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Abstract

Most video-based action recognition approaches choose

to extract features from the whole video to recognize action-

s. The cluttered background and non-action motions limit

the performances of these methods, since they lack the ex-

plicit modeling of human body movements. With recent ad-

vances of human pose estimation, this work presents a novel

method to recognize human action as the evolution of pose

estimation maps. Instead of relying on the inaccurate hu-

man poses estimated from videos, we observe that pose es-

timation maps, the byproduct of pose estimation, preserve

richer cues of human body to benefit action recognition.

Specifically, the evolution of pose estimation maps can be

decomposed as an evolution of heatmaps, e.g., probabilis-

tic maps, and an evolution of estimated 2D human poses,

which denote the changes of body shape and body pose, re-

spectively. Considering the sparse property of heatmap, we

develop spatial rank pooling to aggregate the evolution of

heatmaps as a body shape evolution image. As body shape

evolution image does not differentiate body parts, we design

body guided sampling to aggregate the evolution of poses

as a body pose evolution image. The complementary prop-

erties between both types of images are explored by deep

convolutional neural networks to predict action label. Ex-

periments on NTU RGB+D, UTD-MHAD and PennAction

datasets verify the effectiveness of our method, which out-

performs most state-of-the-art methods.

1. Introduction

1.1. Motivation and Objective

Human action recognition from videos has been re-

searched for decades, since this task enjoys various appli-

cations in intelligent surveillance, human-robot interaction

and content-based video retrieval. The intrinsic property

of existing methods [22, 43, 37, 24, 1] is to learn mapping
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Figure 1: An illustration of the complementary property between

poses and heatmaps (averaged pose estimation maps), which are

both estimated from video frames. (a) An action “baseball pitch”

from PennAction dataset [54] is simplified as two frames. The red

circle and red star denote the hand and foot, respectively. (b) With

inaccurate pose estimation, the estimated poses cannot accurately

annotate human body parts. For example, we show the pose es-

timation map of the hand, where the multiple peaks lead to false

prediction. (c) Although heatmaps cannot differentiate body parts,

they provide richer information to reflect human body shape.

functions which transform videos to action labels. Since

they do not directly distinguish human body from videos,

these methods are easily affected by clutters and non-action

motions from backgrounds.

To address this limitation, an alternative solution is to

detect human [39] and estimate the body pose in each

frame. This approach works well in the field of human ac-

tion recognition from depth videos, e.g., Microsoft Kinec-

t [55, 27]. By detecting 3D pose from each depth frame

with an accurate body pose estimation method [36], human

movements in depth videos can be simplified as 3D pose

sequences [52]. Recent deep learning models, e.g., CNN

[17, 20], RNN [9] and LSTM [26, 25], have achieved high

performances on the extracted 3D poses, which outperform

methods [32, 50] that rely on raw depth video sequences.

The success of 3D human pose inspires us to estimate

2D human poses from videos for action recognition. How-

ever, despite the significant advances of 2D pose estima-
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tion in images and videos [51, 5, 46, 2, 4], the performance

is still inferior to the 3D pose estimation in depth videos.

Fig. 1 illustrates the estimated poses from video frames by

a state-of-the-art pose estimation method [4]. Due to com-

plex background and self-occlusion of human body parts,

the estimated poses are not fully reliable and may misin-

terpret the configuration of human body. In the first row

of Fig. 1 (b), the multi-modal pose estimation map in the

white bounding box indicates the location of the person’s

hand. The map contains two peaks, where the ground truth

location does not correspond to the highest peak, thus pro-

vides a wrong estimation of the hand’s location.

To better utilize the pose estimation maps, instead of re-

lying on the inaccurate 2D pose estimated from the pose

estimation maps, we propose to directly model the evolu-

tion of pose estimation maps for action recognition. In Fig.

1 (c), heatmaps (averaged pose estimation maps) provide

richer information to reflect human body shape.

1.2. Method Overview and Contributions

Our method is shown in Fig. 2. Given each frame of a

video, we use convolutional pose machines to predict pose

estimation map for each body part. The goal of representing

these pose estimation maps is to preserve both global cues,

which reflect whole shapes that suffer less from the noise

and local cues, which detail the locations of body parts.

