matrix Σimu

ij depend only on Zij

and can be pre-integrated before optimization. b̂i is the bias

estimate at the time of pre-integration. Please refer to [10]

for more details.

The absolute position and yaw around the gravity are un-

observable in VI-SLAM [14]. A prior is imposed on the first

camera C0 , denoted as f prior
0 (C0) ∼ N (0,Σprior

0).

3.2. Local and Global Optimization

It is infeasible to only perform global optimization in

solving a long-time VI-SLAM problem. Similar to [28, 26],

our framework (Fig. 2) includes both a local optimization

(local BA) and a global optimization (global BA).

Local BA optimizes the states within a temporarily slid-

ing window that only contains the latest frames and points.

The goal of local BA is to reduce accumulated error and ex-

pand the map as fast as possible. The cost function of local

BA is to minimize

argmin
{Ci,ρj |i=t0···t,j∈Vi}

t
∑

i=t0

∑

j∈Vi

||f vis
ij (Ti,Tsj , ρj)||Σvis

ij

+||f prior
t0

(Ct0)||Σprior
t0

+

t−1
∑

i=t0

||f imu
i,i+1(Ci,Ci+1)||Σimu

i,i+1

(3)

where t0 = t−n+1 is the first frame in sliding window and

n is the size of sliding window. Vi denotes the set of points

tracked in frame i. As one of our major contributions, Sec. 4

explains how to efficiently solve Eq. (3).

1976

Global BA runs in parallel to local BA at a relatively

lower frequency. Global BA optimizes the frames that are

removed from local sliding window but selected as key

frames in global map. A frame is selected as a key frame

in global BA if it carries more than N (e.g. 20 in our ex-

periments) features that have not been seen from all other

frames. The cost function of global BA is

argmin
{Ci,ρj |i∈{k1···km},j∈Vi}

km
∑

i=k1

∑

j∈Vi

||f vis
ij (Ti,Tsj , ρj)||Σvis

ij
+

||f prior
0 (Ck1

)||
Σ

prior
0

+

m−1
∑

i=1

||f imu
ki,ki+1

(Cki
,Cki+1

)||
Σimu

ki,ki+1

+

∑

i

||f rel
i ({Tk∈Li

})||
Σrel

i

(4)

where Li is the set of keyframes involved in i-th rela-

tive pose constraint. Loop closure triggers global BA that

should account for map consistency. For a typical loop con-

straint, |Li| = 2. As one of our major contributions, Sec. 4

explains how to efficiently solve Eq. (4).

Relative Marginalization produces relative pose con-

straint between the last keyframe in local BA and the latest

frame that is removed from local BA (e.g. the constraint be-

tween Ckm−1
and Ckm

in Fig. 2), so that the constraints

obtained from global BA (e.g. loop closure) can help an-

chor the camera poses in local BA, preventing drifts caused

by accumulation error. More details are discussed in Sec. 5.

4. Efficient Solver for VI-SLAM

Efficiently solving Eq. (3) and Eq. (4) is the key to VI-

SLAM speed. Minimizing such formulations can be gener-

alized as argminφ
∑

k ||fk(φ)||
2. In a typical Gauss New-

ton solver, the optimal values of φ are obtained by opti-

mization iterations φ+ = φ−⊕ δφ where the subscript −/+

denotes state before/after iteration, and ⊕ is the generalized

addition on manifold [10]. At each iteration, the cost func-

tion fk is linearized at current estimate φ− as

fk(φ
− ⊕ δφ) ≈ Jkδφ+ ek (5)

where Jk = ∂fk(φ
−⊕δφ)

∂δφ
|δφ=0 and ek = fk(φ

−) are the

Jacobian matrix and error vector respectively. δφ is solved

by the normal equation

Aδφ = b

[A|b] =
∑

k

[Ak|bk]

[Ak|bk] = [JT
k Jk| − Jkek]

(6)

