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Abstract

The way that information propagates in neural networks

is of great importance. In this paper, we propose Path Ag-

gregation Network (PANet) aiming at boosting information

flow in proposal-based instance segmentation framework.

Specifically, we enhance the entire feature hierarchy with

accurate localization signals in lower layers by bottom-up

path augmentation, which shortens the information path be-

tween lower layers and topmost feature. We present adap-

tive feature pooling, which links feature grid and all feature

levels to make useful information in each level propagate

directly to following proposal subnetworks. A complemen-

tary branch capturing different views for each proposal is

created to further improve mask prediction.

These improvements are simple to implement, with subtle

extra computational overhead. Yet they are useful and make

our PANet reach the 1st place in the COCO 2017 Chal-

lenge Instance Segmentation task and the 2nd place in Ob-

ject Detection task without large-batch training. PANet is

also state-of-the-art on MVD and Cityscapes.

1. Introduction

Instance segmentation is one of the most important and

challenging tasks. It aims to predict class labels and pixel-

wise instance masks to localize a varying number of in-

stances presented in each image. This task widely benefits

autonomous vehicles, robotics, video surveillance, to name

a few.

With the help of deep convolutional neural networks,

several frameworks for instance segmentation, e.g., [21, 33,

3, 38], were proposed where performance grows rapidly

[12]. Mask R-CNN [21] is a simple and effective system

for instance segmentation. Based on Fast/Faster R-CNN

[16, 51], a fully convolutional network (FCN) is used for

mask prediction, along with box regression and classifica-

tion. To achieve high performance, feature pyramid net-

work (FPN) [35] is utilized to extract in-network feature

hierarchy, where a top-down path with lateral connections

is augmented to propagate semantically strong features.

Several newly released datasets [37, 7, 45] facilitate de-

sign of new algorithms. COCO [37] consists of 200k im-

ages. Several instances with complex spatial layout are cap-

tured in each image. Differently, Cityscapes [7] and MVD

[45] provide street scenes with a large number of traffic

participants in each image. Blur, heavy occlusion and ex-

tremely small instances appear in these datasets.

There have been several principles proposed for design-

ing networks in image classification that are also effec-

tive for object recognition. For example, shortening infor-

mation path and easing information propagation by clean

residual connection [23, 24] and dense connection [26] are

useful. Increasing the flexibility and diversity of informa-

tion paths by creating parallel paths following the split-

transform-merge strategy [61, 6] is also beneficial.

Our Findings Our research indicates that information

propagation in state-of-the-art Mask R-CNN can be further

improved. Specifically, features in low levels are helpful for

large instance identification. But there is a long path from

low-level structure to topmost features, increasing difficulty

to access accurate localization information. Further, each

proposal is predicted based on feature grids pooled from one

feature level, which is assigned heuristically. This process

can be updated since information discarded in other levels

may be helpful for final prediction. Finally, mask prediction

is made on a single view, losing the chance to gather more

diverse information.

Our Contributions Inspired by these principles and ob-

servations, we propose PANet, illustrated in Figure 1, for

instance segmentation.

First, to shorten information path and enhance fea-

ture pyramid with accurate localization signals existing in

low-levels, bottom-up path augmentation is created. In

fact, features in low-layers were utilized in the systems of

[44, 42, 13, 46, 35, 5, 31, 14]. But propagating low-level

features to enhance entire feature hierarchy for instance

recognition was not explored.

18759



mask

box

class

�ଶ
�ଷ�ସ�ହ

�ହ�ସ�ଷ
�ଶ

(a) (b) (c) (d)

(e)

Figure 1. Illustration of our framework. (a) FPN backbone. (b) Bottom-up path augmentation. (c) Adaptive feature pooling. (d) Box

branch. (e) Fully-connected fusion. Note that we omit channel dimension of feature maps in (a) and (b) for brevity.

Second, to recover broken information path between

each proposal and all feature levels, we develop adaptive

feature pooling. It is a simple component to aggregate fea-

tures from all feature levels for each proposal, avoiding ar-

bitrarily assigned results. With this operation, cleaner paths

are created compared with those of [4, 62].

Finally, to capture different views of each proposal, we

augment mask prediction with tiny fully-connected (fc) lay-

ers, which possess complementary properties to FCN orig-

inally used by Mask R-CNN. By fusing predictions from

these two views, information diversity increases and masks

with better quality are produced.

The first two components are shared by both object de-

tection and instance segmentation, leading to much en-

hanced performance of both tasks.

Experimental Results With PANet, we achieve state-of-

the-art performance on several datasets. With ResNet-50

[23] as the initial network, our PANet tested with a single

scale already outperforms champion of COCO 2016 Chal-

lenge in both object detection [27] and instance segmenta-

tion [33] tasks. Note that these previous results are achieved

by larger models [23, 58] along with multi-scale and hori-

zontal flip testing.