To this end, we average pose estimation maps of al-

l body parts to generate an averaged pose estimation map

(heatmap) for each frame. The temporal evolution of

heatmaps can reflect the movements of body shape. Dif-

ferent from the original RGB image, the heatmap is sparse.

Considering the huge spatial redundancy, we develop a s-

patial rank pooling method to compress the heatmap as a

compact yet informative feature vector. The merit of spa-

tial rank pooling is that it can effectively suppress spatial

redundancy, without significantly losing spatial distribution

information of the heatmap. The temporal concatenation of

feature vectors constructs a 2D body shape evolution image,

which reflects the temporal evolution of body shapes.

As body shape evolution image cannot differentiate body

parts, we further predict joint location from pose estimation

map of each body part, generating a pose for each frame.

Since the number of estimated pose joints is limited, we

use body structure to guide the sampling of more abundant

pose joints to represent human body. The temporal concate-

nation of all pose joints constructs a body pose evolution

image, which reflects the temporal evolution of body parts.

Intuitively, the body shape evolution image and body pose

evolution image benefit the recognition of general move-

ments of body shape and elaborate movements of body part-

s. Thereby, both images are explored by CNNs to generate

discriminative features, which are late fused to predict ac-

tion label. Generally, our contributions are three-fold.

• Given inaccurate 2D poses estimated from videos, we

boost the performance of human action recognition by

recognizing actions as the evolution of pose estimation

maps instead of the unreliable 2D body poses.

• The evolution of pose estimation maps are described as

body shape evolution image and body pose evolution

image, which capture the movements of both whole

body and specific body parts in a compact way.

• With CNNs and late fusion scheme, our method

achieves state-of-the-art performances on NTU RG-

B+D, UTD-MHAD and PennAction datasets.

2. Related Work

2.1. 3D Pose-based Action Recognition

3D pose provides direct physical interpretation for hu-

man actions from depth videos. Hand-crafted features

[42, 47, 13] were designed for describing evolution of 3D

poses. Recently, deep neural networks were introduced to

model the spatial structures and temporal dynamics of pos-

es. For example, Du et al. [9] firstly used hierarchical RNN

for pose-based action recognition. Liu et al. [25] extended

this idea and proposed spatio-temporal LSTM to learning

spatial and temporal domains. To enhance the attention ca-

pability of LSTM, Global Context-Aware Attention LSTM

[26] was developed with the assistance of global context.

2.2. Video-based Action Recognition

Local features are motion-related and are robust to clut-

tered background to some extent. Spatial temporal inter-

est points (STIPs) [22] and dense trajectory [43] were ap-

plied to extract and describe local spatial temporal patterns.

Based on these basic features, multi-feature max-margin hi-

erarchical Bayesian model [49] and a novel feature enhanc-

ing technique called Multi-skIp Feature Stacking [21] were

proposed to learn more distinctive features. Since local

features ignore global relationships, holistic features were

encoded by two-stream convolutional network [37], which

learns spatial-temporal features by fusing convolutional net-

works spatially and temporally. Based on this network, the

relationships between the spatial and temporal structures

were further explored [11, 45]. Different from two-stream

network, the spatial and temporal information of actions can

be fused before they are input to CNNs. Fernando et al. [12]

proposed rank pooling method to aggregate all video frames

to a compact representation. Bilen et al. [1] deeply merged

rank pooling method with CNN to generate an efficient dy-

namic image network.

Human actions are inherently structured patterns of body

movements. Recent studies [56, 31, 14, 38, 30] extracted w-

hole human body or body parts instead of whole video for

action analysis. Meanwhile, human action recognition and
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Figure 2: The overview of the proposed method. a) Convolutional pose machines predict pose estimation map of each body part. b)

For each frame, pose estimation maps are aggregated to form a heatmap and a pose. c) Spatial rank pooling is proposed to describe the

evolution of heatmaps as a body shape evolution image, which contains one channel. d) Body guided sampling is proposed to describe the

evolution of poses as a body pose evolution image, which contains two channels. e) Deep features are extracted from both types of images

and the late fusion result predicts action label. Note that both images are normalized to fix-sized color images to facilitate transfer learning.

