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Abstract

Face anti-spoofing is crucial to prevent face recognition

systems from a security breach. Previous deep learning ap-

proaches formulate face anti-spoofing as a binary classifi-

cation problem. Many of them struggle to grasp adequate

spoofing cues and generalize poorly. In this paper, we ar-

gue the importance of auxiliary supervision to guide the

learning toward discriminative and generalizable cues. A

CNN-RNN model is learned to estimate the face depth with

pixel-wise supervision, and to estimate rPPG signals with

sequence-wise supervision. The estimated depth and rPPG

are fused to distinguish live vs. spoof faces. Further, we

introduce a new face anti-spoofing database that covers a

large range of illumination, subject, and pose variations.

Experiments show that our model achieves the state-of-the-

art results on both intra- and cross-database testing.

1. Introduction

With applications in phone unlock, access control, and

security, biometric systems are widely used in our daily

lives, and face is one of the most popular biometric modali-

ties. While face recognition systems gain popularity, attack-

ers present face spoofs (i.e., presentation attacks, PA) to the

system and attempt to be authenticated as the genuine user.

The face PA include printing a face on paper (print attack),

replaying a face video on a digital device (replay attack),

wearing a mask (mask attack), etc. To counteract PA, face

anti-spoofing techniques [16, 22, 23, 29] are developed to

detect PA prior to a face image being recognized. There-

fore, face anti-spoofing is vital to ensure that face recogni-

tion systems are robust to PA and safe to use.

RGB image and video are the standard input to face anti-

spoofing systems, similar to face recognition systems. Re-

searchers start the texture-based anti-spoofing approaches

by feeding handcrafted features to binary classifiers [13,18,

19,27,33,34,38,49]. Later in the deep learning era, several

Convolutional Neural Networks (CNN) approaches utilize

⇤denotes equal contribution by the authors.
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Figure 1. Conventional CNN-based face anti-spoof approaches uti-

lize the binary supervision, which may lead to overfitting given the

enormous solution space of CNN. This work designs a novel net-

work architecture to leverage two auxiliary information as super-

vision: the depth map and rPPG signal, with the goals of improved

generalization and explainable decisions during inference.

softmax loss as the supervision [21, 30, 37, 48]. It appears

almost all prior work regard the face anti-spoofing problem

as merely a binary (live vs. spoof) classification problem.

There are two main issues in learning deep anti-spoofing

models with binary supervision. First, there are different

levels of image degradation, namely spoof patterns, com-

paring a spoof face to a live one, which consist of skin de-

tail loss, color distortion, moiré pattern, shape deformation

and spoof artifacts (e.g., reflection) [29, 38]. A CNN with

softmax loss might discover arbitrary cues that are able to

separate the two classes, such as screen bezel, but not the

faithful spoof patterns. When those cues disappear during

testing, these models would fail to distinguish spoof vs. live

faces and result in poor generalization. Second, during the

testing, models learnt with binary supervision will only gen-

erate a binary decision without explanation or rationale for

the decision. In the pursuit of Explainable Artificial Intelli-

gence [1], it is desirable for the learnt model to generate the

spoof patterns that support the final binary decision.

To address these issues, as shown in Fig. 1, we propose

a deep model that uses the supervision from both the spa-

tial and temporal auxiliary information rather than binary

supervision, for the purpose of robustly detecting face PA
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from a face video. These auxiliary information are acquired

based on our domain knowledge about the key differences

between live and spoof faces, which include two perspec-

tives: spatial and temporal. From the spatial perspective,

it is known that live faces have face-like depth, e.g., the

nose is closer to the camera than the cheek in frontal-view

faces, while faces in print or replay attacks have flat or pla-

nar depth, e.g., all pixels on the image of a paper have the

same depth to the camera. Hence, depth can be utilized

as auxiliary information to supervise both live and spoof

faces. From the temporal perspective, it was shown that the

normal rPPG signals (i.e., heart pulse signal) are detectable

from live, but not spoof, face videos [31, 35]. Therefore,

we provide different rPPG signals as auxiliary supervision,

which guides the network to learn from live or spoof face

videos respectively. To enable both supervisions, we design

a network architecture with a short-cut connection to cap-

ture different scales and a novel non-rigid registration layer

to handle the motion and pose change for rPPG estimation.

