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Abstract

Person re-identification (ReID) is an important task in

the field of intelligent security. A key challenge is how

to capture human pose variations, while existing bench-

marks (i.e., Market1501, DukeMTMC-reID, CUHK03, etc.)

do NOT provide sufficient pose coverage to train a robust

ReID system. To address this issue, we propose a pose-

transferrable person ReID framework which utilizes pose-

transferred sample augmentations (i.e., with ID supervi-

sion) to enhance ReID model training. On one hand, novel

training samples with rich pose variations are generated via

transferring pose instances from MARS dataset, and they

are added into the target dataset to facilitate robust train-

ing. On the other hand, in addition to the conventional dis-

criminator of GAN (i.e., to distinguish between REAL/FAKE

samples), we propose a novel guider sub-network which en-

courages the generated sample (i.e., with novel pose) to-

wards better satisfying the ReID loss (i.e., cross-entropy

ReID loss, triplet ReID loss). In the meantime, an al-

ternative optimization procedure is proposed to train the

proposed Generator-Guider-Discriminator network. Ex-

perimental results on Market-1501, DukeMTMC-reID and

CUHK03 show that our method achieves great performance

improvement, and outperforms most state-of-the-art meth-

ods without elaborate designing the ReID model.

1. Introduction

Person re-identification (ReID) aims to match pedestri-

ans across no-overlapping video cameras. It is a challeng-

ing task due to large variations in person pose, appearance,

illumination, occlusion, etc. In recent years, this task has

attracted a lot of attention for its great application potential
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Figure 1. The motivation of proposed framework. Novel training

samples with rich pose variations are generated via transferring

pose instances from MARS dataset by the proposed pose-transfer

module (i.e., Generator-Guider-Discriminator) with ID informa-

tion, which are utilized to enhance ReID model learning.

in smart video surveillance.

Pose variation is one of the key factors that prevent

us from learning a robust ReID model. Existing bench-

marks (e.g., Market1501 [46], DukeMTMC-reID [51],

CUHK03 [18]) only contain a limited number of pose

changes, and therefore the learned ReID model is very eas-

ily over-fitted to certain poses. Many works have been

proposed to address the discriminative and robust training

issue for ReID. A large group of works focus on feature

learning [19, 44, 42, 17] for more discriminative represen-

tation, and many other methods focus on metric learning

[34, 19, 4, 2, 6].

Recently, deep convolutional networks (DCNN) based

methods have been extensively studied, including learning

deep feature [17, 42] and metric [2, 54] to cope with the

“large-number-of-class and few-sample” problem in ReID

4099



task, as well as design of novel discriminative loss func-

tions suited for ReID task such as contrastive loss [49] and

triplet loss [21]. While feature learning and discriminative

metric could partially alleviate the sample insufficiency is-

sue, as a rule of thumb, increasing the coverage of training

samples (i.e., to including more human samples with differ-

ent poses) is the only way to essentially enhance the model.

Unsupervised learning is explored in [43, 38] to enhance

ReID model training. However, the promotion of perfor-

mance achieved by unsupervised learning is quite limited

since the unsupervised model is unable to learn discriminate

features. Based on the recent success of GAN [26], Zheng

et al. [51] propose to generate a large number of unlabeled

human samples and assign a uniform label distribution to

the generated unlabeled image for ReID feature learning.

However, these unsupervised sample generation methods

suffer from inherent issues: 1) unsupervised samples do not

bring sufficient discriminative information for model train-

ing; 2) due to large complexity of human shape, directly

applying traditional GAN (e.g., DCGAN [26]) would only

yield seriously distorted human samples; and 3) last but not

least, previous GAN model only attempts to generate vi-

sually preferable samples, but it does not target at better

discriminative power in ReID, which drastically limits the

usage of the generated samples.