4.1. General Incremental BA Solver

In global optimization in VI-SLAM, each cost function

fk involves only a very small subset of variables. For

example, f vis
ij in (1) only involves 3 types of variables

(Ti,Tsj , ρj). Then the corresponding Ak and bk has only

9 and 3 blocks of non-zero entries. Leveraging such spar-

sity patten [30] and the block structure [17] leads to an ef-

ficient construction of (6). Furthermore, due to the nature

of SLAM problem, new states and measurements always

arrive incrementally. As a result, only a small portion of

variables change at each iteration, i.e. only an small portion

of fk’s need to be re-linearized. This fact can be exploited

to significantly accelerate the construction of (6). In our

early work [23], instead of computing (6) from scratch in

each iteration, we incrementally update [A|b] as

[A|b]+ = [A|b]− + [
∑

k∈L δAk

∑

k∈L δbk] (7)

where L is the set of cost functions that need to be re-

linearized (i.e. involving at least one |δφi| exceeding a pre-

set threshold), and [δAk|δbk] , [Ak|bk]
+ − [Ak|bk]

−.

For BA problem, a common strategy to efficiently

solve ((6)) is to marginalize points to obtain a reduced

linear system involving only cameras. φ is reordered as

φ = (φT
c , φ

T
p)

T , first camera then point parameters. Ac-

cordingly, [A|b] can be written as

[A|b] =

[

U W u

WT V v

]

. (8)

The second row is eliminated to obtain the Schur comple-

ment that involves only δφc
Sδφc = s

[S|s] =
[

U−WV−1WT u−WV−1v
] (9)

The block corresponding to (i1, i2) camera pair in S and

i-th camera in s can be efficiently computed as

[Si1i2 |si] =
[

Ui1i2 −
∑

j∈Vi1
∪Vi2

S
j
i1i2

ui −
∑

j∈Vi
s
j
i

]

[Sj
i1i2

|sji] =
[

Wi1jV
−1

jj WT
i2j

WijV
−1

jj vj

]

(10)
As introduced in [23], the incremental arrival of SLAM

measurements can be exploited to accelerate the construc-

tion of (10), by incrementally update [Si1i2 |si] as

[Si1i2 |si]
+ = [Si1i2 |si]

− +
[

∑

j∈Pi1i2
δS

j
i1i2

∑

j∈Pii
δs

j
i

]

Pi1i2 = P ∪ Vi1 ∪ Vi2

(11)

where P is the set of points involved in cost functions need

to be re-linearized.

Si1i2 is nonzero if and only if (i1, i2) share common

points or have constraint between them. This particu-

lar sparseness structure can be specifically leveraged by

preconditioned conjugated gradient (PCG) to efficiently

solve ((9)) [2, 4, 17]. After solving δφc, point variable δφp

can be solved by back-substituting δφc to the second row

of (8), for each point j separately

δφpj
= V−1

jj

vj −
∑

i∈Xj

WT
ijδφci

 (12)

where Xj denotes the set of cameras seeing point j.

1977

0 500 1000 1500 2000 2500 3000 3500

frame index

0

5

10

15

20

25

30
ti
m

e
 (

m
s
)

O-IBA: Total

O-IBA: Schur

ST-IBA: Total

ST-IBA: Schur

Figure 3: The total runtime and the Schur complement time for

each frame in MH 01 easy sequence [3]. O-IBA is original IBA

introduced in Sec. 4.1; ST-IBA is the sub-track based IBA intro-

duced in Sec. 4.2. Between frame 400 to 900, O-IBA time sig-

nificantly increases since higher number of frames share the same

feature points during this period of time. ST-IBA does not suffer

from this as expected.

4.2. Improvement for Local BA

The incremental BA (IBA) introduced in Section 4.1 can

significantly accelerate global BA where most keyframes do

not share common points. However, in local BA most points

can be observed by most frames in the sliding window. As

a result, a large portion of [Sj
i1i2

|sji] defined in (10) has to

be re-evaluated, and the incremental update of Schur com-

plement degrades to the standard process. Fig. 3 shows the

runtime for this IBA process (original IBA, or O-IBA). The

update of Schur complement dominates the total runtime.

We propose an improved incremental BA solver to ad-

dress the Schur complement problem in local BA. We name

it Sub-Track based IBA (ST-IBA). The key idea is to split

the origin long feature track Xj into several short over-

lapping sub-tracks Xj1 ,Xj2 , · · · , as illustrated in Fig. 4.