pose estimation tasks have been integrated to extract pose

guided features for recognition. Wang et al. [41] improved

an existing pose estimation method, and then designed pose

features to capture both spatial and temporal configurations

of body parts. Xiaohan et al. [48] proposed a framework to

integrate training and testing of action recognition and pose

estimation. They decomposed actions into poses which are

further divided to mid-level ST-parts and then parts. Most

recently, Du et al. [8] proposed an end-to-end recurrent net-

work which can exploit important spatial-temporal evolu-

tions of human pose to assist action recognition in a uni-

fied framework. Different from pose features [41] or pose-

guided color features [48, 8], this paper recognizes human

actions from only pose estimation maps, which have not

been explored for action recognition task before.

3. Generation of Pose Estimation Maps

This section predicts pose estimation maps from each

frame of a video (Fig. 3 (a)), and then generates a heatmap

(Fig. 3 (b)) and a pose (Fig. 3 (c)) to denote each frame.

Pose Estimation Maps: The task of human pose esti-

mation from a single image can be modeled as a structure

prediction problem. In [34], a pose machine is proposed to

sequentially predict pose estimation maps for body joints,

where previous predicted pose estimation maps iteratively

improve the estimates in following stages. Let Yk ∈ {x, y}
denote the set of coordinates from body joint k. The struc-

tural output can be formulated as Y = {Y1, ...,Yk, ...,YK},

where K is the total number of body joints. Multi-class

classifier gkt is trained to predict the kth body joint in the

tth stage. For an image position z, the pose estimation map

for assigning it to the kth body joint is formulated as:

B
k
t (Yk = z) = g

k
t

(

fz;
⋃

i=1,...,K

ψ(z,B
i
t−1)

)

, (1)

where fz is the color feature at position z, Bi
t−1 is the pose

estimation map predicted by git−1, ∪ is the operator for

vector concatenation, ψ is the feature function for comput-

ing contextual features from previous pose estimation maps.

After T stages, the generated pose estimation maps are used

to predict locations of body joints. The pose machine [34]

uses boosted classifier with random forests for the weak

learners. Instead, this paper applies the convolutional pose

machine [46, 4] to combine pose machine with convolution-

al architectures, which does not need graphical-model style

inference and boosts the performances of pose machine.

Heatmaps & Poses: For the nth frame of a video, K
types of pose estimation maps, namely {B

1,n
T , ...,B

K,n
T },

are generated. To reduce the redundancy of pose estima-

tion maps, we describe them as a heatmap Gn and a pose

Ln. The heatmap Gn can be expressed as:

Gn =
1

K

K
∑

k=1

B
k,n
T , (2)

which reflects the global body shape. The pose Ln can be

expressed as {zk,n}Kk=1, where zk,n is often estimated via

Maximum A Posterior (MAP) criterion [4]:

z
k,n = arg max

z∈Z

{

B
k,n
T (Yk = z)

}

, (3)

where Z ∈ R
2 denote all positions on the image. Till now,

each frame of a video is described as a heatmap and a pose.

In other words, the video is converted to the evolution of

heatmaps and the evolution of poses.
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Figure 3: The comparison between features extracted from two videos. (a) Left video denotes action “wave” and right video denotes action

“throw”. (b) The evolution of heatmaps. Each heatmap is a gray scale image. To facilitate observation, we use colormap to highlight

heatmap according to gray scale values. (c) The evolution of poses. Each joint is shown using specific color. To facilitate the observation,

we also show the limbs which are colored in green. (d) Body shape evolution image implemented by temporal rank pooling (t-rk). (e) body

shape evolution image implemented by spatial rank pooling (s-rk). (f) Body pose evolution image implemented by body guided sampling.

4. Evolution of Pose Estimation Maps

This section describes the evolution of heatmaps as a

body shape evolution image using temporal rank pooling

(Fig. 3 (d)), based on which spatial rank pooling (Fig. 3 (e))

is developed. Further, body guided sampling is developed

to describe the evolution of poses as a body pose evolution

image (Fig. 3 (f)). The complementary properties between

two images are learned by CNNs.

