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Abstract

We introduce a novel framework for image captioning

that can produce natural language explicitly grounded in

entities that object detectors find in the image. Our ap-

proach reconciles classical slot filling approaches (that are

generally better grounded in images) with modern neu-

ral captioning approaches (that are generally more natu-

ral sounding and accurate). Our approach first generates

a sentence ‘template’ with slot locations explicitly tied to

specific image regions. These slots are then filled in by

visual concepts identified in the regions by object detec-

tors. The entire architecture (sentence template generation

and slot filling with object detectors) is end-to-end differen-

tiable. We verify the effectiveness of our proposed model

on different image captioning tasks. On standard image

captioning and novel object captioning, our model reaches

state-of-the-art on both COCO and Flickr30k datasets.

We also demonstrate that our model has unique advan-

tages when the train and test distributions of scene com-

positions – and hence language priors of associated cap-

tions – are different. Code has been made available at:

https://github.com/jiasenlu/NeuralBabyTalk.

1. Introduction

Image captioning is a challenging problem that lies at the

intersection of computer vision and natural language pro-

cessing. It involves generating a natural language sentence

that accurately summarizes the contents of an image. Im-

age captioning is also an important first step towards real-

world applications with significant practical impact, rang-

ing from aiding visually impaired users to personal assis-

tants to human-robot interaction [5, 9].

State-of-art image captioning models today tend to be

monolithic neural models, essentially of the “encoder-

decoder” paradigm. Images are encoded into a vector with

a convolutional neural network (CNN), and captions are de-

coded from this vector using a Recurrent Neural Network

(RNN), with the entire system trained end-to-end. While
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Figure 1. Example captions generated by (a) Baby Talk [24], (c)

neural image captioning [20] and (b) our Neural Baby Talk ap-

proach. Our method generates the sentence “template” with slot

locations (illustrated with filled boxes) explicitly tied to image re-

gions (drawn in the image in corresponding colors). These slots

are then filled by object detectors with concepts found in regions.

there are many recent extensions of this basic idea to in-

clude attention [45, 12, 49, 47, 27], it is well-understood

that models still lack visual grounding (i.e., do not associate

named concepts to pixels in the image). They often tend to

‘look’ at different regions than humans would and tend to

copy captions from training data [8].

For instance, in Fig. 1 a neural image captioning ap-

proach [20] describes the image as “A dog is sitting on a

couch with a toy.” This is not quite accurate. But if one

were to really squint at the image, it (arguably) does per-

haps look like a scene where a dog could be sitting on a

couch with a toy. It certainly is common to find dogs sitting

on couches with toys. A-priori, the description is reason-

able. That’s exactly what today’s neural captioning models

tend to do – produce generic plausible captions based on the

language model1 that match a first-glance gist of the scene.

While this may suffice for common scenes, images that dif-

fer from canonical scenes – given the diversity in our visual

world, there are plenty of such images – tend to be under-

served by these models.

If we take a step back – do we really need the language

model to do the heavy lifting in image captioning? Given

1frequently, directly reproduced from a caption in the training data.
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A teddy bear sitting on a table

with a plate of food.

A person is sitting at a table

with a sandwich.

A close up of a stuffed animal

on a plate.

A Mr. Ted sitting at a table with

a pie and a cup of coffee.

Figure 2. From left to right is the generated caption using the same captioning model but with different detectors: 1) No detector; 2) A

weak detector that only detects “person” and “sandwich”; 3) A detector trained on COCO [26] categories (including “teddy bear”). 4) A

detector that can detect novel concepts (e.g. “Mr. Ted” and “pie” that never occurred in the captioning training data). Different colors show

a correspondence between the visual word and grounding regions.

the unprecedented progress we are seeing in object recog-

nition2 (e.g., object detection, semantic segmentation, in-

stance segmentation, pose estimation), it seems like the vi-

sion pipeline can certainly do better than rely on just a first-

glance gist of the scene. In fact, today’s state-of-the-art ob-

ject detectors can successfully detect the table and cake in

the image in Fig. 1(c)! The caption ought to be able to talk

about the table and cake actually detected as opposed to

letting the language model hallucinate a couch and a toy

simply because that sounds plausible.