We achieve the 1st place in COCO 2017 Challenge In-

stance Segmentation task and the 2nd place in Object De-

tection task without large-batch training. We also bench-

mark our system on Cityscapes and MVD, which similarly

yields top-ranking results, manifesting that our PANet is a

very practical and top-performing framework. Our code and

models will be made publicly available.

2. Related Work

Instance Segmentation There are mainly two streams of

methods in instance segmentation. The most popular one

is proposal-based. Methods in this stream have a strong

connection to object detection. In R-CNN [17], object pro-

posals from [60, 68] were fed into the network to extract

features for classification. Fast and faster R-CNN [16, 51]

and SPPNet [22] sped up the process by pooling features

from global feature maps. Earlier work [18, 19] took mask

proposals from MCG [1] as input to extract features while

CFM [9], MNC [10] and Hayder et al. [20] merged feature

pooling to network for faster speed. Newer design was to

generate instance masks in networks as proposal [48, 49, 8]

or final result [10, 34, 41]. Mask R-CNN [21] is an effec-

tive framework in this stream. Our work is built on Mask

R-CNN and improves it in important aspects.

Methods in the other stream are mainly segmentation-

based. They learned specially designed transformation

[3, 33, 38, 59] or instance boundaries [30]. Then instance

masks were decoded from predicted transformation. In-

stance segmentation by other pipelines also exists. DIN [2]

fused predictions from object detection and semantic seg-

mentation systems. A graphical model was used in [66, 65]

to infer the order of instances. RNN was utilized in [53, 50]

to propose one instance in each time step.

Multi-level Features Features from different layers were

used in image recognition. SharpMask [49], Peng et al. [47]

and LRR [14] fused feature maps for segmentation with

finer details. FCN [44], U-Net [54] and Noh et al. [46] fused

information from lower layers through skip-connections.

Both TDM [56] and FPN [35] augmented a top-down path

with lateral connections for object detection. Different from

TDM, which took the fused feature map with the highest

resolution to pool features, SSD [42], DSSD [13], MS-CNN

[5] and FPN [35] assigned proposals to appropriate feature

levels for inference. We take FPN as a baseline and much

enhance it.

ION [4], Zagoruyko et al. [62], Hypernet [31] and Hy-

percolumn [19] concatenated feature grids from different

layers for better prediction. A sequence of operations, i.e.,

normalization, concatenation and dimension reduction, are

needed to get feasible new features. In comparison, our de-

sign is much simpler.
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Figure 2. Illustration of our building block of bottom-up path aug-

mentation.

Fusing feature grids from different sources for each pro-

posal was also utilized in [52]. But this method extracted

feature maps on input with different scales and then con-

ducted feature fusion (with the max operation) to improve

feature selection from the input image pyramid. In contrast,

our method aims at utilizing information from all feature

levels in the in-network feature hierarchy with single-scale

input. End-to-end training is enabled.

Larger Context Region Methods of [15, 64, 62] pooled

features for each proposal with a foveal structure to ex-

ploit context information from regions with different res-

olutions. Features pooled from a larger region provide sur-

rounding context. Global pooling was used in PSPNet [67]

and ParseNet [43] to greatly improve quality of semantic

segmentation. Similar trend was observed by Peng et al.

[47] where global convolutions were utilized. Our mask

prediction branch also supports accessing global informa-

tion. But the technique is completely different.

3. Our Framework

Our framework is illustrated in Figure 1. Path augmen-

tation and aggregation are conducted for improving perfor-

mance. A bottom-up path is augmented to make low-layer

information easier to propagate. We design adaptive feature

pooling to allow each proposal to access information from

all levels for prediction. A complementary path is added to

the mask-prediction branch. This new structure leads to de-

cent performance. Similar to FPN, the improvement is inde-

pendent of the CNN structures, such as those of [57, 32, 23].

3.1. Bottom-up Path Augmentation

Motivation The insightful point [63] that neurons in high

layers strongly respond to entire objects while others are

more likely to be activated by local texture and patterns

manifests the necessity of augmenting a top-down path to

propagate semantically strong features and enhance all fea-

tures with reasonable classification capability in FPN.

Our framework further enhances the localization capa-

bility of the entire feature hierarchy by propagating strong

responses of low-level patterns based on the fact that high

response to edges or instance parts is a strong indicator to

accurately localize instances. To this end, we build a path

with clean lateral connections from the low level to top

ones. This process yields a “shortcut” (dashed green line

in Figure 1), which consists of less than 10 layers, across

these levels. In comparison, the CNN trunk in FPN gives

a long path (dashed red line in Figure 1) passing through

100+ layers from low layers to the topmost one.

Augmented Bottom-up Structure Our framework first

accomplishes bottom-up path augmentation. We follow

FPN to define that layers producing feature maps with the

same spatial sizes are in the same network stage. Each fea-

ture level corresponds to one stage. We also take ResNet

[23] as the basic structure and use {P2, P3, P4, P5} to de-

note feature levels generated by FPN. Our augmented path

starts from the lowest level P2 and gradually approaches

P5 as shown in Figure 1(b). From P2 to P5, the spa-

tial size is gradually down-sampled with factor 2. We use

{N2, N3, N4, N5} to denote newly generated feature maps

corresponding to {P2, P3, P4, P5}. Note that N2 is simply

P2, without any processing.