Temporal Rank Pooling: As a robust and compact

video representation method, temporal rank pooling [12, 1]

has the ability to aggregate the temporal relevant informa-

tion throughout a video via a learning to rank approach.

The encoded temporal information denotes the temporal or-

der among frames, which is a robust feature showing less

sensitive to different types of input data. As heatmap-

s are distinct from natural images, we treat heatmaps as

a new type of data and apply temporal rank pooling to

encode the evolution of heatmaps. Suppose a sequence

VG = {G1, ...,Gn, ...,GN} contains N heatmaps, and

Gn ∈ R
P×Q denotes the nth frame with P rows and Q

columns. G1:n can be mapped to a vector defined as:

vn = V
( 1

n

n
∑

i=1

Gi

)

, (4)

where the function V reshapes a matrix into a vector and

vn ∈ R
(P ·Q)×1. Let vn+1 ≻ vn denote the temporal order-

ing relationship between vn+1 and vn. A natural constraint

among frames is vN ≻ ... ≻ vn+1 ≻ vn ≻ ... ≻ v1.

Temporal rank pooling (t-rk) [12] optimizes parameters

u ∈ R
(P ·Q)×1 of a linear function ψ(v; u) to ensure that

∀ni, nj , vni
≻ vnj

⇔ uT · vni
> uT · vnj

. The parame-

ter u is used as the representation of temporal rank pooling

method, as it implicitly encodes the appearance evolution

information of the sequence.

Spatial Rank Pooling: We reshape u as the same size

of input frame to facilitate the observation. As shown in

Fig. 3 (d), the temporal rank pooling method mainly pre-

serves spatial information while ignores most of the tem-

poral information. To improve this, we propose a novel

spatial rank pooling method (s-rk) which takes both spa-

tial and temporal information into account. The observa-

tion is that there exists huge spatial redundancy in each

heatmap. Therefore, we take advantage of the learning to

rank method to reduce each heatmap to a compact feature,

which has the ability of preserving spatial order. Concate-

nating all feature vectors according to the temporal order

will generate a body shape evolution image, which can p-

reserve both spatial and temporal information of heatmaps

in a compact way. The pipeline of generating body shape

evolution image is shown in Fig. 4. Specifically, we par-

tition the nth frame of the sequence V into P rows, i.e.,

Gn = [(p1)
T, ..., (ps)

T, ..., (pP )
T]T, or Q columns, i.e.,

Gn = [q1, ..., qs, ..., qQ]. Similar to Eq. 4, function V is

applied to map (p1:s)
T and q1:s to vp

s and vq
s, respective-

ly. Using the structural risk minimization and max-margin

framework, the objective is defined as:

argmin
uη

1

2
‖u

η‖2 +W
∑

∀i,j v
η
si

≻v
η
sj

εij ,

s.t. (uη)T · (vη
si

− v
η
sj
) ≥ 1− εij

εij ≥ 0

(5)

where η ∈ {p, q}, up ∈ R
Q and uq ∈ R

P . For all N
frames, we catenate vectors according to the temporal order,

and obtain Up ∈ R
Q×N and Uq ∈ R

P×N . The final matrix

U via spatial rank pooling is defined as
[

(Up)T, (Uq)T
]T

,

where U is called body shape evolution image.

Body Guided Sampling: Since body shape evolution

image only considers the shape of accumulated pose es-

timation map while does not differentiate different joints,

we need body pose evolution image to consider the in-

formation from each specific joint. To this end, this sec-

tion builds body pose evolution image from joints, which

are densely sampled by body guided sampling to denote

the specific pose of human body. Suppose a sequence

VL = {L1, ...,Ln, ...,LN} contains N poses, where Ln =
{zk,n}Kk=1 and zk,n = (xk,n, yk,n), which denote the hor-

izontal and vertical coordinates of the kth joint. When
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Figure 5: Building one channel of body pose evolution image from

horizontal coordinates via body guided sampling

recording pose sequences, the distances between human

bodies and the depth video are not strictly the same. In oth-

er words, different pose sequences have their own scales,

which bring intra-varieties to same types of actions. To this

end, {{xk,n}Kk=1}
N
n=1 and {{yk,n}Kk=1}

N
n=1 are normalized

to change from 0 to 1, respectively.