Each sub-track Xjk spans over l neighboring frames with

l < |Xj |. We set l = 5 in our experiments. Sub-tracks also

include key frames in local BA. The corresponding inverse

depth ρj becomes several identical duplicates ρj1 , ρj2 , · · · .

Instead of marginalizing ρj that introduces nonzero block

Si1i2 for each pairs of (i1, i2) ∈ Xj × Xj , we marginal-

ize ρjk that introduces Si1i2 for a much smaller set of pairs

(i1, i2) ∈ Xjk × Xjk . Consequently, S becomes from a

dense full matrix - as long as there is one |Xj | reaches the

size of sliding window n - to a diagonal band matrix. Fur-

thermore, the incremental update of [Si1i2 |si] (11) becomes

[Si1i2 |si]
+ = [Si1i2 |si]

− +
[

∑

j∈P̄i1i2
δS̄

j
i1i2

∑

j∈P̄ii
δs̄

j
i

]

[S̄j
i1i2

|s̄ji] =
[

Wi1jQ̄
j
i1i2

WT
i2j

Wi1j q̄
j
i

]

[Q̄j
i1i2

|q̄j
i] =

[

∑

jk∈V̄
j
i1i2

V−1

jkjk

∑

jk∈V̄
j
ii

V−1

jkjk
vjk

]

P̄i1i2 = {j|∃k : jk ∈ P̄ ∪ V̄j
i1i2

}
(13)

where P̄ is the set of sub-track points involved in cost func-

tions that need to be re-linearized, and V̄j
i1i2

denotes the set

of common sub-track points of frame (i1, i2) corresponding

to j-th point. Comparing to (11), (13) is more efficient not

only because S becomes sparser, but also because P̄i1i2 is

(a) Original feature track Xj (b) Overlapping sub-tracks

Figure 4: We split the original feature track Xj in (a) into 3 over-

lapping sub-tracks Xj1 , Xj2 and Xj3 in (b), each spans l = 3
neighboring frames and the keyframes K

generally much smaller than Pi1i2 , as the probability that

a short sub-track involved in re-linearization is very low.

[Q̄j
i1i2

|q̄j
i] defined in (13) can also be incrementally updated

for further speedup:
(

Q̄
j
i1i2

)+

=
(

Q̄
j
i1i2

)−

+
∑

jk∈P̄
j
i1i2

δ
(

V
−1

jkjk

)

(

q̄
j
i

)+

=
(

q̄
j
i

)−

+
∑

jk∈P̄
j
ii

δ
(

V
−1

jkjk
vjk

)

P̄j
i1i2

= P̄ ∪ V̄j
i1i2

(14)

Note that the sub-track process is only used for the update

of Schur complement. After solving Schur complement, we

update 3D points by (12) for each original point j rather

than the sub-track points jk. Compared to the traditional

method, since the objective function is exactly the same, es-

pecially the point substitution still uses the original normal

equation without any approximation, a few more iterations

can make the solution converge and the final accuracy does

not decrease. As shown in Fig. 3 and Tab. 1, the proposed

ST-IBA is faster than the original IBA by 2 ∼ 10 times

without any noticeable loss of accuracy.

4.3. Incremental PCG for IBA

In order to solve (9), we renovated the original PCG al-

gorithm [17]. In standard PCG, δφc is initialized as zero

then iteratively updated toward the optimal values. In the

case of IBA, the minimizer δφci will not actually update

the state of camera i if δφci is not large enough (Sec. 4.1).

For such camera i, the result of the next iteration δφ+
ci

will

be very close to the previous one δφ−
ci

, because both results

are obtained by updating the same φ−
ci

towards the similar

optimal values. This observation helps us to better initial-

ize δφc and accelerate convergence of PCG. Specifically,

we initialize δφ+
ci

= δφ−
ci

for those camera i whose state

was not changed in the last iteration, and δφ+
ci

= 0 for the

rest. We name this algorithm as incremental PCG (I-PCG)

as it also utilizes the incremental nature of SLAM measure-

ments. As shown in Tab. 1, I-PCG improves the accuracy

by approx. 20% due to better convergence.