As shown in Figure 2, each building block takes a higher

resolution feature map Ni and a coarser map Pi+1 through

lateral connection and generates the new feature map Ni+1.

Each feature map Ni first goes through a 3 × 3 convolu-

tional layer with stride 2 to reduce the spatial size. Then

each element of feature map Pi+1 and the down-sampled

map are added through lateral connection. The fused fea-

ture map is then processed by another 3 × 3 convolutional

layer to generate Ni+1 for following sub-networks. This

is an iterative process and terminates after approaching P5.

In these building blocks, we consistently use channel 256

of feature maps. All convolutional layers are followed by

a ReLU [32]. The feature grid for each proposal is then

pooled from new feature maps, i.e., {N2, N3, N4, N5}.

3.2. Adaptive Feature Pooling

Motivation In FPN [35], proposals are assigned to dif-

ferent feature levels according to the size of proposals. It

makes small proposals assigned to low feature levels and

large proposals to higher ones. Albeit simple and effective,

it could generate non-optimal results. For example, two pro-

posals with 10-pixel difference can be assigned to different

levels. In fact, these two proposals are rather similar.

Further, importance of features may not be strongly cor-

related to the levels they belong to. High-level features are

generated with large receptive fields and capture richer con-

text information. Allowing small proposals to access these

features better exploits useful context information for pre-

diction. Similarly, low-level features are with many fine de-

tails and high localization accuracy. Making large proposals

access them is obviously beneficial. With these thoughts,

we propose pooling features from all levels for each pro-

posal and fusing them for following prediction. We call this

process adaptive feature pooling.
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Figure 3. Ratio of features pooled from different feature levels

with adaptive feature pooling. Each line represents a set of pro-

posals that should be assigned to the same feature level in FPN,

i.e., proposals with similar scales. The horizontal axis denotes the

source of pooled features. It shows that proposals with different

sizes all exploit features from multiple levels.

We now analyze the ratio of features pooled from dif-

ferent levels with adaptive feature pooling. We use max

operation to fuse features from different levels, which lets

network select element-wise useful information. We cluster

proposals into four classes based on the levels they were as-

signed to originally in FPN. For each set of proposals, we

calculate the ratio of features selected from different levels.

In notation, levels 1− 4 represent low-to-high levels.

As shown in Figure 3, the blue line represents small pro-

posals that were assigned to level 1 originally in FPN. Sur-

prisingly, nearly 70% of features are from other higher lev-

els. We also use the yellow line to represent large proposals

that were assigned to level 4 in FPN. Again, 50%+ of the

features are pooled from other lower levels. This observa-

tion clearly indicates that features in multiple levels together

are helpful for accurate prediction. It is also a strong sup-

port of designing bottom-up path augmentation.

Adaptive Feature Pooling Structure Adaptive feature

pooling is actually simple in implementation and is demon-

strated in Figure 1(c). First, for each proposal, we map them

to different feature levels, as denoted by dark grey regions

in Figure 1(b). Following Mask R-CNN [21], ROIAlign is

used to pool feature grids from each level. Then a fusion

operation (element-wise max or sum) is utilized to fuse fea-

ture grids from different levels.

In following sub-networks, pooled feature grids go

through one parameter layer independently, which is fol-

lowed by the fusion operation, to enable network to adapt

features. For example, there are two fc layers in the box

branch in FPN. We apply the fusion operation after the first

layer. Since four consecutive convolutional layers are used

in mask prediction branch in Mask R-CNN, we place fu-

sion operation between the first and second convolutional

layers. Ablation study is given in Section 4.2. The fused

feature grid is used for each proposal for further prediction,

i.e., classification, box regression and mask prediction.

ROI conv1 conv2 conv3 conv4 deconv

reshape

conv4_fc conv5_fc

fc

mask

Figure 4. Mask prediction branch with fully-connected fusion.

Our design focuses on fusing information from in-

network feature hierarchy instead of those from different

feature maps of input image pyramid [52]. It is simpler

compared with the process of [4, 62, 31], where L2 normal-

ization, concatenation and dimension reduction are needed.

3.3. Fully-connected Fusion

Motivation Fully-connected layers, or MLP, were widely

used in mask prediction in instance segmentation [10, 41,

34] and mask proposal generation [48, 49]. Results of

[8, 33] show that FCN is also competent in predicting pixel-

wise masks for instances. Recently, Mask R-CNN [21] ap-

plied a tiny FCN on the pooled feature grid to predict cor-

responding masks avoiding competition between classes.