Interestingly, some of the first attempts at image caption-

ing [13, 24, 25, 33] – before the deep learning “revolution”

– relied heavily on outputs of object detectors and attribute

classifiers to describe images. For instance, consider the

output of Baby Talk [24] in Fig. 1, that used a slot filling

approach to talk about all the objects and attributes found in

the scene via a templated caption. The language is unnatu-

ral but the caption is very much grounded in what the model

sees in the image. Today’s approaches fall at the other ex-

treme on the spectrum – the language generated by modern

neural image captioning approaches is much more natural

but tends to be much less grounded in the image.

In this paper, we introduce Neural Baby Talk that recon-

ciles these methodologies. It produces natural language ex-

plicitly grounded in entities found by object detectors. It is

a neural approach that generates a sentence “template” with

slot locations explicitly tied to image regions. These slots

are then filled by object recognizers with concepts found in

the regions. The entire approach is trained end-to-end. This

results in natural sounding and grounded captions.

Our main technical contribution is a novel neural de-

coder for grounded image captioning. Specifically, at each

time step, the model decides whether to generate a word

from the textual vocabulary or generate a “visual” word.

The visual word is essentially a token that will hold the slot

for a word that is to describe a specific region in the image.

For instance, for the image in Fig. 1, the generated sequence

2e.g., 11% absolute increase in average precision in object detection in

the COCO challenge in the last year.

may be “A <region−17> is sitting at a <region−123>

with a <region−3>.” The visual words (<region−[.]>’s)

are then filled in during a second stage that classifies

each of the indicated regions (e.g., <region−17>→puppy,

<region−123>→table), resulting in a final description of

“A puppy is sitting at a table with a cake.” – a free-form

natural language description that is grounded in the image.

One nice feature of our model is that it allows for different

object detectors to be plugged in easily. As a result, a va-

riety of captions can be produced for the same image using

different detection backends. See Fig. 2 for an illustration.

Contributions: Our contributions are as follows:

• We present Neural Baby Talk – a novel framework for

visually grounded image captioning that explicitly lo-

calizes objects in the image while generating free-form

natural language descriptions.

• Ours is a two-stage approach that first generates a hy-

brid template that contains a mix of (text) words and

slots explicitly associated with image regions, and then

fills in the slots with (text) words by recognizing the

content in the corresponding image regions.

• We propose a robust image captioning task to bench-

mark compositionality of image captioning algorithms

where at test time the model encounters images con-

taining known objects but in novel combinations (e.g.,

the model has seen dogs on couches and people at ta-

bles during training, but at test time encounters a dog

at a table). Generalizing to such novel compositions is

one way to demonstrate image grounding as opposed

to simply leveraging correlations from training data.

• Our proposed method achieves state-of-the-art perfor-

mance on COCO and Flickr30k datasets on the stan-

dard image captioning task, and significantly outper-

forms existing approaches on the robust image cap-

tioning and novel object captioning tasks.

2. Related Work

Some of the earlier approaches generated templated im-

age captions via slot-filling. For instance, Kulkarni et
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al. [24] detect objects, attributes, and prepositions, jointly

reason about these through a CRF, and finally fill appropri-

ate slots in a template. Farhadi et al. [13] compute a triplet

for a scene, and use this templated “meaning” representa-

tion to retrieve a caption from a database. [25, 33] use more

powerful language templates such as a syntactically well-

formed tree. These approaches tend to either produce cap-

tions that are relevant to the image but not natural sounding,

or captions that are natural (e.g. retrieved from a database of

captions) but may not be sufficiently grounded in the image.

Neural models for image captioning have been receiv-

ing increased attention in the last few years [23, 32, 7, 44,

11, 20]. State-of-the-art neural approaches include atten-

tion mechanisms [45, 12, 49, 47, 27, 38, 3] that identify re-

gions in the image to “ground” emitted words. In practice,

these attention regions tend to be quite blurry, and rarely

correspond to semantically meaningful individual entities

(e.g., objects instances) in the image. Our approach grounds

words in object detections, which by design identify con-

crete semantic entities (object instances) in the image.

There has been some recent interest in grounding natu-

ral language in images. Dense Captioning [19] generates

descriptions for specific image regions. In contrast, our

model produces captions for the entire image, with words

grounded in concrete entities in the image. Another related

line of work is on resolving referring expressions [21] (or

description-based object retrieval [36, 17, 18, 39] – given a

description of an object in the image, identify which ob-

ject is being referred to) or referring expression genera-

tion [21, 29, 31, 50] (given an object in the image, generate a

discriminative description of the object). While the interest

in grounded language is in common, our task is different.