5. Relative Marginalization

If the number of frames in the sliding window of lo-

cal BA surpasses a threshold (e.g. 50 in our experiments),

the earliest frame t0 in the sliding window needs to be

eliminated. Instead of neglecting the information car-

ried in this eliminated frame, marginalization converts it

1978

Figure 5: Relative marginalization. Let hvis, himu, hprior denote the visual, inertial, and prior factors, respectively. (a) For the first frame

t0 = 0, we add a weak prior factor h
prior
0 (g0,M

′
0) ∼ N (0,Σprior

0). The state M′
0 connected to the prior factor h

prior
0 (g0,M

′
0) and the

inertial factor himu
01 (g0,M

′
0,C

′
1) are marginalized out, which results in a prior factor h

prior
1 (g0,C

′
1) ∼ N (0,Σprior

1). (b) For the next

frame t0 = 1, the process is similar except that the visual factor hvis
V1

(0T1) is involved, and both 0T1 and M′
1 are marginalized. (c) In

general, more keyframes other than k0 are involved in the visual factor hvis
Vt0

(k0Tt0 , {
k0Tsj 6=k0|j∈Vt0

}). Marginalizing such a factor

will introduce correlation among all the involved keyframes (yellow circles). Repeat this process until the marginalized frame t0 is a new

keyframe as in (d). Then the process for local and global BA goes in different ways. (e) For global BA, we marginalize the prior factor

h
prior
t0

(gk0
,M′

t0
, {k0Tk∈Kt0

}) and the IMU state M′
t0

. A relative constraint is submitted to global BA as shown in Fig. 2. (f) For local

BA, we first marginalize the prior factor h
prior
t0

(gk0
,M′

t0
, {k0Tk∈Kt0

}). All involved states except M′
t0

are marginalized , producing a

prior on M′
t0

. At this point, t0 becomes the new reference keyframe. The new state gt0 appears, along with a weak prior on it, and the

pose of the next frame t0 +1 is represented in the reference of frame t0, i.e. t0Tt0+1. We then marginalize the prior factor and the inertial

factor himu
t0,t0+1(gt0 ,M

′
t0
,C′

t0+1). M
′
t0

is marginalized out, producing a prior on gt0 and C′
t0+1. After (e) and (f) are done, the system

goes back to a state similar to (b).

into a linear prior applied onto the remaining variables.

Marginalization is commonly used in visual inertial odom-

etry (VIO) [24, 22, 11] that does not maintain a global map.

Nevertheless, in the case of VI-SLAM, error accumulation

will gradually corrupt the prior produced by marginaliza-

tion. The corrupted prior generated from the sliding win-

dow will eventually conflict with the global map and loop

closure constraints, and degrade the overall accuracy.

One of our main contributions is maintaining the con-

sistency between marginalization prior and global BA with

the proposed relative marginalization. The key idea is to

formulate the prior relative to the reference keyframe coor-

dinate system instead of the global coordinate system. It is

similar to the relative BA [29] for visual SLAM, in which

all parameters are represented in the relative coordinate to

avoid adjusting all parameters at loop closure. By contrast,

we use the relative representation for marginalization. In

addition, the relative representation is more complicated for

VI-SLAM since the gravity direction becomes observable.

Before explaining details, we first recap the notations.

Ci is the motion state of frame i, which comprises a pose

Ti = (Ri,pi) and an IMU state Mi = (vi,bi). We

can represent the global pose Ti and the gravity direction

in reference of frame i’s closest keyframe k0 as follows:
k0Ti = Ti ◦T

−1
k0

and gk0
= Rk0

g. The velocity vi is rep-

resented in its own reference as ivi = Rivi. The motion

state can be represented locally as C′
i = (k0Ti,M

′
i) and

M′
i = (ivi,bi). Accordingly, f vis

ij (Ti,Tsj , ρj) becomes

hvis
ij (

k0Ti,
k0Tsj , ρj) = π(k0Ti ◦

k0T−1
sj

◦
1

ρj
x̄sjj)− xij .