To explicitly address these issues, this work proposes

a novel pose-transferrable framework for supervised sam-

ple augmentation/generation for discriminative ReID model

training in the case of single shot. Our motivation is shown

in Figure 1. First, observing that MARS [45] dataset has

rich variations of human poses, our proposed generative

scheme extracts poses (i.e., skeletons) from it, and pairs

them with human appearance instances from existing ReID

datasets (i.e., with identity labels), and then generates super-

vised sample augmentation in new poses based on a novel

variant of GAN models. Second, in contrast to previous

GAN models which only consider whether the generated

samples look realistic or not, our proposed generative net-

work employs a guider module which is endowed with a

ReID cross-entropy loss or triplet loss. The guider sub-

network works collaboratively with conventional discrim-

inator to jointly pursuit good visual quality as well as great

discriminative power for ReID. In addition, to balance the

contribution between real samples and generated samples

during training, we use a label smoothness scheme for cross

entropy training and adjust triplet sampling strategy and

margin for model training. Extensive experimental results

show that our method can enhance the representation capa-

bility and discrimination of the learned ReID model. In the

meantime, the proposed idea is general, which can be easily

extended to other tasks which require human sample aug-

mentation with pose variation, such as pedestrian detection

and pedestrian tracking, etc.

2. Related Work

Generative Adversarial Networks [10] have been

widely studied recently. On one hand, many works ex-

plore to improve model structure and optimization form [26,

1, 25, 28]. Their works make GAN model to generate

more realistic samples or be more easily optimized. On

the other hand, a lot of works focus on interesting appli-

cations of GAN. In this area, many similar methods pro-

pose to achieve conditional image generation. Conditional

GAN (cGAN) [24] introduce a conditional version of GAN.

Image-to-Image [15, 56] is one of the most interesting and

meaningful research directions based on cGAN, which fo-

cus on image style transfer. Some derivative works like

skeleton-to-image [33, 37] are proposed. The skeleton-to-

image architecture takes an image and a skeleton as input

and outputs a sample with the pose that is the same as input

skeleton. Motivated by these works, we propose to generate

labeled samples with multiple poses to improve the perfor-

mance of ReID model. And a pre-trained ReID model is

used to guide the training of GAN and make the generated

samples more adapted to person ReID task.

Person re-identification attracts great attention due to

its important application values. Most of the existing

works focus on two ways, which are robust feature learn-

ing and distance metric learning. Before deep learning

gets popular, there are many works explore to design hand-

crafted features [11, 23, 43] that are robust to changes

in person pose and image condition. And there are also

many works make efforts to utilize robust distance metric

like Mahalanobis distance function, KISSME metric learn-

ing [16], etc. Recently, DCNN is widely used in the filed

of ReID [44, 19, 36, 4, 6, 55, 48]. A large number of re-

searchers design various DCNN structures to learn powerful

features. Zhao et al [42] propose a novel DCNN named as

Spindle Net to fuse whole body feature and body region fea-

ture, and Li et al [17] design a Multi-Scale Context-Aware

Network to extract small visual cues that may be very useful

to distinguish the pedestrian pairs. Some researchers com-

bine DCNN with metric learning, and they propose various

forms of metrics to guide the training of DCNN [2, 54].

However, designing deep network structure and distance

metric easily result in overfitting. GAN is used to gener-

ate samples with the varied background to enhance ReID

model in [5], however, various human poses are not consid-

ered. Zheng et al [51] propose to use generated unlabeled

samples to improve performance, however, the serious dis-

tortion and unlabeled samples limit its improvement. In our

work, we propose a pose-transferrable architecture to gen-

erate labeled samples with rich pose variations. Without

designing complex models or distance metrics, our method

can achieve great performance improvement. As a kind

of data augmentation method, our work can combine with

most methods and further enhance its performance.
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3. Methodology

3.1. Motivation and Overview

Key to enhance ReID model learning is to provide suffi-

cient training data which can cover a wide range of human

pose variations. Very recently, few works [51] have at-

tempted to utilize generative adversarial training schemes

for data augmentation. However, as mentioned above, these

methods have inherent limitations: 1) the generated samples

carry no identity information (i.e., unsupervised), which

leads to ONLY marginal improvements for discriminative

ReID model training; and 2) directly applying GAN ONLY

considers whether the generated samples look realistic or

NOT, which does not have any link to ReID performance.