One natural strength of our model is its ability to in-

corporate different object detectors, including the ability to

generate captions with novel objects (never seen before in

training captions). In that context, our work is related to

prior works on novel object captioning [4, 42, 48, 2]. As

we describe in Sec. 4.3, our method outperforms these ap-

proaches by 14.6% on the averaged F1 score.

3. Method

Given an image I , the goal of our method is to gener-

ate visually grounded descriptions y = {y1, . . . , yT }. Let

rI = {r1, ..., rN} be the set of N images regions extracted

from I . When generating an entity word in the caption, we

want to ground it in a specific image region r ∈ rI . Fol-

lowing the standard supervised learning paradigm, we learn

parameters θ of our model by maximizing the likelihood of

the correct caption:

θ∗ = argmax
θ

∑

(I,y)

log p(y|I;θ) (1)

Using chain rule, the joint probability distribution can be

decomposed over a sequence of tokens:

p(y|I) =

T∏

t=1

p(yt|y1:t−1, I) (2)

where we drop the dependency on model parameters to

avoid notational clutter. We introduce a latent variable rt
to denote a specific image region so that yt can explicitly

ground in it. Thus the probability of yt is decomposed to:

p(yt|y1:t−1, I) = p(yt|rt,y1:t−1, I)p(rt|y1:t−1, I) (3)

In our framework, yt can be of one of two types: a vi-

sual word or a textual word, denoted as yvis and ytxt re-

spectively. A visual word yvis is a type of word that is

grounded in a specific image region drawn from rI . A tex-

tual word ytxt is a word from the remainder of the caption.

It is drawn from the language model , which is associated

with a “default” sentinel “region” r̃ obtained from the lan-

guage model [27] (discussed in Sec. 3.1). For example, as

illustrated in Fig. 1, “puppy” and “cake” grounded in the

bounding box of category “dog” and “cake” respectively,

are visual words. While “with” and “sitting” are not associ-

ated with any image regions and thus are textual words.

With this, Eq. 1 can be decomposed into two cascaded

objectives. First, maximizing the probability of generating

the sentence “template”. A sequence of grounding regions

associated with the visual words interspersed with the tex-

tual words can be viewed as a sentence “template”, where

the grounding regions are slots to be filled in with visual

words.3 An example template (Fig. 3) is “A <region−2>

is laying on the <region−4> near a <region−7>. Sec-

ond, maximizing the probability of visual words yvist con-

ditioned on the grounding regions and object detection in-

formation, e.g., categories recognized by detector. In the

template example above, the model will fill the slots with

‘cat’, ‘laptop’ and ‘chair’ respectively.

In the following, we first describe how we generate the

slotted caption template (Sec. 3.1), and then how the slots

are filled in to obtain the final image description (Sec. 3.2).

The overall objective function is described in Sec. 3.3 and

the implementation details in Sec. 3.4.

3.1. “Slotted” Caption Template Generation

Given an image I , and the corresponding caption y, the

candidate grounding regions are obtained by using a pre-

trained Faster-RCNN network [37]. To generate the cap-

tion “template”, we use a recurrent neural network, which

is commonly used as the decoder for image captioning

[32, 44]. At each time step, we compute the RNN hidden

state ht according to the previous hidden state ht−1 and the

input xt such that ht = RNN(xt,ht−1). At training time,

3Our approach is not limited to any pre-specified bank of templates.

Rather, our approach automatically generates a template (with placehold-

ers – slots – for visually grounded words), which may be any one of the

exponentially many possible templates.
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Figure 3. One block of the proposed approach. Given an image,

proposals from any object detector and current word “A”, the figure

shows the process to predict the next visual word “cat”.

xt is the ground truth token (teacher forcing) and at test time

is the sampled token yt−1. Our decoder consists of an atten-

tion based LSTM layer [38] that takes convolution feature

maps as input. Details can be found in Sec. 3.4. To generate

the “slot” for visual words, we use a pointer network [43]

that modulates a content-based attention mechanism over

the grounding regions. Let vt ∈ R
d×1 be the region fea-

ture of rt, which is calculated based on Faster R-CNN. We

compute the pointing vector with:

ut
i = wT

h tanh(Wvvt +Wzht) (4)

P t
rI

= softmax(ut) (5)

where Wv ∈ R
m×d, Wz ∈ R

d×d and wh ∈ R
d×1 are pa-

rameters to be learned. The softmax normalizes the vector

ut to be a distribution over grounding regions rI .