(15)

Marginalizing k0Ti will result in full correlation among

{ρj |j ∈ Vi}, invalidating the sparseness of BA. Inspired

by [27], we maintain the sparseness by duplicating each

ρj as ρ′j = ρj , and discard all measurements except xij .

Then the duplicated points are marginalized out, producing

1979

a Gaussian factor

hvis
Vi
(k0Ti, {

k0Tsj 6=k0|j∈Vi
}) ∼ N (0,ΣVi

). (16)

Similarly, f imu
ij (Ci,Cj) becomes

h
imu
ij (gk0

,C
′
i,C

′
j) = ((e′

r)
T
, (e′

v)
T
, (e′

p)
T
, e

T
b)

T

e
′
r = Log((Exp(∆J

r
ij(bi − b̂i))∆Rij)

T k0Rj
k0R

T
i)

e
′
v = k0Ri(

k0R
T
j

j
vj − gk0

∆tij)−
i
vi

− (∆vij +∆J
v
ij(bi − b̂i))

e
′
p = k0Ri(

k0pj −
k0pi −

1

2
gk0

∆t
2
ij)−

i
vi∆tij

− (∆pij +∆J
p
ij(bi − b̂i))

(17)

We illustrate the relative marginalization process with

detailed descriptions in Fig. 5. After marginalizing the ear-

liest frame t0, the process will result in a prior on the next

frame t0 + 1, denoted as

hprior
t0+1(gk0

,C′
t0+1, {

k0Tk∈Kt0
}) ∼ N (0,Σprior

t0+1) (18)

where Kt0 is the set of involved keyframes that is evolving

as Kt0 = Kt0−1 ∪{sj |j ∈ Vt0}\{k0}. Note that these rela-

tive representation of states is only used in marginalization.

During optimization, states and priors need to be converted

to the global frame. We convert the prior factor (18) into the

global frame, denoted as

f prior
t0+1(Ct0+1) ∼ N (0,Σprior

t0+1). (19)

Note that keyframe poses are only adjusted in global BA,

thus eliminated from the prior factor for local BA. If the

marginalized frame t0 is a new keyframe, the marginaliza-

tion process will submit a relative constraint to global BA

(Fig. 5e), denoted as

hrel
t0
(gk0

, {k0Tk∈K′

t0
}) ∼ N (0,Σrel

t0
) (20)

where K′
t0

= Kt0−1 ∪ {t0}. Similarly, the relative con-

straint is converted from the reference frame k0 to the global

frame, denoted as

f rel
t0
({Tk∈Lt0

}) ∼ N (0,Σrel
t0
) (21)

where Lt0 = K′
t0
∪ {k0}.

6. Evaluation

To evaluate our proposed solver, we build a SLAM sys-

tem that consists of the proposed solver, a frontend for

visual measurements, and a loop closure detector. The

frontend detects Harris features [13], establish inter-frame

feature tracks using optical-flow [33], and match features

across stereo frames using direct-matching [11]. Our

loop closure detector stores bag-of-words features from

keyframes for loop detection [12]. Once a loop closure is

detected, we use the relative pose and covariance between

the matched frames as a relative constraint in global BA.

We perform quantitative evaluation using EuRoC [3]

dataset, and qualitative comparison against Google Tango in

a number of challenging environments. The sliding window

size is set to 50 in all experiments. Larger sliding window

does not increase accuracy but decreases efficiency.

Configuration RMSE (m) LBA time (ms) GBA time (ms)

Proposed 0.120792 2.45 12.90

w/o fix. linear. 0.117973 10.3 103.94

w/o ST-IBA 0.123548 7.03 -

w/o I-PCG 0.152073 - 12.91

w/o rel. marg. 0.179655 - 13.50

Table 1: Average RMSE and runtime of proposed methods for the

whole EuRoC dataset. Fixing linearization points and ST-IBA sig-

nificantly improves efficiency without sacrificing accuracy. I-PCG

reduces RMSE due to better convergence, but not the computa-

tion time because we set a minimal iteration number. Relative

marginalization improves both the accuracy as expected, and effi-

ciency because the additional constraints accelerate convergence.