To encode the spatial and temporal evolution of pose

joints in a compact way, we represent the pre-processed

pose sequence VL as a body pose evolution image. Since

original estimated pose joints are too sparse to represent the

human body, we sort the order of joint labels according to

the body structure, and use linear interpolation to sample

abundant points from pose limbs. The pipeline of building

one channel of body pose evolution image from horizontal

coordinates is shown in Fig. 5. Another channel of body

pose evolution image from vertical coordinates can be sim-

ilarly built. Mathematically, let xn = [x1,n, ..., xK′,n]T and

yn = [y1,n, ..., yK
′,n]T denote the coordinate vector of the

generated joints, where K ′ is the total number of sampled

joints. In our experiments, the pose limbs can be rough-

ly denoted by sampling five joints on each limb. Suppose

Figure 6: Snaps selected from PennAction dataset

K = 14 and the number of limb is K − 1, then the K ′ can

be calculated as K + (K − 1) × 5 = 79. Two channels of

body pose evolution image are formed as [x1, ..., xN ] and

[y1, ..., yN ], denoting horizontal and vertical coordinates,

respectively. Both channels reflect the temporal evolution

of joints, which are densely sampled to denote the pose of

human body.

Late Fusion: A video Ic has been denoted as a body

shape evolution image and a body pose evolution image,

where c means the cth sample from a batch that is used

for training. As CNN has achieved success in image clas-

sification task, we use CNN model that is pre-trained on

Imagenet [7] for transfer learning. Since these two images

contain significantly different spatial structure, we use sep-

arate CNN to explore deep features from them. To accom-

modate existing CNN models, the single channel of body

shape evolution image is repeated three times to form a 3-

channel image, and two channels of body pose evolution

image are combined with a zero-valued channel to form a

3-channel image. Let {Icm}2m=1 denote these two images.

Mean removal is adopted for input images to improve the

convergence speed. Then, each color image is processed by

a CNN. For the image Icm, the output Υm of the last fully-

connected (fc) layer is normalized by the softmax func-

tion to obtain the posterior probability: prob(r | Icm) =

eΥ
r
m/

∑R

j=1 e
Υj

m , which indicates the probability of image

Icm belonging to the r-th action class. R is the number of

total action classes. The objective function of our mod-

el is to minimize the maximum-likelihood loss function

L(Im) = −
∑2

c=1 ln
∑R

r=1 δ(r − sc) prob(r | Icm), where

function δ equals to one if r = sc and equals to zero other-

wise, sc is the ground truth label of Icm, and C is the batch

size. For a sequence I, its final class score is the average of

the two posteriors: score(r | I) = 1
2

∑2
m=1 prob(r | Im),

where prob(r | Im) is the probability of Im belonging to the

rth action class.

5. Experiments

5.1. Datasets and Settings

PennAction dataset [54] contains 15 action categories

and 2326 sequences in total. Since all sequences are col-

lected from the internet, complex body occlusions, large

appearance and motion variations make it challenging for
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Table 1: The evaluation of body shape evolution image and body pose evolution image on NTU RGB+D, UTD-MHAD and

PennAction datasets. BPI is short for body pose evolution image. BSI is short for body shape evolution image. BSI (t-rk) is

short for implementing BSI with temporal rank pooling. BSI (s-rk) is short for implementing BSI with spatial rank pooling.

To accelerate the computations, approximate rank pooling [1] is used to implement rank pooling method.

NTU RGB+D UTD-MHAD PennAction
Method Sensor Data Feature

CS CV CS half / half

S1 Kinect 2D Pose BPI 80.52% 85.75% 85.53% -

S2 Kinect 3D Pose BPI 82.38% 86.65% 89.44% -

H1 RGB 2D Pose BPI 72.96% 77.21% 85.63% 84.08%

H2 RGB Heatmap BSI (t-rk) 53.91% 54.10% 58.88% 84.61%

H3 RGB Heatmap BSI (s-rk) 72.75% 78.35% 74.88% 87.02%

H1 + H3 RGB 2D Pose + Heatmap BPI + BSI (s-rk) 78.80% 84.21% 92.51% 91.39%

S1 + H3 Kinect 2D Pose + Heatmap BPI + BSI (s-rk) 90.90% 94.54% 92.84% -

S2 + H3 Kinect 3D Pose + Heatmap BPI + BSI (s-rk) 91.71% 95.26% 94.51% -
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Figure 7: The complementary between body shape evolution image and body pose evolution image

pose-related action recognition [48, 8]. We follow [48] to s-

plit the data into half and half for training and testing. Snaps

with estimated poses 1 are shown in Fig. 6.