Since textual words ytxtt are not tied to specific regions

in the image, inspired by [27], we add a “visual sentinel”

r̃ as a latent variable to serve as dummy grounding for the

textual word. The visual sentinel can be thought of as a la-

tent representation of what the decoder already knows about

the image. The probability of a textual word ytxtt then is:

p(ytxtt |y1:t−1) = p(ytxtt |r̃,y1:t−1)p(r̃|y1:t−1) (6)

where we drop the dependency on I to avoid clutter.

We first describe how the visual sentinel is computed,

and then how the textual words are determined based on the

visual sentinel. Following [27], when the decoder RNN is

an LSTM [16], the representation for visual sentinel st can

be obtained by:

gt = σ (Wxxt +Whht−1) (7)

st = gt ⊙ tanh (ct) (8)

where Wx ∈ R
d×d, Wh ∈ R

d×d. xt is the LSTM input

at time step t, and gt is the gate applied on the cell state

ct. ⊙ represents element-wise product, σ the logistic sig-

moid activation. Modifying Eq. 5, the probability over the

grounding regions including the visual sentinel is:

P t
r = softmax([ut;wT

h tanh(Wsst +Wzht)]) (9)

where Ws ∈ R
d×d and Wz ∈ R

d×d are the parameters.

Notably, Wz and wh are the same parameters as in Eq. 4.

P t
r is the probability distribution over grounding regions rI

and visual sentinel r̃. The last element of the vector in Eq. 9

captures p(r̃|y1:t−1).
We feed the hidden state ht into a softmax layer to obtain

the probability over textual words conditioned on the image,

all previous words, and the visual sentinel:

P t
txt = softmax (Wqht) (10)

where Wq ∈ R
V×d, d is hidden state size, and V is textual

vocabulary size. Plugging in Eq. 10 and p(r̃|y1:t−1) from

the last element of the vector in Eq. 9 into Eq. 6 gives us the

probability of generating a textual word in the template.

3.2. Caption Refinement: Filling in The Slots

To fill the slots in the generated template with visual

words grounded in image regions, we leverage the outputs

of an object detection network. Given a grounding region,

the category can be obtained through any detection frame-

work [37]. But outputs of detection networks are typically

singular coarse labels e.g. “dog”. Captions often refer to

these entities in a fine-grained fashion e.g. “puppy” or in

the plural form “dogs”. In order to accommodate for these

linguistic variations, the visual word yvis in our model is

a refinement of the category name by considering the fol-

lowing two factors: First, determine the plurality – whether

it should be singular or plural. Second, determine the fine-

grained class (if any). Using two single layer MLPs with

ReLU activation f(·), we compute them with:

P t
b = softmax (Wbfb ([vt;ht])) (11)

P t
g = softmax

(
UTWgfg ([vt;ht])

)
(12)

Wb ∈ R
2×d, Wg ∈ R

300×d are the weight parameters.

U ∈ R
300×k is the glove vector embeddings [35] for k

fine-grained words associated with the category name. The

visual word yvist is then determined by plurality and fine-

grained class (e.g., if plurality is plural, and the fine-grained

class is “puppy”, the visual word will be “puppies”).

3.3. Objective

Most standard image captioning datasets (e.g. COCO

[26]) do not contain phrase grounding annotations, while

some datasets do (e.g. Flickr30k [36]). Our training objec-

tive (presented next) can incorporate different kinds of su-

pervision – be it strong annotations indicating which words

in the caption are grounded in which boxes in the image, or

weak supervision where objects are annotated in the image

but are not aligned to words in the caption. Given the tar-

get ground truth caption y∗
1:T and a image captioning model
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with parameters θ, we minimize the cross entropy loss:

L(θ) = −

T∑

t=1

log
(

Textual word probability
︷ ︸︸ ︷

p(y∗t |r̃,y
∗
1:t−1)p(r̃|y

∗
1:t−1)✶(y∗

t
=ytxt) +

p
(
b∗t , s

∗
t |rt,y

∗
1:t−1

)

︸ ︷︷ ︸

Caption refinement

( 1

m

m∑

i=1

p
(
rit|y

∗
1:t−1

) )
✶(y∗

t
=yvis)

︸ ︷︷ ︸

Averaged target region probability

)

(13)

where y∗t is the word from the ground truth caption at time

t. ✶(y∗

t
=ytxt) is the indicator function which equals to 1 if

y∗t is textual word and 0 otherwise. b∗t and s∗t are the target

ground truth plurality and find-grained class. {rit}
m
i=1 ∈ rI

are the target grounding regions of the visual word at time

t. We maximize the averaged log probability of the target

grounding regions.