Furthermore, similar to many vision problems, data

plays a significant role in training the anti-spoofing mod-

els. As we know, camera/screen quality is a critical factor

to the quality of spoof faces. Existing face anti-spoofing

databases, such as NUAA [43], CASIA [50], Replay-

Attack [17], and MSU-MFSD [45], were collected 3 − 5
years ago. Given the fast advance of consumer electron-

ics, the types of equipment (e.g., cameras and spoofing

mediums) used in those data collection are outdated com-

pared to the ones nowadays, regarding the resolution and

imaging quality. More recent MSU-USSA [38] and OULU

databases [14] have subjects with fewer variations in poses,

illuminations, expressions (PIE). The lack of necessary

variations would make it hard to learn an effective model.

Given the clear need for more advanced databases, we col-

lect a face anti-spoofing database, named Spoof in the Wild

Database (SiW). SiW database consists of 165 subjects, 6
spoofing mediums, and 4 sessions covering variations such

as PIE, distance-to-camera, etc. SiW covers much larger

variations than previous databases, as detailed in Tab. 1 and

Sec. 4. The main contributions of this work include:

⇧ We propose to leverage novel auxiliary information

(i.e., depth map and rPPG) to supervise the CNN learning

for improved generalization.

⇧ We propose a novel CNN-RNN architecture for end-

to-end learning the depth map and rPPG signal.

⇧ We release a new database that contains variations of

PIE, and other practical factors. We achieve the state-of-

the-art performance for face anti-spoofing.

2. Prior Work

We review the prior face anti-spoofing works in three

groups: texture-based methods, temporal-based methods,

and remote photoplethysmography methods.

Texture-based Methods Since most face recognition sys-

tems adopt only RGB cameras, using texture information

has been a natural approach to tackling face anti-spoofing.

Many prior works utilize hand-crafted features, such as

LBP [18, 19, 33], HoG [27, 49], SIFT [38] and SURF [13],

and adopt traditional classifiers such as SVM and LDA.

To overcome the influence of illumination variation, they

seek solutions in a different input domain, such as HSV and

YCbCr color space [11, 12], and Fourier spectrum [29].

As deep learning has proven to be effective in many com-

puter vision problems, there are many recent attempts of us-

ing CNN-based features or CNNs in face anti-spoofing [21,

30, 37, 48]. Most of the work treats face anti-spoofing as a

simple binary classification problem by applying the soft-

max loss. For example, [30, 37] use CNN as feature extrac-

tor and fine-tune from ImageNet-pretrained CaffeNet and

VGG-face. The work of [21, 30] feed different designs of

the face images into CNN, such as multi-scale faces and

hand-crafted features, and directly classify live vs. spoof.

One prior work that shares the similarity with ours is [5],

where Atoum et al. propose a two-steam CNN-based anti-

spoofing method using texture and depth. We advance [5] in

a number of aspects, including fusion with temporal super-

vision (i.e., rPPG), finer architecture design, novel non-rigid

registration layer, and comprehensive experimental support.

Temporal-based Methods One of the earliest solutions for

face anti-spoofing is based on temporal cues such as eye-

blinking [36,37]. Methods such as [26,42] track the motion

of mouth and lip to detect the face liveness. While these

methods are effective to typical paper attacks, they become

vulnerable when attackers present a replay attack or a paper

attack with eye/mouth portion being cut.

There are also methods relying on more general tempo-

ral features, instead of the specific facial motion. The most

common approach is frame concatenation. Many hand-

crafted feature-based methods may improve intra-database

testing performance by simply concatenating the features of

consecutive frames to train the classifiers [11,18,28]. Addi-

tionally, there are some works proposing temporal-specific

features, e.g., Haralick features [4], motion mag [7], and op-

tical flow [6]. In the deep learning era, Feng et al. feed the

optical flow map and Shearlet image feature to CNN [21].

In [47], Xu et al. propose an LSTM-CNN architecture to

utilize temporal information for binary classification. Over-

all, all prior methods still regard face anti-spoofing as a

binary classification problem, and thus they have a hard

time to generalize well in the cross-database testing. In

this work, we extract discriminative temporal information

by learning the rPPG signal of the face video.