NTU RGB+D dataset [35] contains 60 actions per-

formed by 40 subjects from various views, generating

56880 sequences. Following the cross subject protocol in

[35], we split the 40 subjects into training and testing group-

s. Each group contains samples captured from different

views performed by 20 subjects. For this evaluation, the

training and testing sets have 40320 and 16560 samples, re-

spectively. Following the cross view protocol in [35], we

use all the samples of camera 1 for testing and samples of

cameras 2, 3 for training. The training and testing sets have

37920 and 18960 samples, respectively.

UTD-MHAD dataset [6] was collected using a Mi-

crosoft Kinect sensor and a wearable inertial sensor in an

indoor environment. It contains 27 actions performed by 8

subjects. Each subject repeated each action 4 times, gen-

erating 861 sequences. We use this dataset to compare the

performances of methods using different data modalities.

Cross subject protocol [6] is used for the evaluation.

Implementing details: In our model, each CNN con-

tains five convolutional layers and three fc layers. The first

and second fc layers contain 4096 neurons, and the number

of neurons in the third one is equal to the total number of

action classes. Filter sizes are set to 11 × 11, 5 × 5, 3 × 3,

3 × 3 and 3 × 3, respectively. Local Response Normaliza-

1 These poses are generated by pose estimation method [4], which

can be found from https://github.com/tensorboy/pytorch Realtime Multi-

Person Pose Estimation. Four pose joints on the head are not used since

they are redundant for denoting actions. For scenes with multi-person, the

coordinates of joints are averaged for feature extraction.

tion (LRN), max pooling and ReLU neuron are adopted and

the dropout regularization ratio is set to 0.5. The network

weights are learned using the mini-batch stochastic gradi-

ent descent with the momentum value set to 0.9 and weight

decay set to 0.00005. Learning rate is set to 0.001 and the

maximum training cycle is set to 60. When the CNN model

achieves 99% accuracy on the training set, the training pro-

cedure is stopped beforehand. In each cycle, a mini-batch

of C samples is constructed by randomly sampling images

from training set. For NTU RGB+D dataset, UTD-MHAD

dataset and PenAction dataset, C is set to 64, 16 and 16,

considering the size of training set. To reduce the effec-

t of random parameter initialization and random sampling,

we repeat the training of CNN model for five times and re-

port the average results. The implementation is based on

PyTorch with one TITAN X card and 16G RAM.

5.2. Discussions

2D pose & 3D pose from depth video: As poses esti-

mated from videos lose depth cues, we begin with evalu-

ating the significance of depth information for pose-based

human action recognition. In Table 1, a 3D pose sequence

extracted from a depth video is described as a three chan-

nel body pose evolution image, which is further encoded by

CNN to predict action label. This method is called “S2”.

By setting all values of depth channel to zero, 2D pose se-

quences from depth videos are used instead. This method

is called “S1”. Without using depth channel, the accura-

cy drops from 89.44% to 85.53% on UTD-MHAD dataset.

While, accuracies drop by only 1.86% from 82.38% to

80.52% for cross subject setting and 0.90% from 86.65%
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Figure 8: Confusion matrices of body pose evolution image-based

method (first row), body shape evolution image-based method

(second row), body pose and body shape evolution images-based

method (third row) on NTU RGB+D dataset using cross subject

protocol. Confusion matrices of ten actions are enlarged. These

ten actions are: touch back (backache) (46), touch neck (neck-

ache) (47), nausea or vomiting condition (48), use a fan (with hand

or paper)/feeling warm (49), punching/slapping other person (50),

kicking other person (51), pushing other person (52), pat on back

of other person (53), point finger at the other person (54), hugging

other person (55). Red boxes verify that the body pose and body

shape evolution images compensate for each other and improve

the recognition of action (49).

to 85.75% for cross view setting on NTU RGB+D dataset.