To tackle these issues, we propose a pose-transferrable

ReID architecture, as shown in Figure 2. Our frame-

work contains two components. First, inspired by recent

skeleton-to-image method [33, 37], we transfer a large

variation of poses (i.e., skeletons) from pose-rich datasets

such as MARS onto the labeled human instances in ReID

benchmarks, therefore numerous labeled data are gener-

ated . Second, we propose a guider sub-network, which is

paired with conventional discriminator in GAN, so as to di-

rectly encourage discriminative power boosting (i.e., cross-

entropy loss or triplet ReID loss). The details of our pro-

posed method are given as follows.

3.2. Pose Transfer Module: Generator­Guider­
Discriminator

3.2.1 Skeleton-to-Image Generation

In the following, we introduce in detail how to transfer

poses (skeletons) from a source dataset (i.e., which is con-

sidered to have large pose coverage) onto a target ReID

dataset (i.e., Market1501, DukeMTMC-reID, CUHK03).

The source dataset we select in this work is the MARS

dataset [45], which is a large video-based ReID dataset and

has rich pose variations. For each human sample, we can

collect corresponding skeleton representation by applying

the pose detection algorithm proposed in [3]. Each pose

is represented by an RGB image s. Note that we directly

use the pre-trained skeleton detector provided in [3] with-

out any model re-training since it provides a robust and ac-

curate general skeleton detection performance. To transfer a

pose onto a static human image (i.e., appearance) to form a

new posed human sample, our method is mainly motivated

by conditional GAN (cGAN) [24] as well as the previous

skeleton-to-image works [33, 37]. In particular, training the

skeleton-to-image network requires triplet data: an appear-

ance image x of one person, a skeleton image s, and the

ground-truth image y that endows the human x with the

corresponding pose s. In testing, the generator G maps a

paired input human image x and a new pose s to a new im-

age ŷ corresponding to the new pose s, via the mapping

function ŷ = G(x, s, z). Here z denotes a random noise

which we do not explicitly use in this work as in [15]. Dur-

ing training, the discriminator D try its best to classify the

real triplet (x, s,y) from generated triplet (x, s, ŷ), while

generator tries its best to fool the discriminator. In prac-

tice, the real triplet and generated triplet are stacked in the

dimension of channel respectively and then sent into dis-

criminator as in [15]. In the meantime, as in [22], we also

include a ℓ1 loss to enhance the quality of the generated im-

age, i.e., to minimize the reconstruction error in addition to

the adversarial loss. Therefore, the combined value function

of training skeleton-to-image generation network, denoted

as Lc(G,D), could be expressed as:

Lc(G,D) = E[logD(x, s,y)]

+ E[log(1−D(x, s, G(x, s, z)))],
(1)

Lℓ1(G) = E[‖y −G(x, s, z)‖1]. (2)

For clarity, we use E to denote Ex,s,y∼pdata(x,s,y). Here G,

D denote the generator and discriminator networks, respec-

tively, which will be explained in detail later. And notice

that the generated sample ŷ share the same appearance as

y, so the generated sample is labeled.

3.2.2 Guider Module: ReID Boosting

However, the above skeleton-to-image model ONLY con-

siders that the generated human sample should visually look

realistic, but how it helps enhance the ReID model training

is NOT guaranteed. Namely, we DO NOT ask that the gen-

erated human sample should look like a human, but we DO

ask whether training with these augmented/generated sam-

ples could boost the person ReID performance. To this end,

we propose a novel guider module in addition to the con-

ventional generator and discriminator, to guide the trained

generative model more adapted to ReID problem, i.e., to

boost the discriminative power. In other words, the gener-

ated image ŷ goes through both discriminator D and guider

R during model training. The guider R is a sub-network

which distinguishes classes (i.e., cross-entropy loss) or en-

forces intra-class samples closer and inter-classes farther

(i.e, triplet loss).To this end, the guider R is pre-trained on

the target ReID dataset with supervision and fixed (i.e., to

keep the discrimination ability) during joint G-R-D train-

ing. In particular, the guider could utilize supervision infor-

mation to force the identity of ŷ to approach y via two types

of loss function design: 1) cross-entropy loss and 2)triplet

loss, which are elaborated as follows.