Remote Photoplethysmography (rPPG) Remote photo-

plethysmography (rPPG) is the technique to track vital sig-

nals, such as heart rate, without any contact with human

skin [9,20,41,44,46]. Research starts with face videos with
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Figure 2. The overview of the proposed method.

no motion or illumination change to videos with multiple

variations. In [20], Haan et al. estimate rPPG signals from

RGB face videos with lighting and motion changes. It uti-

lizes color difference to eliminate the specular reflection and

estimate two orthogonal chrominance signals. After apply-

ing the Band Pass Filter (BPM), the ratio of the chromi-

nance signals are used to compute the rPPG signal.

rPPG has previously been utilized to tackle face anti-

spoofing [31, 35]. In [31], rPPG signals are used for de-

tecting the 3D mask attack, where the live faces exhibit a

pulse of heart rate unlike the 3D masks. They use rPPG sig-

nals extracted by [20] and compute the correlation features

for classification. Similarly, Magdalena et al. [35] extract

rPPG signals (also via [20]) from three face regions and two

non-face regions, for detecting print and replay attacks. Al-

though in replay attacks, the rPPG extractor might still cap-

ture the normal pulse, the combination of multiple regions

can differentiate live vs. spoof faces. While the analytic so-

lution to rPPG extraction [20] is easy to implement, we ob-

serve that it is sensitive to PIE variations. Hence, we employ

a novel CNN-RNN architecture to learn a mapping from a

face video to the rPPG signal, which is not only robust to

PIE variations, but also discriminative to live vs. spoof.

3. Face Anti-Spoofing with Deep Network

The main idea of the proposed approach is to guide the

deep network to focus on the known spoof patterns across

spatial and temporal domains, rather than to extract any

cues that could separate two classes but are not generaliz-

able. As shown in Fig. 2, the proposed network combines

CNN and RNN architectures in a coherent way. The CNN

part utilizes the depth map supervision to discover subtle

texture property that leads to distinct depths for live and

spoof faces. Then, it feeds the estimated depth and the fea-

ture maps to a novel non-rigid registration layer to create

aligned feature maps. The RNN part is trained with the

aligned maps and the rPPG supervision, which examines

temporal variability across video frames.

3.1. Depth Map Supervision

Depth maps are a representation of the 3D shape of the

face in a 2D image, which shows the face location and the

depth information of different facial areas. This representa-

tion is more informative than binary labels since it indicates

one of the fundamental differences between live faces, and

print and replay PA. We utilize the depth maps in the depth

loss function to supervise the CNN part. The pixel-based

depth loss guides the CNN to learn a mapping from the face

area within a receptive field to a labeled depth value – a

scale within [0, 1] for live faces and 0 for spoof faces.

To estimate the depth map for a 2D face image, given a

face image, we utilize the state-of-the-art dense face align-

ment (DeFA) methods [25, 32] to estimate the 3D shape of

the face. The frontal dense 3D shape SF 2 R
3⇥Q, with Q

vertices, is represented as a linear combination of identity

bases {Si
id}

Nid

i=1 and expression bases {Si
exp}

Nexp

i=1 ,

SF = S0 +

NidX

i=1

↵i
idS

i
id +

NexpX

i=1

↵i
expS

i
exp, (1)

where ↵id 2 R
199 and ↵ext 2 R

29 are the identity and

expression parameters, and ↵ = [↵id, ↵exp] are the shape

parameters. We utilize the Basel 3D face model [39] and

the facewearhouse [15] as the identity and expression bases.

With the estimated pose parameters P = (s,R, t),
where R is a 3D rotation matrix, t is a 3D translation, and

s is a scale, we align the 3D shape S to the 2D face image:

S = sRSF + t. (2)

Given the challenge of estimating the absolute depth

from a 2D face, we normalize the z values of 3D vertices in

S to be within [0, 1]. That is, the vertex closest to the cam-

era (e.g., nose) has a depth of one, and the vertex furthest

away has the depth of zero. Then, we apply the Z-Buffer

algorithm [51] to S for projecting the normalized z values

to a 2D plane, which results in an estimated “ground truth”

2D depth map D 2 R
32⇥32 for a face image.

3.2. rPPG Supervision

rPPG signals have recently been utilized for face anti-

spoofing [31,35]. The rPPG signal provides temporal infor-

mation about face liveness, as it is related to the intensity

changes of facial skin over time. These intensity changes

are highly correlated with the blood flow. The traditional

method [20] for extracting rPPG signals has three draw-

backs. First, it is sensitive to pose and expression variation,

as it becomes harder to track a specific face area for measur-

ing intensity changes. Second, it is also sensitive to illumi-

nation changes, since the extra lighting affects the amount

of reflected light from the skin. Third, for the purpose of

anti-spoof, rPPG signals extracted from spoof videos might

not be sufficiently distinguishable to signals of live videos.