We note fc layers yield different properties compared

with FCN where the latter gives prediction at each pixel

based on a local receptive field and parameters are shared

at different spatial locations. Contrarily, fc layers are loca-

tion sensitive since predictions at different spatial locations

are achieved by varying sets of parameters. So they have

the ability to adapt to different spatial locations. Also pre-

diction at each spatial location is made with global infor-

mation of the entire proposal. It is helpful to differentiate

instances [48] and recognize separate parts belonging to the

same object. Given different properties of fc and convolu-

tional layers, we fuse predictions from these two types of

layers for better mask prediction.

Mask Prediction Structure Our component of mask pre-

diction is light-weighted and easy to implement. The mask

branch operates on pooled feature grid for each proposal.

As shown in Figure 4, the main path is a small FCN, which

consists of 4 consecutive convolutional layers and 1 decon-

volutional layer. Each convolutional layer consists of 256

3 × 3 filters and the deconvolutional layer up-samples fea-

ture with factor 2. It predicts a binary pixel-wise mask

for each class independently to decouple segmentation and

classification, similar to that of Mask R-CNN. We further

create a short path from layer conv3 to a fc layer. There

are two 3×3 convolutional layers where the second shrinks

channels to half to reduce computational overhead.

A fc layer is used to predict a class-agnostic fore-
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Method AP AP50 AP75 APS APM APL Backbone

Champion 2016 [33] 37.6 59.9 40.4 17.1 41.0 56.0 6×ResNet-101

Mask R-CNN [21] + FPN [35] 35.7 58.0 37.8 15.5 38.1 52.4 ResNet-101

Mask R-CNN [21] + FPN [35] 37.1 60.0 39.4 16.9 39.9 53.5 ResNeXt-101

PANet / PANet [ms-train] 36.6 / 38.2 58.0 / 60.2 39.3 / 41.4 16.3 / 19.1 38.1 / 41.1 53.1 / 52.6 ResNet-50

PANet / PANet [ms-train] 40.0 / 42.0 62.8 / 65.1 43.1 / 45.7 18.8 / 22.4 42.3 / 44.7 57.2 / 58.1 ResNeXt-101

Table 1. Comparison among PANet, winner of COCO 2016 instance segmentation challenge, and Mask R-CNN on COCO test-dev subset

in terms of Mask AP, where the latter two are baselines.

ground/background mask. It not only is efficient, but also

allows parameters in the fc layer trained with more sam-

ples, leading to better generality. The mask size we use is

28 × 28 so that the fc layer produces a 784 × 1 × 1 vector.

This vector is reshaped to the same spatial size as the mask

predicted by FCN. To obtain the final mask prediction, mask

of each class from FCN and foreground/background predic-

tion from fc are added. Using only one fc layer, instead of

multiple of them, for final prediction prevents the issue of

collapsing the hidden spatial feature map into a short feature

vector, which loses spatial information.

4. Experiments

We compare our method with state-of-the-arts on chal-

lenging COCO [37], Cityscapes [7] and MVD [45] datasets.

Our results are top ranked in all of them. Comprehensive

ablation study is conducted on the COCO dataset. We also

present our results of COCO 2017 Instance Segmentation

and Object Detection Challenges.

4.1. Implementation Details

We re-implement Mask R-CNN and FPN based on Caffe

[29]. All pre-trained models we use in experiments are pub-

licly available. We adopt image centric training [16]. For

each image, we sample 512 region-of-interests (ROIs) with

positive-to-negative ratio 1 : 3. Weight decay is 0.0001 and

momentum is set to 0.9. Other hyper-parameters slightly

vary according to datasets and we detail them in respective

experiments. Following Mask R-CNN, proposals are from

an independently trained RPN [35, 51] for convenient ab-

lation and fair comparison, i.e., the backbone is not shared

with object detection and instance segmentation.

4.2. Experiments on COCO

Dataset and Metrics COCO [37] dataset is among the

most challenging ones for instance segmentation and object

detection due to the data complexity. It consists of 115k

images for training and 5k images for validation (new split

of 2017). 20k images are used in test-dev and 20k images

are used as test-challenge. Ground-truth labels of both test-

challenge and test-dev are not publicly available. There are

80 classes with pixel-wise instance mask annotation. We

train our models on train-2017 subset and report results on

val-2017 subset for ablation study. We also report results on

test-dev for comparison.

We follow the standard evaluation metrics, i.e., AP,

AP50, AP75, APS , APM and APL. The last three measure

performance with respect to objects with different scales.

Since our framework is general to both instance segmenta-

tion and object detection, we also train independent object

detectors. We report mask AP, box ap APbb of an inde-

pendently trained object detector, and box ap APbbM of the

object detection branch trained in the multi-task fashion.

Hyper-parameters We take 16 images in one image

batch for training. The shorter and longer edges of the im-

ages are 800 and 1000, if not specially noted. For instance

segmentation, we train our model with learning rate 0.02 for

120k iterations and 0.002 for another 40k iterations. For ob-

ject detection, we train one object detector without the mask

prediction branch. Object detector is trained for 60k itera-

tions with learning rate 0.02 and another 20k iterations with

learning rate 0.002. These parameters are adopted from

Mask R-CNN and FPN without any fine-tuning.