Cross-Entropy based Guider Loss. Denote by

LRce
(G) a cross-entropy ReID loss. And the training ob-

jective of LRce
(G) can thus be expressed as:

LRce
(G) = E[−

∑

qa log pR(G(xa, s, z))], (3)
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Figure 2. Framework of our pose-transferrable person ReID. The poses from source set (i.e., MARS) are transferred to target set and form

the generation set, which is combined with the target set to enhance the ReID model. The pose-transfer module (i.e., G-R-D) is utilized to

boost skeleton-to-image generation. The {x}T denote appearances from target set, the {s}S denote skeletons from source set, and so on.

where qa denotes the label of class a and xa denotes the ap-

pearance of class a. And pR denotes the output probability

distribution of the guider R.

Triplet based Guider Loss. In the case of triplet loss

for the guider, triplets are chosen following the strategy

in [29]. For every image xa of class a, we denote by ŷa =
G(xa, s, z) an anchor. Positive anchor ra is chosen from the

real images of class a (i.e., realistic examples to force the

generator to form images closer to real examples in class a).

Negative anchor ŷb = G(xb, s, z) is sampled from gener-

ated examples of other class b, which encourages diversity.

Given a constructed triplet set T = {ŷa, ra, ŷb}
m
i=1 in this

way, the guider training loss could be thus expressed as:

LRtri
(G) = E[

∑

ŷa,ra,ŷb,a 6=b

[α+ dŷa,ra − dŷa,ŷb
]+], (4)

where di,j is ℓ2 distance between the output feature R(i)
and R(j) of ReID model, and α denotes the margin.

As a summary, the whole human sample generation net-

work contains three component, i.e., a generator, a discrim-

inator and a guider and the integrated loss function to train

this generation network is a weighted sum of all losses men-

tioned above:

L(G,D) = Lc(G,D) + λLℓ1(G) + βLR(G), (5)

where λ and β are the weighting factors for the two loss

terms. The LR(G) is a cross-entropy loss LRce
(G) or a

triplet loss LRtri
(G). During training of skeleton-to-image

model, the guider conveys discriminative identity informa-

tion and propagates this supervision signal from the guider

to the generator, thus to form a human sample which are

more readily to be classified into the correct person class.

We therefore regard our ReID model objective as a Iden-

tity Oriented Generation Model, in contrast into previous

Appearance Oriented Generation Model. The optimiza-

tion target is thus defined as:

G∗ = argmin
G

max
D

L(G,D). (6)

To transfer poses from source dataset onto target ReID

dataset, during training we sample as many paired skele-

ton and the appearance instances as the target dataset in

MARS to form auxiliary training data, and these data only

pass through the discriminator D, but are NOT sent into the
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guider R as they do not possess label information. These

auxiliary training data is combined with labeled appear-

ance and skeleton instances in the target ReID dataset for

joint model training. During testing, we pair the skele-

ton from the source dataset (e.g, MARS) and appearance

from the target dataset, so the generated samples share the

same identity as samples from target dataset and with a pose

from source dataset. Through this way, variations of poses

in source dataset (i.e., MARS) could be FULLY explored

and transferred towards the target datasets to form pose-rich

data augmentations as well as discriminative model train-

ing. We present some generated examples with and without

the guider respectively in Figure 3 based on ResNet-50 and

cross-entropy loss. We note that the generated images are

significantly shaper and realistic if there is a guider.

3.3. Training with Balanced Data

We add generated samples into the target train set and

train the ReID model with this extended train set. For every

person instance, we now have samples with a larger vari-

ation of poses, therefore the trained ReID model will gain

more representation capability in terms of human pose vari-

ation. However, even with such carefully designed gener-

ator, to generate human samples as realistic as true images

in the target dataset is still difficult. Therefore, we cannot

regard a generated example of class k equally trustable as

a real example of class k during the process of ReID model

training. In face, our experiments show that the perfor-

mance of the trained ReID model will be negatively affected

if too many generated samples are utilized. To alleviate this

problem, we use a soft labeling scheme for the generated

samples, instead of assigning each generated sample a defi-

nite (hard) class label of person.