One novelty aspect of our approach is that, instead of

computing the rPPG signal via [20], our RNN part learns to

estimate the rPPG signal. This eases the signal estimation
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Figure 3. The proposed CNN-RNN architecture. The number of filters are shown on top of each layer, the size of all filters is 3 × 3 with

stride 1 for convolutional and 2 for pooling layers. Color code used: orange=convolution, green=pooling, purple=response map.

from face videos with PIE variations, and also leads to more

discriminative rPPG signals, as different rPPG supervisions

are provided to live vs. spoof videos. We assume that the

videos of the same subject under different PIE conditions

have the same ground truth rPPG signal. This assumption

is valid since the heart beat is similar for the videos of the

same subject that are captured in a short span of time (< 5
minutes). The rPPG signal extracted from the constrained

videos (i.e., no PIE variation) are used as the “ground truth”

supervision in the rPPG loss function for all live videos

of the same subject. This consistent supervision helps the

CNN and RNN parts to be robust to the PIE changes.

In order to extract the rPPG signal from a face video

without PIE, we apply the DeFA [32] to each frame and es-

timate the dense 3D face shape. We utilize the estimated 3D

shape to track a face region. For a tracked region, we com-

pute two orthogonal chrominance signals xf = 3rf − 2gf ,

yf = 1.5rf+gf−1.5bf where rf ,gf ,bf are the bandpass

filtered versions of the r,g,b channels with the skin-tone

normalization. We utilize the ratio of the standard deviation

of the chrominance signals γ =
σ(xf )
σ(yf )

to compute blood

flow signals [20]. We calculate the signal p as:

p = 3(1−
γ

2
)rf − 2(1 +

γ

2
)gf +

3γ

2
bf . (3)

By applying FFT to p, we obtain the rPPG signal f 2 R
50,

which shows the magnitude of each frequency.

3.3. Network Architecture

Our proposed network consists of two deep networks.

First, a CNN part evaluates each frame separately and esti-

mates the depth map and feature map of each frame. Sec-

ond, a recurrent neural network (RNN) part evaluates the

temporal variability across the feature maps of a sequence.

3.3.1 CNN Network

We design a Fully Convolutional Network (FCN) as our

CNN part, as shown in Fig. 3. The CNN part contains mul-

tiple blocks of three convolutional layers, pooling and re-

sizing layers where each convolutional layer is followed by

one exponential linear layer and batch normalization layer.

Then, the resizing layers resize the response maps after each

block to a pre-defined size of 64 ⇥ 64 and concatenate the

response maps. The bypass connections help the network to

utilize extracted features from layers with different depths

similar to the ResNet structure [24]. After that, our CNN

has two branches, one for estimating the depth map and the

other for estimating the feature map.

The first output of the CNN is the estimated depth map

of the input frame I 2 R
256⇥256, which is supervised by the

estimated “ground truth” depth D,

ΘD = argmin
ΘD

NdX

i=1

||CNND(Ii; ΘD)−Di||
2
1, (4)

where ΘD is the CNN parameters and Nd is the number of

training images. The second output of the CNN is the fea-

ture map, which is fed into the non-rigid registration layer.

3.3.2 RNN Network

The RNN part aims to estimate the rPPG signal f of an input

sequence with Nf frames {Ij}
Nf

j=1. As shown in Fig. 3,

we utilize one LSTM layer with 100 hidden neurons, one

fully connected layer, and an FFT layer that converts the

response of fully connected layer into the Fourier domain.

Given the input sequence {Ij}
Nf

j=1 and the “ground truth”

rPPG signal f , we train the RNN to minimize the `1 distance

of the estimated rPPG signal to “ground truth” f ,

ΘR = argmin
ΘR

NsX

i=1

||RNNR([{Fj}
Nf

j=1
]i; ΘR)− fi||

2

1, (5)

where ΘR is the RNN parameters, Fj 2 R
32⇥32 is the

frontalized feature map (details in Sec. 3.4), and Ns is the

number of sequences.

3.3.3 Implementation Details

Ground Truth Data Given a set of live and spoof face

videos, we provide the ground truth supervision for the

depth map D and rPPG signal f , as in Fig. 4. We follow

the procedure in Sec. 3.1 to compute “ground truth” data for

live videos. For spoof videos, we set the ground truth depth

maps to a plain surface, i.e., zero depth. Similarly, we fol-

low the procedure in Sec. 3.2 to compute the “ground truth”
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Figure 4. Example ground truth depth maps and rPPG signals.

rPPG signal from a patch on the forehead, for one live video

of each subject without PIE variation. Also, we normalize

the norm of estimated rPPG signal such that kfk2 = 1. For

spoof videos, we consider the rPPG signals are zero.