Seq. Ours w/ loop Ours w/o loop OKVIS SVO iSAM2

MH 01 0.11 0.09 0.22 0.06 0.07

MH 02 0.08 0.07 0.16 0.08 0.11

MH 03 0.05 0.11 0.12 0.16 0.12

MH 04 0.13 0.16 0.18 - 0.16

MH 05 0.11 0.27 0.29 0.63 0.25

V1 01 0.07 0.05 0.03 0.06 0.07

V1 02 0.08 0.05 0.06 0.12 0.08

V1 03 0.06 0.11 0.12 0.21 0.12

V2 01 0.06 0.12 0.05 0.22 0.10

V2 02 0.04 0.09 0.07 0.16 0.13

V2 03 0.11 0.17 0.14 - 0.20

Avg 0.08 0.12 0.14 0.20 0.13

Table 2: Translation RMSE (m) with EuRoC dataset. Note that

the spatial alignment of estimated and ground-truth trajectories is

performed without scale adjustment for stereo algorithms. The

results of other methods are generated from our own experiments

based on their released codes, which are slightly different from the

reported numbers in their papers.

6.1. Algorithm Validation

We validate each step of our algorithm introduced in

each sub-section. Tab. 1 shows the performance of the full

system, as well as disabling fixation of linearization point,

ST-IBA, I-PCG and relative marginalization, respectively.

All tests are run on a desktop PC with an i7 CPU @ 3.6GHz.

6.2. Localization Accuracy

We compare the end-to-end accuracy of different stereo

SLAM systems in Tab. 2. OKVIS [22] and SVO [11] are

both visual inertial odometry (VIO). We run iSAM2 [18]

by feeding the same feature tracks as ours, without provid-

ing loop constraints so it runs as a VIO. For a fair com-

parison, we show both our results with and without loop

closure. Without loop closure, our system already achieves

better localization accuracy than state-of-the-art alternatives

since we use 50 frames in our local sliding window. With

loop closure relative constraints provided to our solver, the

RMSE considerably decreases for most sequences.

6.3. Solver Efficiency

The efficiency of our solver is a key contribution of this

work. We measure the optimization time of different SLAM

systems as shown in Tab. 3. We also measure the speed of

our solver using an oct-core ARM CPU (A9 x 4 + A15 x

4). We configure the solver to run on A15 in single thread

1980

(a) Indoor office

-16 -14 -12 -10 -8 -6 -4 -2 0

x

-2

0

2

4

6

8

10

y

IBA without loop

IBA with loop

Tango

(b) Indoor office

0 5 10 15 20

x

-2

0

2

4

6

8

10

12

14

y

IBA without loop

IBA with loop

Tango

(c) Indoor office

-120 -100 -80 -60 -40 -20 0 20

x

0

20

40

60

80

100

120

y

IBA without loop

IBA with loop

Tango

(d) Outdoor road

-25 -20 -15 -10 -5 0 5 10 15 20 25

x

0

5

10

15

20

25

30

35

40

45

y

IBA without loop

IBA with loop

Tango

(e) Outdoor road

-20 0 20 40 60 80

x

-70

-60

-50

-40

-30

-20

-10

0

10

20

y

IBA without loop

IBA with loop

Tango

(f) Outdoor road

Figure 6: Trajectories of our system and Google tango. Ideally the final position of the trajectory should be identical to the initial position.

mode. The optimization time is 12.18ms, 78.14ms, and

193.72ms for local BA, global BA without and with loop,

respectively. Our solver shows great potential to be applied

to mobile and power-constraint applications.

6.4. Qualitatively Comparison with Google Tango

Google tango is a commercial device that is highly opti-

Ours w/o loop Ours w/ loop OKVIS iSAM2 ORB-SLAM

LBA 2.45 2.45 26.83 - 99

GBA 12.90 24.67 - 225.87 3515

Table 3: Comparison of runtime (ms) for local/global BA

(LBA/GBA) with EuRoC dataset using an Intel i7 CPU. Multi-

threading is disabled. The runtime does not include the fron-

tend process (feature detection and matching). OKVIS [22] uses

5 keyframes plus 3 IMU frames in sliding window, whereas our

system uses 50 frames and still achieves 10x speedup. Note that

the optimization time of SVO [11] cannot be measured directly.