In particular, in the case of cross-entropy loss, we use the

label smoothing regularization (LSR) that is rediscovered

by Szegedy et al [31] to re-weight the generated samples.

The LSR label distribution can be formulated as:

qLSR(k) =

{

ε
K

k 6= y

1− ε+ ε
K

k = y
, (7)

where k ∈ {1, 2, ...,K} denotes the pre-defined classes of

the training data, and K is the number of classes, y is the

ground truth. ε ∈ [0, 1] denotes how confident we are with

the ground truth, which is a hyper-parameter that can be ad-

justed according to the quality of generated images. ε is set

to 0 for real images. The cross-entropy loss with qLSR(k)
is easily derived as:

LLSR = −(1− ε) log (p(y))−
ε

K

K
∑

k=1

log (p(k)). (8)

In the case of triplet loss, a similar idea is to adjust the

margin α when the triplet contains generated images. Also,

Appearance No Guider With Guider

Figure 3. Examples of generated images. This three lines of sam-

ples are from Market1501, DukeMTMC-reID and CUHK03 (la-

beled) respectively.

the strategy of choosing triplet could be improved as fol-

lows. After adding some generated images into the target

dataset, we conduct the triplet {xa,xp,xn} construction

based on the strategy used in [29]. In a batch, every sample

will be an anchor. Positive anchor and negative anchor are

chosen from real images when the anchor is a real image.

When an anchor is a generated image, positive anchor and

negative anchor are chosen from the whole augmented train

set, and we then reduce the margin α for these triplets. This

sampling method can prevent us from giving the generated

images too much weight and affecting the performance of

the trained ReID model.

3.4. Network Architecture

The generator and discriminator of our method are the

same as [37], where the generator has a siamese and U-net

structure and discriminator has a simple stacked structure.

The input of the generator is an image and a skeleton, and

the skeleton is extracted by the real-time human pose esti-

mator [3]. The output of the generator is not only sent into

a discriminator but also sent into the guider except when

the inputs are from MARS. In our work, we adopt ResNet-

50 [12] and Densenet-169 [14] as the backbone of the ReID

model respectively.

4. Experiments

To verify the effectiveness of our method, we carry

out experiments on three public person ReID datasets,

including Market1501 [46], DukeMTMC-reID [51], and

CUHK03 [18]. We transfer pose instances to generate

samples from MARS dataset, because it is a video-based
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Methods
Market-1501 DukeMTMC-reID CUHK03 (labeled) CUHK03 (detected)

rank-1 mAP rank-1 mAP rank-1 mAP rank-1 mAP

Basel (R) [47] 73.90 47.78 65.22 44.99 22.2 21.0 21.3 19.7

Basel (R)+LSRO [51] 78.06 56.23 67.68 47.13 - - - -

Pose-transfer (R) 79.75 57.98 68.64 48.06 33.8 30.5 30.1 28.2

Table 1. Comparison of the proposed method with baseline and the unsupervised sample generation method on the three benchmarks.

Rank-1(%) and mAP(%) are shown. R: ResNet-50.

dataset, and contains rich pose variations. The experimen-

tal results suggest that the proposed architecture can sig-

nificantly improve the performance of both feature learning

and metric learning. In addition, based on DenseNet-169

which is in the same order of magnitude as the parameter

of ResNet-50 and triplet loss [29], our method outperforms

most existing methods.

4.1. Datasets and Evaluation Protocols

Market1501 is an image-based ReID dataset. It con-

sists of 12,936 images for training, and each person has

17.2 images on average in the train set. DukeMTMC-reID

is a subset of the DukeMTMC [27] for image-based ReID.