These results show that depth information can improve the

recognition, but the influence of depth channel drops when

large scale training data is used, as well-trained CNN model

may infer depth cues from 2D pose. These results support

the potential of estimating 2D poses for action recognition

from videos, where depth cues are not directly available.

2D pose from video: With accurate pose estimation

method and additional depth cues, 3D poses from depth

videos are more reliable than 2D poses from videos. This

part evaluates the performance of noisy 2D poses from

videos by comparing with 2D poses and 3D poses from

depth videos. “H1” denotes our proposed method using

body pose evolution image. On NTU RGB+D dataset, “H1”

performs worse than “S1”. The reason is that this dataset

contains multi-view samples, which brings more ambigui-

ties to 2D pose from video than 3D pose from depth video.

The performance of “H1” is comparable with “S1” on UTD-

MHAD dataset. The reason is that this dataset contains

samples observed from single view, which helps the pose

estimation from both RGB and depth videos. Generally,

Table 2: Comparisons between our proposed method and

state-of-the-art methods on NTU RGB+D dataset

Method Year CS CV

HON4D [32] 2013 30.56% 7.26%

Super Normal Vector [50] 2014 31.82% 13.61%

Skeletal Quads [10] 2014 38.60% 41.40%

Lie Group [40] 2014 50.10% 52.80%

HBRNN-L [9] 2015 59.07% 63.97%

FTP Dynamic Skeletons [16] 2015 60.23% 65.22%

Deep RNN [35] 2016 59.29% 64.09%

Deep LSTM [35] 2016 60.69% 67.29%

2 Layer P-LSTM [35] 2016 62.93% 70.27%

ST-LSTM + Trust Gate [25] 2016 69.20% 77.70%

Unsupervised Learning [29] 2017 56.00% -

LieNet-3Blocks [17] 2017 61.37% 66.95%

GCA-LSTM network [26] 2017 74.40% 82.80%

Body-part appearance + skeleton [33] 2017 75.20% 83.10%

Clips + CNN + MTLN [20] 2017 79.57% 84.83%

View-invariant [28] 2017 80.03% 87.21%

Proposed Method: H1 + H3 - 78.80% 84.21%

Proposed Method: S2 + H3 - 91.71% 95.26%

Table 3: Comparisons between our proposed method and

state-of-the-art methods on UTD-MHAD dataset

Sensor Method Year CS

Kinect Cov3DJ [18] 2013 85.58%

Kinect Kinect [6] 2015 66.10%

Inertial Inertial [6] 2015 67.20%

Kinect + Inertial Kinect&Inertial [6] 2015 79.10%

Kinect JTM [44] 2016 85.81%

Kinect Optical Spectra [15] 2016 86.97%

Kinect 3DHOT-MBC [53] 2017 84.40%

Kinect JDM [23] 2017 88.10%

RGB Proposed Method: H1 + H3 - 92.84%

Kinect Proposed Method: S2 + H3 - 94.51%

2D pose from video can only compete with that from depth

video in simple scenes; 2D pose from video can barely

achieve the performance of 3D pose from depth video.

Heatmap from video: Instead of using sole 2D pose, we

evaluate the performance of combining heatmap with 2D

pose for recognition from video. The method called “H3”

describes heatmap as body shape evolution image using s-

patial rank pooling. For comparisons, the method called

“H2” is implemented by temporal rank pooling. “H3” out-

performs “H2” by more than 15% on both NTU RGB+D

and UTD-MHAD datasets, which verifies the advantage of

spatial rank pooling method in preserving both spatial and

temporal cues. The method called “H1 + H3” denotes the

combination of both 2D pose and heatmap. “H1 + H3” out-

performs at least 5% than “H1”. Detailed improvements

on NTU RGB+D dataset using cross subject protocol are

shown in Fig. 7. These results indicate the complementary

property between 2D pose and heatmap. In Fig. 8, we ana-

lyze the confusion matrices among 10 types of actions. The

red boxes highlight the improvement on action “use a fan

(with hand or paper)/feeling warm (49)”, by combining 2D

pose and heatmap. As shown in Fig. 9, body pose evolu-

tion image only captures 2D pose joints, which are noisy

due to occlusions. However, body shape evolution image,

which captures global shape of heatmap, can provide cues

for inferring accurate locations of 2D pose joints.
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Figure 9: The visualization of 2D poses and heatmaps estimated from the action “use a fan (with hand or paper)/feeling warm (49)”. We

show the pose estimation maps of the 8-th, 5-th, 1-st joint. On these pose estimation maps, green arrow points out the estimated position

of joint, which is inaccurate. Meanwhile, pink arrow points to the region of heatmap which covers the ground truth of the joint position.