Note that, while the term “depth” is used here, our es-

timated depth is different to the conventional depth map in

computer vision. It can be viewed as a “pseudo-depth” and

serves the purpose of providing discriminative auxiliary su-

pervision to the learning process. The same perspective ap-

plies to the supervision based on pseudo-rPPG signal.

Training Strategy Our proposed network combines the

CNN and RNN parts for end-to-end training. The desired

training data for the CNN part should be from diverse sub-

jects, so as to make the training procedure more stable and

increase the generalizability of the learnt model. Mean-

while, the training data for the RNN part should be long se-

quences to leverage the temporal information across frames.

These two preferences can be contradictory to each other,

especially given the limited GPU memory. Hence, to sat-

isfy both preferences, we design a two-stream training strat-

egy. The first stream satisfies the preference of the CNN

part, where the input includes face images I and the ground

truth depth maps D. The second stream satisfies the RNN

part, where the input includes face sequences {Ij}
Nf

j=1, the

ground truth depth maps {Dj}
Nf

j=1, the estimated 3D shapes

{Sj}
Nf

j=1, and the corresponding ground truth rPPG signals

f . During training, our method alternates between these

two streams to converge to a model that minimizes both

the depth map and rPPG losses. Note that even though the

first stream only updates the weights of the CNN part, the

back propagation of the second stream updates the weights

of both CNN and RNN parts in an end-to-end manner.

Testing To provide a classification score, we feed the test-

ing sequence to our network and compute the depth map D̂

of the last frame and the rPPG signal f̂ . Instead of designing

a classifier using D̂ and f̂ , we compute the final score as:

score = ||f̂ ||22 + λ||D̂||22, (6)

where λ is a constant weight for combining the two outputs

of the network.

D̂

T

S 0S

V

F

3D Face 

Alignment 

  

U

ij
m

ij
m

Figure 5. The non-rigid registration layer.

3.4. Non-rigid Registration Layer

We design a new non-rigid registration layer to prepare

data for the RNN part. This layer utilizes the estimated

dense 3D shape to align the activations or feature maps from

the CNN part. This layer is important to ensure that the

RNN tracks and learns the changes of the activations for the

same facial area across time, as well as across all subjects.

As shown in Fig. 5, this layer has three inputs: the fea-

ture map T 2 R
32⇥32, the depth map D̂ and the 3D shape

S. Within this layer, we first threshold the depth map and

generate a binary mask V 2 R
32⇥32:

V = D̂ ≥ threshold. (7)

Then, we compute the inner product of the binary mask and

the feature map U = T ' V, which essentially utilizes

the depth map as a visibility indicator for each pixel in the

feature map. If the depth value for one pixel is less than the

threshold, we consider that pixel to be invisible. Finally, we

frontalize U by utilizing the estimated 3D shape S,

F(i, j) = U(S(mij , 1),S(mij , 2)), (8)

where m 2 R
K is the pre-defined list of K indexes of the

face area in S0, and mij is the corresponding index of pixel

i, j. We utilize m to project the masked activation map U

to the frontalized image F. This proposed non-rigid regis-

tration layer has three contributions to our network:

⇧ By applying the non-rigid registration, the input data

are aligned and the RNN can compare the feature maps

without concerning about the facial pose or expression. In

other words, it can learn the temporal changes in the activa-

tions of the feature maps for the same facial area.

⇧ The non-rigid registration removes the background

area in the feature map. Hence the background area would

not participate in RNN learning, although the background

information is already utilized in the layers of the CNN part.

⇧ For spoof faces, the depth maps are likely to be closer

to zero. Hence, the inner product with the depth maps

substantially weakens the activations in the feature maps,

which makes it easier for the RNN to output zero rPPG sig-

nals. Likewise, the back propagation from the rPPG loss
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Table 1. The comparison of our collected SiW dataset with existing datasets for face anti-spoofing.

Dataset
Year # of # of # of live/attack Pose Different Extra

Display devices
Spoof

subj. sess. vid. (V), ima. (I) range expres. light. attacks

NUAA [43] 2010 15 3 5105/7509 (I) Frontal No Yes - Print

CASIA-MFSD [50] 2012 50 3 150/450 (V) Frontal No No iPad Print, Replay

Replay-Attack [17] 2012 50 1 200/1000 (V) Frontal No Yes iPhone 3GS, iPad Print, 2 Replay

MSU-MFSD [45] 2015 35 1 110/330 (V) Frontal No No iPad Air, iPhone 5S Print, 2 Replay