Its train set contains 16522 images of 702 identities. The

evaluation protocol is the same as that of [51]. CUHK03

contains 14,096 images of 1,467 identities which are cap-

tured from two cameras in the CUHK campus. We use the

new training and testing protocol for CUHK03 [52]. The

train set of these three datasets only have limited pose vari-

ations, which limits its performance, therefore, experiments

on these three datasets can effectively verify the effective-

ness of our method. MARS is a large video-based person

ReID dataset. It consists of 20,478 tracklets and 1,191,003

bounding boxes of 1,261 identities and contains rich pose

variations. We transfer various poses from MARS to the

three datasets mentioned above to enhance the ReID model.

We use two evaluation metrics to evaluate the perfor-

mance of our ReID algorithm, i.e., Rank-1 identification

rate and mean Average Precision (mAP). In all our exper-

iments, we use the single query mode.

4.2. Implementation Details

Our method is divided into three steps. First, we train

a ReID model on the target dataset (i.e., Market1501,

DukeMTMC-reID, CUHK03). Second, we use the pre-

trained model, which we call it a guider, to guide the train-

ing of the skeleton-to-image generator. The input pairs

(skeletons and appearances) are from the training set of tar-

get dataset and MARS. Third, we combine the appearances

in target training set and skeleton sampled from MARS, and

use them to generate a large number of labeled pose-varied

samples to enhance the ReID model.

Pre-training a ReID model to be the guider. For

Market1501 and DukeMTMC-reID, we train the ResNet-

50 with cross-entropy loss that is the same as [47]. The

learning rate is set to 0.001 and decay to 0.0001 after 30

epochs. We train the DenseNet-169 with cross-entropy loss

and triplet loss respectively. In the case of cross-entropy

loss, the learning rate is set to 0.01 and decay to 0.001 af-

ter 25 epochs. Dropout is not used in this case. In the case

of triplet loss, we sample triplet {xa,xp,xn} following the

strategy proposed in [29]. And we take the online sampling

methods. Due to memory limitations, the batch size is set

to 128. The learning rate is set to 0.001, and the margin α

is set to 1. We use stochastic gradient descent with momen-

tum 0.9 to optimize the ReID model mentioned above. For

CUHK03, we train the ResNet-50 with cross-entropy loss

and triplet loss respectively, i.e., the DenseNet-169 model is

not used because its performance is similar to the ResNet-50

model on this dataset. The settings are the same as those in

the experiment of training R-CE and D-Tri on Market1501

and DukeMTMC-reID. We use R-CE and D-Tri to denote

ResNet-50 with cross-entropy loss and DenseNet-169 with

triplet loss respectively, and so on.

In all above experiments, input images are resized to

256 × 256 and randomly cropped to 224 × 224 with ran-

dom horizontal flipping during training. When testing, the

input images are resized to 256×256 and center cropped to

224× 224. No other data augmentation methods are taken.

Boosting training of skeleton-to-image model. The in-

puts (i.e., appearances and skeletons) of the generator are

resized to 256 × 256 and rescaled into [−1, 1], which are

from the training set of target dataset and MARS. The out-

puts of the generator are sent into the discriminator and

guider. The exception to this is that the outputs of the gen-

erator are only sent into the discriminator when inputs come

from MARS. The parameters of the guider are fixed when

training G-R-D module. We train the generator and discrim-

inator with Adam optimizer, and the learning rate is set to

0.0002. In all our experiments, the λ and β are set to 10.0

and 1.0 respectively.

Improving ReID model with generated samples. For

every image in target dataset, we sample two skeletons in

MARS, then we use the generator to generate two samples

with poses transferred from MARS. We analyze the effects

of the number of added samples on performance in Sec-

tion 4.5. When we train the ReID model with cross-entropy

loss, ε is set to 0.4 for generated samples in all our exper-

iments. The margin α is set to 0.5 for triplets that contain

generated samples. We also analyze the influence of the
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Methods
Market-1501 Duke-R