Instance Segmentation Results We report performance

of our PANet on test-dev for comparison, with and with-

out multi-scale training. As shown in Table 1, our PANet

with ResNet-50 trained on multi-scale images and tested on

single-scale images already outperforms Mask R-CNN and

the champion in 2016, where the latter used larger model

ensembles and testing tricks of [23, 33, 10, 15, 39, 62].

Trained and tested with the same image scale 800, our

method outperforms the single-model Mask R-CNN with

nearly 3 points under the same initial models.

Object Detection Results Similar to the way adopted in

Mask R-CNN, we also report bounding box results inferred

from the box branch. Table 2 shows that our method with

ResNet-50, trained and tested on single-scale images, out-

performs, by a large margin, all other single-model ones

that even used much larger ResNeXt-101 [61] as the initial

model. With multi-scale training and single-scale testing,

our PANet with ResNet-50 outperforms the champion 2016,

which used larger model ensemble and testing tricks.

Component Ablation Studies First, we analyze impor-

tance of each proposed component. Besides bottom-up path

augmentation, adaptive feature pooling and fully-connected

fusion, we also analyze multi-scale training, multi-GPU

synchronized batch normalization [67, 28] and heavier

head. For multi-scale training, we set the longer edge to
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Method APbb APbb
50

APbb
75

APbb

S
APbb

M
AP bb

L
Backbone

Champion 2016 [27] 41.6 62.3 45.6 24.0 43.9 55.2 2×ResNet-101 + 3×Inception-ResNet-v2

RentinaNet [36] 39.1 59.1 42.3 21.8 42.7 50.2 ResNet-101

Mask R-CNN [21] + FPN [35] 38.2 60.3 41.7 20.1 41.1 50.2 ResNet-101

Mask R-CNN [21] + FPN [35] 39.8 62.3 43.4 22.1 43.2 51.2 ResNeXt-101

PANet / PANet [ms-train] 41.2 / 42.5 60.4 / 62.3 44.4 / 46.4 22.7 / 26.3 44.0 / 47.0 54.6 / 52.3 ResNet-50

PANet / PANet [ms-train] 45.0 / 47.4 65.0 / 67.2 48.6 / 51.8 25.4 / 30.1 48.6 / 51.7 59.1 / 60.0 ResNeXt-101

Table 2. Comparison among PANet, winner of COCO 2016 object detection challenge, RentinaNet and Mask R-CNN on COCO test-dev

subset in terms of box AP, where the latter three are baselines.

MRB RBL MST MBN BPA AFP FF HHD AP/APbb/APbbM AP50 AP75 APS /APbb

S
/APbbM

S
APM /APbb

M
/APbbM

M
APL/AP bb

L
/AP bbM

L

X - - - - - - - 33.6 / 33.9 / - 55.2 35.3 - / 17.8 / - - / 37.7 / - - / 45.8 / -

X 33.4 / 35.0 / 36.4 54.3 35.5 14.1 / 18.7 / 20.0 35.7 / 38.9 / 39.7 50.8 / 47.0 / 48.8

X X 35.3 / 35.0 / 38.2 56.7 37.9 17.6 / 20.8 / 24.3 38.6 / 39.9 / 42.3 50.6 / 44.1 / 48.8

X X X 35.7 / 37.1 / 38.9 57.3 38.0 18.6 / 24.2 / 25.3 39.4 / 42.5 / 43.6 51.7 / 47.1 / 49.9

X X X X 36.4 / 38.0 / 39.9 57.8 39.2 19.3 / 23.3 / 26.2 39.7 / 42.9 / 44.3 52.6 / 49.4 / 51.3

X X X X 36.3 / 37.9 / 39.6 58.0 38.9 19.0 / 25.4 / 26.4 40.1 / 43.1 / 44.9 52.4 / 48.6 / 50.5

X X X X X 36.9 / 39.0 / 40.6 58.5 39.7 19.6 / 25.7 / 27.0 40.7 / 44.2 / 45.7 53.2 / 49.5 / 52.1

X X X X X X 37.6 / - / - 59.1 40.6 20.3 / - / - 41.3 / - / - 53.8 / - / -

X X X X X X X 37.8 / 39.2 / 42.1 59.4 41.0 19.2 / 25.8 / 27.0 41.5 / 44.3 / 47.3 54.3 / 50.6 / 54.1

+4.4 / +4.2 / +5.7 +5.1 +5.5 +5.1 / +7.1 / +7.0 +5.8 / +5.4 / +7.6 +3.5 / +3.6 / +5.3

Table 3. Performance in terms of mask AP, box ap APbb of an independently trained object detector, and box ap APbbM of the box

branch trained with multi-task fashion on val-2017. Based on our re-implemented baseline (RBL), we gradually add multi-scale training

(MST), multi-GPU synchronized batch normalization (MBN), bottom-up path augmentation (BPA), adaptive feature pooling (AFP), fully-

connected fusion (FF) and heavier head (HHD) for ablation study. MRB is short for Mask R-CNN result reported in the original paper.