MSU-USSA [38] 2016 1140 1 1140/9120 (I) [−45◦, 45◦] Yes Yes MacBook, Nexus 5, Nvidia Shield Tablet 2 print, 6 Replay

Oulu-NPU [14] 2017 55 3 1980/3960 (V) Frontal No Yes Dell 1905FP, Macbook Retina 2 Print, 2 Replay

SiW 2018 165 4 1320/3300 (V) [−90◦, 90◦] Yes Yes iPad Pro, iPhone 7, Galaxy S8, Asus MB168B 2 Print, 4 Replay

F
a

ce
 S

iz
e 

Probability 

Figure 6. The statistics of the subjects in the SiW database. Left

side: The histogram shows the distribution of the face sizes.

also encourages the CNN part to generate zero depth maps

for either all frames, or one pixel location in majority of the

frames within an input sequence.

4. Collection of Face Anti-Spoofing Database

With the advance of sensor technology, existing anti-

spoofing systems can be vulnerable to emerging high-

quality spoof mediums. One way to make the system robust

to these attacks is to collect new high-quality databases. In

response to this need, we collect a new face anti-spoofing

database named Spoof in the Wild (SiW) database, which

has multiple advantages over previous datasets as in Tab. 1.

First, it contains substantially more live subjects with di-

verse races, e.g., 3 times of the subjects of Oulu-NPU. Note

that MSU-USSA is constructed using existing images of

celebrities without capturing live faces. Second, live videos

are captured with two high-quality cameras (Canon EOS

T6, Logitech C920 webcam) with different PIE variations.

SiW provides live and spoof 30-fps videos from 165 sub-

jects. For each subject, we have 8 live and 20 spoof videos,

in total 4, 620 videos. Some statistics of the subjects are

shown in Fig. 6. The live videos are collected in four ses-

sions. In Session 1, the subject moves his head with varying

distances to the camera. In Session 2, the subject changes

the yaw angle of the head within [−90◦, 90◦], and makes

different face expressions. In Sessions 3, 4, the subject re-

peats the Sessions 1, 2, while the collector moves the point

light source around the face from different orientations.

The live videos captured by both cameras are of 1, 920⇥
1, 080 resolution. We provide two print and four replay

video attacks for each subject, with examples shown in

Fig. 7. To generate different qualities of print attacks, we

Normal Small Large Pose Expression Lighting 

Print 1 Print 2 iPad iPhone PC Screen Samsung S8 

Figure 7. Example live (top) and spoof (bottom) videos in SiW.

capture a high-resolution image (5, 184 ⇥ 3, 456) for each

subject and use it to make a high-quality print attack. Also,

we extract a frontal-view frame from a live video for lower-

quality print attack. We print the images with an HP color

LaserJet M652 printer. The print attack videos are captured

by holding printed papers still or warping them in front of

the cameras. To generate high-quality replay attack videos,

we select four spoof mediums: Samsung Galaxy S8, iPhone

7, iPad Pro, and PC (Asus MB168B) screens. For each sub-

ject, we randomly select two of the four high-quality live

videos to display in the spoof mediums.

5. Experimental Results

5.1. Experimental Setup

Databases We evaluate our method on multiple databases

to demonstrate its generalizability. We utilize SiW and Oulu

databases [14] as new high-resolution databases and per-

form intra and cross testing between them. Also, we use the

CASIA-MFSD [50] and Replay-Attack [17] databases for

cross testing and comparing with the state of the art.

Parameter setting The proposed method is implemented

in TensorFlow [3] with a constant learning rate of 3e−3,

and 10 epochs of the training phase. The batch size of the

CNN stream is 10 and that of the CNN-RNN stream is 2
with Nf being 5. We randomly initialize our network by

using a normal distribution with zero mean and std of 0.02.

We set λ in Eq. 6 to 0.015 and threshold in Eq. 7 to 0.1.

Evaluation metrics To compare with prior works, we re-

port our results with the following metrics: Attack Presenta-

tion Classification Error Rate APCER [2], Bona Fide Pre-

sentation Classification Error Rate BPCER [2], ACER =
APCER+BPCER

2 [2], and Half Total Error Rate HTER.

The HTER is half of the summation of the False Rejection

Rate (FRR) and the False Acceptance Rate (FAR).
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Table 2. TDR at different FDRs, cross testing on Oulu Protocol 1.