rank-1 mAP rank-1 mAP

BoW+kissme [46] 44.42 20.76 25.13 12.17

LOMO+XQDA [19] - - 30.75 17.04

FisherNet [35] 48.15 29.94 - -

Null Space [40] 55.43 29.87 - -

Gated SCNN [32] 65.88 39.55 - -

Basel (R)* [47] 73.90 47.78 65.22 44.99

ReRank [52] 77.11 63.63 - -

Basel (R)+LSRO [51] 78.06 56.23 67.68 47.13

Verif + Identif* [49] 79.51 59.87 68.9 49.3

PAN* [50] 82.81 63.35 71.59 51,55

Transfer* [9] 83.7 65.5 - -

APR [20] 84.29 64.67 70.69 51.88

SVDNet [30] 82.3 62.1 76.7 56.8

DPFL [7] - - 79.2 60.6

TriNet* [13] 84.92 69.14 - -

DML* [41] 87.73 68.83 - -

SVDNet+REDA* [53] 87.08 71.13 79.31 62.44

Pose-transfer (R) 79.75 57.98 68.64 48.06

Basel (D) 84.47 64.17 73.92 50.79

Pose-transfer (D) 85.52 65.33 75.17 52.25

Basel (D, Tri) 86.73 67.78 77.03 55.34

Pose-transfer (D, Tri) 87.65 68.92 78.52 56.91

Table 2. Comparison of the proposed method with the state-of-the-

art on Market1501 and DukeMTMC-reID. Rank-1 (%) and mAP

(%) are shown. Duke-R denotes DukeMTMC-reID. R: ResNet-

50. D: DenseNet-169. * denotes unpublished paper. Tri denotes

that the model is trained with triplet loss [29]. The best, second

and third results are highlighted in green, red, blue respectively.

Best viewed in colors.

two parameters in Section 4.5. Other settings are the same

as those in the experiments of pre-training ReID model.

4.3. Comparison Results and Discussions

Comparison with baseline. We compare our method

based on R-CE with the ResNet-50 baseline [47] on all three

benchmarks mentioned above. The results are shown in Ta-

ble 1. We can observe significant performance improve-

ments over the baseline. Especially, our method greatly im-

proves the performance on CUHK due to fact that the pose

variations are extremely limited on it. It verifies that our

pose-transferrable framework greatly alleviates the sample

insufficiency issue.

Comparison with unsupervised sample generation

method. To verify the pose-transferred samples that are

more effective than unlabeled generated samples, we com-

pare our methods with the work [51] on the Market1501

and DukeMTMC-reID, and the results are shown in Table 1.

The Rank-1 rises by 1.69% and 0.96% correspondingly, and

the mAP rises by 1.75% and 0.93% correspondingly. No-

tice that the number of added samples in our work is almost

Methods
Labeled Detected

rank-1 mAP rank-1 mAP

BoW+XQDA [46] 7.9 7.3 6.4 6.4

PUL* [8] - - 9.1 9.2

LOMO+XQDA [19] 14.8 13.6 12.8 11.5

Basel (R)* [47] 22.2 21.0 21.3 19.7

Basel (R)+DaF* [39] 27.5 31.5. 26.4 30.0

Basel (R)+XQ+Re [52] 38.1 40.3 34.7 37.4

PAN* [50] 36.9 35.0 36.3 34.0

DPFL [7] 43.0 40.5 40.7 37.0

SVDNet [30] 40.9 37.8 41.5 37.3

TriNet+REDA* [53] 58.1 53.8 55.5 50.7

Pose-Transfer (R) 33.8 30.5 30.1 28.2

Basel (R, Tri) 42.8 39.2 39.1 36.6

Pose-Transfer (R, Tri) 45.1 42.0 41.6 38.7

Table 3. Comparison of the proposed method with the state-of-the-

art on CUHK03. Rank-1 (%) and mAP (%) are shown. R: ResNet-

50. * denotes unpublished paper. Tri denotes that the model is

trained with triplet loss. The best, second and third results are

highlighted in green, red, blue respectively. Best viewed in colors.

the same as [51]. So the labeled generations with various

poses enhance the ReID system more compared with unla-

beled generations.