We claim that heatmaps contain richer cues for inferring locations of joints when estimated 2D poses are inaccurate.

Table 4: Comparisons between our proposed method and

state-of-the-art methods on PennAction dataset

Sensor Method Year half / half

RGB Action Bank [54] 2013 83.90%

RGB AOG [48] 2015 85.50%

RGB C3D [3] 2016 86.00%

RGB JDD [3] 2016 87.40%

RGB Pose + IDT-FV [19] 2017 92.00%

RGB RPAN [8] 2017 97.40%

RGB Proposed Method: H1 + H3 - 91.39%

RGB Proposed Method: (H1 + H3)* - 98.22%

5.3. Comparisons with State-of-the-arts

Ours versus 3D Pose-based methods: Even with inac-

curate 2D pose estimation method, our method outperforms

3D pose, which is extracted by 3D pose estimation method

from depth sensors. In Table 2 and Table 3, “H1 + H3”

outperforms most state-of-the-art methods using 3D poses.

Specifically, “H1 + H3” achieves 78.80% and 84.21% on

the currently largest NTU RGB+D dataset. “H1 + H3” also

outperforms LSTM-based method, i.e., GCA-LSTM [26].

Although slightly worse, “H1 + H3” approaches to sim-

ilar performance of the most recent CNN-based method,

i.e., View-invariant [28]. On UTD-MHAD dataset, “H1 +

H3” outperforms all 3D pose-based methods, e.g., 3DHOT-

MBC [53] and JDM [23]. Instead of using 2D poses, it

is interesting to combine heatmap with more accurate pos-

es, namely 2D poses from depth video. Table 1 shows that

“S1+H3” outperforms “H1+H3”. With additional depth in-

formation, “S2+H3” achieves the best performances. These

results verify that our proposed heatmaps benefit both 2D

poses from videos and 3D poses from depth videos.

Ours versus video-based methods: Among approaches

using videos, our method is compared with most related 2D

pose-based action recognition methods. In Table 4, poselet

detected by Action Bank [54] achieves accuracy of 83.90%
on PennAction dataset. AOG [48] and Pose + IDT-FV [19]

benefit from treating pose estimation and action recognition

as a uniform framework, and achieve accuracy of 85.50%
and 92.00%. RPAN [8] goes beyond previous studies by

training an end-to-end RNN network, and achieves accu-

racy of 97.40%. Our method jointly learns 2D poses and

heatmaps, and the complementary property between them
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Figure 10: Confusion matrix of our method on PennAction dataset

alleviate the effect of noisy 2D poses. We further select one

frame for each video and use CNN to extract deep features.

Also, we encode annotated poses, which are provided by

original dataset. Fused with these additional information,

our method “(H1 + H3)*” achieves accuracy of 98.22% and

outperforms all recent methods. The confusion matrix of

our method is shown in Fig. 10, where most of ambiguities

among actions are suppressed.

6. Conclusions

This paper recognizes actions from videos as the evo-

lution of pose estimation maps. Compared with unreliable

estimated 2D poses, pose estimation maps provide richer

cues for inferring body parts and their movements. By de-

scribing the evolution of pose estimation maps as compact

body shape evolution image and body pose evolution image,

our method can effectively capture movements of both body

shape and body parts, thereby outperforming all 2D pose or

3D pose-based methods on benchmark datasets. It is noted

that our features only rely on the estimated pose estimation

maps rather than original videos, from which the pose es-

timation maps are estimated. This property indicates the

generalization ability of our method by estimating pose es-

timation maps from various types of input video, e.g., depth

or infrared video, for action recognition task.
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