FDR 1% 2% 10% 20%

Model 1 8.5% 18.1% 71.4% 81.0%

Model 2 40.2% 46.9% 78.5% 93.5%

Model 3 39.4% 42.9% 67.5% 87.5%

Model 4 45.8% 47.9% 81% 94.2%

Table 3. ACER of our method at different Nf , on Oulu Protocol 2.
P
P
P
P

P
P
P

Test

Train
5 10 20

5 4.16% 4.16% 3.05%

10 4.02% 3.61% 2.78%

20 4.10% 3.67% 2.98%

5.2. Experimental Comparison

5.2.1 Ablation Study

Advantage of proposed architecture We compare four

architectures to demonstrate the advantages of the proposed

loss layers and non-rigid registration layer. Model 1 has an

architecture similar to the CNN part in our method (Fig. 3),

except that it is extended with additional pooling layers,

fully connected layers, and softmax loss for binary classi-

fication. Model 2 is the CNN part in our method with a

depth map loss function. We simply use ||D̂||2 for classifi-

cation. Model 3 contains the CNN and RNN parts without

the non-rigid registration layer. Both of the depth map and

rPPG loss functions are utilized in this model. However, the

RNN part would process unregistered feature maps from the

CNN. Model 4 is the proposed architecture.

We train all four models with the live and spoof videos

from 20 subjects of SiW. We compute the cross-testing per-

formance of all models on Protocol 1 of Oulu database. The

TDR at different FDR are reported in Tab. 2. Model 1 has

a poor performance due to the binary supervision. In com-

parison, by only using the depth map as supervision, Model

2 achieves substantially better performance. However, after

adding the RNN part with the rPPG supervision, our pro-

posed Model 4 can further the performance improvement.

By comparing Model 4 and 3, we can see the advantage of

the non-rigid registration layer. It is clear that the RNN part

cannot use feature maps directly for tracking the changes in

the activations and estimating the rPPG signals.

Advantage of longer sequences To show the advantage of

utilizing longer sequences for estimating the rPPG, we train

and test our model when the sequence length Nf is 5, 10, or

20, using intra-testing on Oulu Protocol 2. From Tab. 3, we

can see that by increasing the sequence length, the ACER

decreases due to more reliable rPPG estimation. Despite

the benefit of longer sequences, in practice, we are limited

by the GPU memory size, and forced to decrease the image

size to 128⇥128 for all experiments in Tab. 3. Hence, we set

Nf to be 5 with the image size of 256⇥ 256 in subsequent

experiments, due to importance of higher resolution (e.g, a

lower ACER of 2.5% in Tab. 4 is achieved than 4.16%).

Table 4. The intra-testing results on four protocols of Oulu.
Prot. Method APCER (%) BPCER (%) ACER (%)

CPqD 2.9 10.8 6.9
1 GRADIANT 1.3 12.5 6.9

Proposed method 1.6 1.6 1.6

MixedFASNet 9.7 2.5 6.1
2 Proposed method 2.7 2.7 2.7

GRADIANT 3.1 1.9 2.5

MixedFASNet 5.3± 6.7 7.8± 5.5 6.5± 4.6
3 GRADIANT 2.6 ± 3.9 5.0± 5.3 3.8± 2.4

Proposed method 2.7± 1.3 3.1 ± 1.7 2.9 ± 1.5

Massy HNU 35.8± 35.3 8.3 ± 4.1 22.1± 17.6
4 GRADIANT 5.0 ± 4.5 15.0± 7.1 10.0± 5.0

Proposed method 9.3± 5.6 10.4± 6.0 9.5 ± 6.0

Table 5. The intra-testing results on three protocols of SiW.
Prot. Subset Subject # Attack APCER (%) BPCER (%) ACER (%)

1
Train 90 First 60 Frames

3.58 3.58 3.58
Test 75 All

2
Train 90 3 display

0.57± 0.69 0.57± 0.69 0.57± 0.69
Test 75 1 display

3
Train 90 print (display)

8.31± 3.81 8.31± 3.80 8.31± 3.81
Test 75 display (print)

5.2.2 Intra Testing

We perform intra testing on Oulu and SiW databases. For

Oulu, we follow the four protocols [10] and report their

APCER, BPCER and ACER. Tab. 4 shows the compari-

son of our proposed method and the best two methods for

each protocol respectively, in the face anti-spoofing compe-

tition [10]. Our method achieves the lowest ACER in 3 out

of 4 protocols. We have slightly worse ACER on Protocol

2. To set a baseline for future study on SiW, we define three

protocols for SiW. The Protocol 1 deals with variations in

face pose and expression. We train using the first 60 frames

of the training videos that are mainly frontal view faces,

and test on all testing videos. The Protocol 2 evaluates the

performance of cross spoof medium of replay attack. The

Protocol 3 evaluates the performance of cross PA, i.e., from

print attack to replay attack and vice versa. Tab. 5 shows the

protocol definition and our performance of each protocol.