We feed our frontend results to iSAM2 [18] to emulate the op-

timization time of SVO. iSAM2 is the solver used by SVO and

also a state-of-the-arts incremental solver. We also measure the

optimization time of ORB-SLAM [25] which uses g2o [21] as its

solver. The runtime for LBA/GBA is approximately 40/140 times

slower than ours. Note that ORB-SLAM requires more features

for robust tracking, which is also a reason for the low efficiency. If

we reduce the number of extracted features from default 1200 to

490, tracking fails on 3/11 sequences on EuRoC dataset.

mized for robust and accurate motion tracking. We compare

our stereo SLAM system with a Tango Phab 2 as shown in

Fig. 6. Without loop closure, our system shows comparative

trajectories and more accurate scale than Tango. With loop

closure, our system consistently outperforms Tango.

7. Conclusion

In this paper, we have proposed a novel optimization al-

gorithm for VI-SLAM that leverages the sparseness and the

unique matrix structure for the optimization of sliding win-

dow based bundle adjustment. In addition, a novel relative

marginalization is proposed to improve global consistency.

Experiments demonstrate our approach can not only sub-

stantially accelerate the optimization process but also pro-

vide lower pose estimation error than other state-of-the-art

SLAM approaches as well as a commercial system.

Acknowledgement

We would like to thank Bangbang Yang and Quanhan

Qian for their kind help in producing results of OKVIS,

SVO, iSAM2 and ORB-SLAM in Tab. 2 and 3. Hujun

Bao is partially supported by 973 program of China (No.

2015CB352503), and Guofeng Zhang is partially supported

by NSF of China (No. 61672457).

1981

References

[1] S. Agarwal, K. Mierle, et al. Ceres solver, 2012.

[2] S. Agarwal, N. Snavely, S. M. Seitz, and R. Szeliski. Bundle

adjustment in the large. In European Conference on Com-

puter Vision, pages 29–42. Springer, 2010.

[3] M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder,

S. Omari, M. W. Achtelik, and R. Siegwart. The EuRoC

micro aerial vehicle datasets. The International Journal of

Robotics Research, 2016.

[4] M. Byröd and K. Åström. Conjugate gradient bundle adjust-

ment. In European Conference on Computer Vision, pages

114–127. Springer, 2010.

[5] J. Civera, A. J. Davison, and J. M. Montiel. Inverse depth

parametrization for monocular SLAM. IEEE transactions

on robotics, 24(5):932–945, 2008.

[6] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse.

MonoSLAM: Real-time single camera SLAM. IEEE

Transactions on Pattern Analysis and Machine Intelligence,

29(6):1052–1067, 2007.

[7] T.-C. Dong-Si and A. I. Mourikis. Motion tracking with

fixed-lag smoothing: Algorithm and consistency analysis.

In International Conference on Robotics and Automation,

pages 5655–5662. IEEE, 2011.

[8] E. Eade and T. Drummond. Monocular SLAM as a graph

of coalesced observations. In International Conference on

Computer Vision, pages 1–8. IEEE, 2007.

[9] J. Engel, T. Schöps, and D. Cremers. LSD-SLAM: Large-

scale direct monocular SLAM. In European Conference on

Computer Vision, pages 834–849. Springer, 2014.

[10] C. Forster, L. Carlone, F. Dellaert, and D. Scaramuzza. On-

manifold preintegration for real-time visual–inertial odome-

try. IEEE Transactions on Robotics, 33(1):1–21, 2017.

[11] C. Forster, Z. Zhang, M. Gassner, M. Werlberger, and

D. Scaramuzza. SVO: Semidirect visual odometry for

monocular and multicamera systems. IEEE Transactions on

Robotics, 33(2):249–265, 2017.

[12] D. Gálvez-López and J. D. Tardós. Bags of binary words for

fast place recognition in image sequences. IEEE Transac-

tions on Robotics, 28(5):1188–1197, October 2012.

[13] C. Harris and M. Stephens. A combined corner and edge de-

tector. In In Proc. of Fourth Alvey Vision Conference, pages

147–151, 1988.