Comparison with state-of-the-arts. We compare our

work with state-of-the-art methods on the three bench-

marks. Based on the DenseNet-169 and triplet loss, our

method outperforms most previous methods. The results on

Market1501 and DukeMTMC-reID are shown in Table 2,

the results on CUHK03 are shown in Table 3. Some meth-

ods [7, 13, 41] achieve great performance by elaborately

designing network structures or loss functions. An effective

augmentation method is proposed in [53], which greatly im-

proves the performance. Above all, our methods can com-

bine with all these methods and further improve their per-

formance.

4.4. Component Analysis

Effectiveness of the guider. In this part, we analyze

the effectiveness of the guider. We present some generated

samples of the three datasets in Figure 3, which are trained

with or without the guider of R-CE respectively. We ob-

serve that the generated samples with the guider are more

realistic and shaper than the ones without the guider. To fur-

ther verify this point, we add the two kinds of samples into

target dataset and train ReID model with them respectively.

The ε for generated samples without guider decreases to 0.2

for getting best results in this case. The experimental results

are summarized in Table 4. With the guider, the generated

samples achieve better performance.

Analysis of the different form of the guider. We com-

pare the guider of R-CE and D-Tri on Market1501, which

have different network structures and loss functions. Some

4105



Methods
Market-1501 DukeMTMC-reID CUHK03 (labeled) CUHK03 (detected)

rank-1 mAP rank-1 mAP rank-1 mAP rank-1 mAP

No Guider 76.93 54.22 66.70 45.98 28.1 26.0 25.2 23.9

With Guider 79.75 57.98 68.64 48.06 33.8 30.5 30.1 28.2

Table 4. Quantifying the effectiveness of guider with the ReID evaluation protocols.

Appearance Guider (R-CE) Guider (D-Tri)

Figure 4. Examples of generated images from Market1501 with

two different forms of guider.

generated samples with the two form guiders respectively

are present in Figure 4. Intuitively, the visual quality of

generated samples has no difference with the two forms of

the guider. In addition, we conduct a cross experiment. We

use the generated samples with one form of the guider to

improve a ReID model in another form. The Rank-1 and

the mAP are both down by about 0.5% on Market1501. It

shows that the performance will be a little lower if the forms

of the guider and the ReID model to be improved are differ-

ent, but the decrease is not significant. Therefore, we can

use a guider of simple form, and then utilize the generated

samples to enhance ReID model of complex form. But to

get better performance, it is best to keep the form of the

guider and the ReID model to be consistent.

4.5. Parameter Analysis

Analysis of No. of pose-transferred samples N . We

analyze how the numbers of generated samples for every

image in target dataset affects the performance of ReID

model. We use the ResNet-50 trained with cross-entropy

loss as the guider and ReID model to be improved. For ev-

ery image, we test the impact of 1 to 10 pose-transferred

samples on performance separately. ε is constantly adjusted

to get best results with the change of N . We observe that

2 samples for every image get the best performance. And

as the number of extended samples increases further, the

performance decreases slightly. Experimental results on the

three datasets are shown in Figure 5.

Analysis of the ε and α hyper-parameters. ε and α

are two other parameters that affect the ReID performance,

which are used to smooth cross-entropy training and triplet

training with generated samples respectively. We analyze

N

(a)

N

(b)

Figure 5. The impact of the N on the ReID performance. (a):

Market1501 and DukeMTMC-reID. (b): CUHK03 labeled and de-

tected.

!

(a)

!

(b)

Figure 6. The impact of the ε and α on the ReID performance. (a):

The impact of ε. (b): The impact of α.

the impact of the ε and α on CUHK03, and the results are

shown in Figure 6(a) and Figure 6(b) respectively. We ob-

serve that our method achieves the best performance when

ε is set to 0.4 and α is set to 0.5 for generated samples. No-

tice that setting ε to 0 and α to 1 for generated samples (i.e,

equate the generated sample with the real one) limits the

performance improvement.

5. Conclusion

In this work, we proposed a pose-transferrable person

re-identification framework which transfers various pose in-

stances from one dataset to another. The generated samples

with transferred poses increase the richness of pose varia-

tions in target dataset and greatly enhance the ReID model.

As a special kind of data augmentation method, our work

can be utilized to enhance both feature learning and metric

learning based methods.
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