The last row shows total improvement compared with baseline RBL.

1, 400 and let the other range from 400 to 1, 400. We cal-

culate mean and variance based on all samples in one batch

across all GPUs, do not fix any parameters during training,

and make all new layers followed by a batch normalization

layer, when using multi-GPU synchronized batch normal-

ization. The heavier head uses 4 consecutive 3 × 3 convo-

lutional layers shared by box classification and box regres-

sion, instead of two fc layers. It is similar to the head used

in [36]. But the convolutional layers for box classification

and box regression branches are not shared in [36].

Our ablation study from the baseline gradually to all

components incorporated is conducted on val-2017 subset

and is shown in Table 3. ResNet-50 [23] is our initial model.

We report performance in terms of mask AP, box ap APbb of

an independently trained object detector and box ap APbbM

of box branch trained in the multi-task fashion.

1) Re-implemented Baseline. Our re-implemented Mask

R-CNN performs comparably with the one described in

original paper and our object detector performs better.

2) Multi-scale Training & Multi-GPU Sync. BN. These

two techniques help the network to converge better and in-

crease the generalization ability.

3) Bottom-up Path Augmentation. With or without adap-

tive feature pooling, bottom-up path augmentation consis-

tently improves mask AP and box ap APbb by more than 0.6

and 0.9 respectively. The improvement on big instances is

significant, manifesting the usefulness of information sent

from lower feature levels.

4) Adaptive Feature Pooling. With or without bottom-

up path augmentation, adaptive feature pooling consistently

improves performance in all scales, which is in accordance

with our aforementioned observation that features in other

layers are also useful in final prediction.

5) Fully-connected Fusion. Fully-connected fusion pre-

dicts masks with better quality. It yields 0.7 improvement

in terms of mask AP. It is general for instances at all scales.

6) Heavier Head. Heavier head is quite effective for box

ap APbbM of bounding boxes trained in the multi-task fash-

ion. While for mask AP and independently trained object

detector, the improvement is smaller.

With all these components in PANet, improvement on

mask AP is 4.4 over baselines. Box ap APbb of indepen-

dently trained object detector increases 4.2. They are signif-

icant. Small- and medium-size instances contribute most.

Half of the improvement is from multi-scale training and

multi-GPU sync. BN. They are effective strategies.

Ablation Studies on Adaptive Feature Pooling Abla-

tion studies on adaptive feature pooling are to verify fusion

operation type and location. We place it either between

ROIAlign and fc1, represented as “fu.fc1fc2” or between

fc1 and fc2, represented as “fc1fu.fc2” in Table 4. These

settings are also applied to the mask prediction branch. For

feature fusing type, max and sum operations are tested.

As shown in Table 4, adaptive feature pooling is not sen-

sitive to the fusion operation type. Allowing a parameter

layer to adapt feature grids from different levels, however,
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Settings AP AP50 AP75 APbb APbb
50

APbb
75

baseline 35.7 57.3 38 37.1 58.9 40.0

fu.fc1fc2 35.7 57.2 38.2 37.3 59.1 40.1

fc1fu.fc2 36.3 58.0 38.9 37.9 60.0 40.7

MAX 36.3 58.0 38.9 37.9 60.0 40.7

SUM 36.2 58.0 38.8 38.0 59.8 40.7

Table 4. Ablation study on adaptive feature pooling on val-2017 in

terms of mask AP and box ap APbb of the independently trained

object detector.

Settings AP AP50 AP75 APS APM APL

baseline 36.9 58.5 39.7 19.6 40.7 53.2

conv2 37.5 59.3 40.1 20.7 41.2 54.1

conv3 37.6 59.1 40.6 20.3 41.3 53.8

conv4 37.2 58.9 40.0 19.0 41.2 52.8

PROD 36.9 58.6 39.7 20.2 40.8 52.2

SUM 37.6 59.1 40.6 20.3 41.3 53.8

MAX 37.1 58.7 39.9 19.9 41.1 52.5

Table 5. Ablation study on fully-connected fusion on val-2017 in

terms of mask AP.

AP AP50 AP75 APS APM APL

Champion 2015 [10] 28.4 51.6 28.1 9.4 30.6 45.6

Champion 2016 [33] 37.6 59.9 40.4 17.1 41.0 56.0

Our Team 2017 46.7 69.5 51.3 26.0 49.1 64.0

PANet baseline 38.2 60.2 41.4 19.1 41.1 52.6

+ DCN [11] 39.5 62.0 42.8 19.8 42.2 54.7

+ testing tricks 42.0 63.5 46.0 21.8 44.4 58.1

+ larger model 44.4 67.0 48.5 23.6 46.5 62.2

+ ensemble 46.7 69.5 51.3 26.0 49.1 64.0

Table 6. Mask AP of COCO Instance Segmentation Challenge in

different years on test-dev.

is of greater importance. In our final system, we use max

fusion operation behind the first parameter layer.