5.2.3 Cross Testing

To demonstrate the generalization of our method, we per-

form multiple cross-testing experiments. Our model is

trained with live and spoof videos of 80 subjects in SiW,

and test on all protocols of Oulu. The ACER on Proto-

col 1-4 are respectively: 10.0%, 14.1%, 13.8 ± 5.7%, and

10.0 ± 8.8%. Comparing these cross-testing results to the

intra-testing results in [10], we are ranked sixth on the av-

erage ACER of four protocols, among the 15 participants of

the face anti-spoofing competition. Especially on Protocol

4, the hardest one among all protocols, we achieve the same

ACER of 10.0% as the top performer. This is a notable result

since cross testing is known to be substantially harder than

intra testing, and yet our cross-testing result is comparable

with the top intra-testing performance. This demonstrates

the generalization ability of our learnt model.

395



(a) (b) 
Frequency 

M
ag

n
it

u
d

e 

Frequency 

M
ag

n
it

u
d

e 

Figure 8. (a) 8 successful anti-spoofing examples and their estimated depth maps and rPPG signals. (b) 4 failure examples: the first two

are live and the other two are spoof. Note our ability to estimate discriminative depth maps and rPPG signals.

Table 6. Cross testing on CASIA-MFSD vs. Replay-Attack.

Method

Train Test Train Test

CASIA- Replay Replay CASIA-

MFSD Attack Attack MFSD

Motion [19] 50.2% 47.9%

LBP [19] 55.9% 57.6%

LBP-TOP [19] 49.7% 60.6%

Motion-Mag [8] 50.1% 47.0%

Spectral cubes [40] 34.4% 50.0%

CNN [48] 48.5% 45.5%

LBP [11] 47.0% 39.6%

Colour Texture [12] 30.3% 37.7%

Proposed method 27.6% 28.4%

Live Spoof 

Mean Standard deviation Mean Standard deviation 

Figure 9. Mean/Std of frontalized feature maps for live and spoof.

Furthermore, we utilize the CASIA-MFSD and Replay-

Attack databases to perform cross testing between them,

which is widely used as a cross-testing benchmark. Tab. 6

compares the cross-testing HTER of different methods. Our

proposed method reduces the cross-testing errors on the

Replay-Attack and CASIA-MFSD databases by 8.9% and

24.6% respectively, relative to the previous SOTA.

5.2.4 Visualization and Analysis

In the proposed architecture, the frontalized feature maps

are utilized as input to the RNN part and are supervised by

the rPPG loss function. The values of these maps can show

the importance of different facial areas to rPPG estimation.

Fig. 9 shows the mean and standard deviation of frontalized

feature maps, computed from 1, 080 live and spoof videos

of Oulu. We can see that the side areas of forehead and

cheek have higher influence for rPPG estimation.

While the goal of our system is to detect PAs, our model

is trained to estimate the auxiliary information. Hence, in

addition to anti-spoof, we also like to evaluate the accuracy

of auxiliary information estimation. For this purpose, we

calculate the accuracy of estimating depth maps and rPPG

signals, for testing data in Protocol 2 of Oulu. As shown

in Fig. 10, the accuracy for both estimation in spoof data

Live Spoof 

Figure 10. The MSE of estimating depth maps and rPPG signals.

is high, while that of the live data is relatively lower. Note

that the depth estimation of the mouth area has more errors,

which is consistent with the fewer activations of the same

area in Fig. 9. Examples of successful and failure cases in

estimating depth maps and rPPG signals are shown in Fig. 8.

Finally, we conduct statistical analysis on the failure

cases, since our system can determine potential causes us-

ing the auxiliary information. With Proctocol 2 of Oulu,

we identify 31 failure cases (2.7% ACER). For each case,

we calculate whether anti-spoofing using its depth map or

rPPG signal would fail if that information alone is used. In

total, 29
31 , 13

31 , and 11
31 samples fail due to depth map, rPPG

signals, or both. This indicates the future research direction.

6. Conclusions

This paper identifies the importance of auxiliary supervi-

sion to deep model-based face anti-spoofing. The proposed

network combines CNN and RNN architectures to jointly

estimate the depth of face images and rPPG signal of face

video. We introduce the SiW database that contains more

subjects and variations than prior databases. Finally, we ex-

perimentally demonstrate the superiority of our method.
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