[14] J. A. Hesch, D. G. Kottas, S. L. Bowman, and S. I. Roumelio-

tis. Camera-IMU-based localization: Observability analysis

and consistency improvement. The International Journal of

Robotics Research, 33(1):182–201, 2014.

[15] V. Ila, L. Polok, M. Solony, and K. Istenic. Fast incremental

bundle adjustment with covariance recovery. In International

Conference on 3D Vision, pages 4321–4330, 2017.

[16] V. Ila, L. Polok, M. Solony, and P. Svoboda. SLAM++ 1-

a highly efficient and temporally scalable incremental slam

framework. The International Journal of Robotics Research,

36(2):210–230, 2017.

[17] Y. Jeong, D. Nister, D. Steedly, R. Szeliski, and I.-S. Kweon.

Pushing the envelope of modern methods for bundle adjust-

ment. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 34(8):1605–1617, 2012.

[18] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. J. Leonard,

and F. Dellaert. iSAM2: Incremental smoothing and map-

ping using the bayes tree. The International Journal of

Robotics Research, 31(2):216–235, 2012.

[19] M. Kaess, A. Ranganathan, and F. Dellaert. iSAM: In-

cremental smoothing and mapping. IEEE Transactions on

Robotics, 24(6):1365–1378, 2008.

[20] G. Klein and D. Murray. Parallel tracking and mapping for

small ar workspaces. In International Symposium on Mixed

and Augmented Reality, pages 225–234. IEEE, 2007.

[21] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and

W. Burgard. g 2 o: A general framework for graph opti-

mization. In International Conference on Robotics and Au-

tomation, pages 3607–3613. IEEE, 2011.

[22] S. Leutenegger, S. Lynen, M. Bosse, R. Siegwart, and P. Fur-

gale. Keyframe-based visual–inertial odometry using non-

linear optimization. The International Journal of Robotics

Research, 34(3):314–334, 2015.

[23] H. Liu, C. Li, G. Chen, G. Zhang, M. Kaess, and H. Bao. Ro-

bust keyframe-based dense SLAM with an RGB-D camera.

arXiv preprint arXiv:1711.05166, 2017.

[24] A. I. Mourikis and S. I. Roumeliotis. A multi-state constraint

kalman filter for vision-aided inertial navigation. In Interna-

tional Conference on Robotics and Automation, pages 3565–

3572. IEEE, 2007.

[25] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos. ORB-

SLAM: a versatile and accurate monocular SLAM system.

IEEE Transactions on Robotics, 31(5):1147–1163, 2015.

[26] R. Mur-Artal and J. D. Tardós. Visual-inertial monocular

SLAM with map reuse. Robotics and Automation Letters,

2(2):796–803, 2017.

[27] E. D. Nerurkar, K. J. Wu, and S. I. Roumeliotis. C-

KLAM: Constrained keyframe-based localization and map-

ping. In International Conference on Robotics and Automa-

tion, pages 3638–3643. IEEE, 2014.

[28] T. Qin, P. Li, and S. Shen. VINS-Mono: A robust and versa-

tile monocular visual-inertial state estimator. arXiv preprint

arXiv:1708.03852, 2017.

[29] D. Sibley, C. Mei, I. D. Reid, and P. Newman. Adaptive rel-

ative bundle adjustment. In Robotics: Science and Systems,

volume 32, page 33, 2009.

[30] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgib-

bon. Bundle adjustmenta modern synthesis. In International

Workshop on Vision Algorithms, pages 298–372. Springer,

1999.

[31] C. Wu, S. Agarwal, B. Curless, and S. M. Seitz. Multicore

bundle adjustment. In Computer Vision and Pattern Recog-

nition, pages 3057–3064. IEEE, 2011.

[32] K. Wu, A. Ahmed, G. A. Georgiou, and S. I. Roumeliotis.

A square root inverse filter for efficient vision-aided inertial

navigation on mobile devices. In Robotics: Science and Sys-

tems, 2015.

[33] J. yves Bouguet. Pyramidal implementation of the Lucas

Kanade feature tracker. Intel Corporation, Microprocessor

Research Labs, 2000.

1982