Ablation Studies on Fully-connected Fusion We inves-

tigate performance when instantiating the augmented fc

branch differently. We consider two aspects, i.e., the layer

to start the new branch and the way to fuse predictions from

the new branch and FCN. We experiment with creating new

paths from conv2, conv3 and conv4, respectively. “max”,

“sum” and “product” operations are used for fusion. We

take our reimplemented Mask R-CNN with bottom-up path

augmentation and adaptive feature pooling as the baseline.

Corresponding results are listed in Table 5. They clearly

show that staring from conv3 and taking sum for fusion pro-

duce the best results.

COCO 2017 Challenge With PANet, we participated in

the COCO 2017 Instance Segmentation and Object Detec-

tion Challenges. Our framework reaches the 1st place in

Instance Segmentation task and the 2nd place in Object De-

tection task without large-batch training. As shown in Ta-

bles 6 and 7, compared with last year champion, we achieve

9.1% absolute and 24% relative improvement on instance

segmentation. While for object detection, 9.4% absolute

and 23% relative improvement is yielded.

APbb APbb
50

APbb
75

APbb

S
APbb

M
APbb

L

Champion 2015 [23] 37.4 59.0 40.2 18.3 41.7 52.9

Champion 2016 [27] 41.6 62.3 45.6 24.0 43.9 55.2

Our Team 2017 51.0 70.5 55.8 32.6 53.9 64.8

Table 7. Box AP of COCO Object Detection Challenge in different

years on test-dev.

There are a few more details for the top performance.

First, we use deformable convolution where DCN [11] is

adopted. The common testing tricks [23, 33, 10, 15, 39, 62],

such as multi-scale testing, horizontal flip testing, mask vot-

ing and box voting, are used too. For multi-scale testing, we

set the longer edge to 1, 400 and let the other range from 600

to 1, 200 with step 200. Only 4 scales are used. Second,

we use larger initial models from publicly available ones.

We use 3 ResNeXt-101 (64× 4d) [61], 2 SE-ResNeXt-101

(32 × 4d) [25], 1 ResNet-269 [64] and 1 SENet [25] as

ensemble for bounding box and mask generation. Perfor-

mance with different larger initial models are similar. One

ResNeXt-101 (64× 4d) is used as the base model to gener-

ate proposals. We train these models with different random

seeds, with and without balanced sampling [55] to enhance

diversity between models. Detection results are acquired by

tightening instance masks. We show a few visual results in

Figure 5 – most of our predictions are with high quality.

4.3. Experiments on Cityscapes

Dataset and Metrics Cityscapes [7] contains street

scenes captured by car-mounted cameras. There are 2, 975

training images, 500 validation and 1, 525 testing images

with fine annotations. Another 20k images are with coarse

annotations, excluded for training. We report our results on

val and secret test subsets. 8 semantic classes are annotated

with instance masks. Each image is with size 1024× 2048.

We evaluate results in terms of AP and AP50.

Hyper-parameters We use the same set of hyper-

parameters as in Mask R-CNN [21] for fair comparison.

Specifically, we use images with shorter edge randomly

sampled from {800, 1024} for training and use images with

shorter edge 1024 for inference. No testing tricks or DCN

is used. We train our model for 18k iterations with learn-

ing rate 0.01 and another 6k iterations with learning rate

0.001. 8 images (1 image per GPU) are in one image batch.

ResNet-50 is taken as the initial model on this dataset.

Results and Ablation Study We compare with state-of-

the-arts on test subset in Table 8. Trained on “fine-only”

data, our method outperforms Mask R-CNN with “fine-

only” data by 5.6 points. It is even comparable with Mask

R-CNN pre-trained on COCO. By pre-training on COCO,

we outperform Mask R-CNN with the same setting by 4.4

points. Visual results are shown in Figure 5.

Our ablation study to analyze the improvement on val

subset is given in Table 9. Based on our re-implemented
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Figure 5. Visual results of our method on COCO test-dev, Cityscapes test and MVD test respectively in the three rows.

Methods AP [val] AP AP50 person rider car truck bus train motorcycle bicycle

SGN [38] 29.2 25.0 44.9 21.8 20.1 39.4 24.8 33.2 30.8 17.7 12.4

Mask R-CNN [fine-only] [21] 31.5 26.2 49.9 30.5 23.7 46.9 22.8 32.2 18.6 19.1 16.0

SegNet - 29.5 55.6 29.9 23.4 43.4 29.8 41.0 33.3 18.7 16.7

Mask R-CNN [COCO] [21] 36.4 32.0 58.1 34.8 27.0 49.1 30.1 40.9 30.9 24.1 18.7

PANet [fine-only] 36.5 31.8 57.1 36.8 30.4 54.8 27.0 36.3 25.5 22.6 20.8

PANet [COCO] 41.4 36.4 63.1 41.5 33.6 58.2 31.8 45.3 28.7 28.2 24.1

Table 8. Results on Cityscapes val subset, denoted as AP [val], and on Cityscapes test subset, denoted as AP.

Methods AP AP50

our re-implement 33.1 59.1

our re-implement + MBN 34.6 62.4

PANet 36.5 62.9

Table 9. Ablation study results on Cityscapes val subset. Only fine

annotations are used for training. MBN is short for multi-GPU

synchronized batch normalization.

Methods AP [test] AP50 [test] AP [val] AP50 [val]

UCenter-Single [40] - - 22.8 42.5

UCenter-Ensemble [40] 24.8 44.2 23.7 43.5

PANet - - 23.6 43.3

PANet [test tricks] 26.3 45.8 24.9 44.7

Table 10. Results on MVD val subset and test subset.

baseline, we add multi-GPU synchronized batch normaliza-

tion to help network converge better. It improves the accu-

racy by 1.5 points. With our full PANet, the performance is

further boosted by 1.9 points.

4.4. Experiments on MVD

MVD [45] is a relatively new and large-scale dataset for

instance segmentation. It provides 25, 000 images on street

scenes with fine instance-level annotations for 37 semantic

classes. They are captured from several countries using dif-

ferent devices. The content and resolution vary greatly. We

train our model on train subset with ResNet-50 as initial

model and report performance on val and secret test subsets

in terms of AP and AP50.

We present our results in Table 10. Compared with

UCenter [40] – winner on this dataset in LSUN 2017 in-

stance segmentation challenge, our PANet with one ResNet-

50 tested on single-scale images already performs compa-

rably with the ensemble result with pre-training on COCO.

With multi-scale and horizontal flip testing, which are also

adopted by UCenter, our method performs better. Qualita-

tive results are illustrated in Figure 5.

5. Conclusion

We have presented our PANet for instance segmenta-

tion. We designed several simple and yet effective com-

ponents to enhance information propagation in representa-

tive pipelines. We pool features from all feature levels and

shorten the distance among lower and topmost feature lev-

els for reliable information passing. Complementary path is

augmented to enrich feature for each proposal. Impressive

results are produced. Our future work will be to extend our

method to videos and RGBD data.
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[1] P. Arbeláez, J. Pont-Tuset, J. Barron, F. Marques, and J. Ma-

lik. Multiscale combinatorial grouping. In CVPR, 2014. 2

[2] A. Arnab and P. H. Torr. Pixelwise instance segmentation

with a dynamically instantiated network. In CVPR, 2017. 2

[3] M. Bai and R. Urtasun. Deep watershed transform for in-

stance segmentation. In CVPR, 2017. 1, 2

[4] S. Bell, C. L. Zitnick, K. Bala, and R. B. Girshick. Inside-

outside net: Detecting objects in context with skip pooling

and recurrent neural networks. In CVPR, 2016. 2, 4

[5] Z. Cai, Q. Fan, R. S. Feris, and N. Vasconcelos. A unified

multi-scale deep convolutional neural network for fast object

detection. In ECCV, 2016. 1, 2

[6] Y. Chen, J. Li, H. Xiao, X. Jin, S. Yan, and J. Feng. Dual

path networks. arXiv:1707.01629, 2017. 1

[7] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler,

R. Benenson, U. Franke, S. Roth, and B. Schiele. The

cityscapes dataset for semantic urban scene understanding.

In CVPR, 2016. 1, 5, 7

[8] J. Dai, K. He, Y. Li, S. Ren, and J. Sun. Instance-sensitive

fully convolutional networks. In ECCV, 2016. 2, 4

[9] J. Dai, K. He, and J. Sun. Convolutional feature masking for

joint object and stuff segmentation. In CVPR, 2015. 2

[10] J. Dai, K. He, and J. Sun. Instance-aware semantic segmen-

tation via multi-task network cascades. CVPR, 2016. 2, 4, 5,

7

[11] J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, and Y. Wei.

Deformable convolutional networks. In ICCV, 2017. 7

[12] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and

A. Zisserman. The pascal visual object classes (VOC) chal-

lenge. IJCV, 2010. 1

[13] C. Fu, W. Liu, A. Ranga, A. Tyagi, and A. C. Berg. DSSD

: Deconvolutional single shot detector. arXiv:1701.06659,

2017. 1, 2

[14] G. Ghiasi and C. C. Fowlkes. Laplacian reconstruction and

refinement for semantic segmentation. In ECCV, 2016. 1, 2

[15] S. Gidaris and N. Komodakis. Object detection via a multi-

region and semantic segmentation-aware CNN model. In

ICCV, 2015. 3, 5, 7

[16] R. Girshick. Fast R-CNN. In ICCV, 2015. 1, 2, 5

[17] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich fea-

ture hierarchies for accurate object detection and semantic

segmentation. In CVPR, 2014. 2
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