Visual word extraction. During training, visual words

in a caption are dynamically identified by matching the base

form of each word (using the Stanford lemmatization tool-

box [30]) against a vocabulary of visual words (details of

how to get visual word can be found in dataset Sec. 4). The

grounding regions {rit}
m
i=1 for a visual word yt is identified

by computing the IoU of all boxes detected by the object

detection network with the ground truth bounding box as-

sociated with the category corresponding to yt. If the score

exceeds a threshold of 0.5 and the grounding region label

matches the visual word, the bounding boxes are selected

as the grounding regions. E.g., given a target visual word

“cat”, if there are no proposals that match the target bound-

ing box, the model predicts the textual word “cat” instead.

3.4. Implementation Details

Detection model. We use Faster R-CNN [37] with

ResNet-101 [15] to obtain region proposals for the image.

We use an IoU threshold of 0.7 for region proposal sup-

pression and 0.3 for class suppressions. A class detection

confidence threshold of 0.5 is used to select regions.

Region feature. We use a pre-trained ResNet-101 [15]

in our model. The image is first resized to 576×576 and we

random crop 512 × 512 as the input to the CNN network.

Given proposals from the pre-trained detection model, the

feature vi for region i is a concatenation of 3 different fea-

tures vi = [vp
i ;v

l
i;v

g
i ] where v

p
i is the pooling feature of

RoI align layer [14] given the proposal coordinates, vl
i is

the location feature and v
g
i is the glove vector embedding of

the class label for region i. Let xmin, ymin, xmax, ymax be the

bounding box coordinates of the region b; WI and HI be the

width and height of the image I . Then the location feature

vl
i can be obtained by projecting the normalized location

[
xmin

WI

,
ymin

HI

,
xmax

WI

,
ymax

HI

] into another embedding space.

Language model. We use an attention model with two

LSTM layers [3] as our base attention model. Given N re-
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Figure 4. Language model used in our approach.

gion features from detection proposals V = {v1, . . . ,vN}
and CNN features from the last convolution layer at K grids

V̂ = {v̂1, . . . , v̂K}, the language model has two separate

attention layers shown in Fig 4. The attention distribution

over the image features for detection proposals is:

zt = wT
z tanh

(
WvV + (Wght)✶

T
)

αt = softmax(zt)
(14)

where Wv ∈ R
m×d, Wg ∈ R

d×d and w ∈ R
d×1. ✶ ∈ R

N

is a vector with all elements set to 1. αt is the attention

weight over N image location features.

Training details. In our experiments, we use a two layer

LSTM with hidden size 1024. The number of hidden units

in the attention layer and the size of the input word em-

bedding are 512. We use the Adam [22] optimizer with an

initial learning rate of 5×10−4 and anneal the learning rate

by a factor of 0.8 every three epochs. We train the model

up to 50 epochs with early stopping. Note that we do not

finetune the CNN network during training. We set the batch

size to be 100 for COCO [26] and 50 for Flickr30k [36].

4. Experimental Results

Datasets. We experiment with two datasets. Flickr30k

Entities [36] contains 275,755 bounding boxes from 31,783

images associated with natural language phrases. Each im-

age is annotated with 5 crowdsourced captions. For each

annotated phrase in the caption, we identify visual words

by selecting the inner most NP (noun phrase) tag from

the Stanford part-of-speech tagger [6]. We use Stanford

Lemmatization Toolbox [30] to get the base form of the en-

tity words resulting in 2,567 unique words.

COCO [26] contains 82,783, 40,504 and 40,775 images

for training, validation and testing respectively. Each im-

age has around 5 crowdsourced captions. Unlike Flickr30k

Entities, COCO does not have bounding box annotations

associated with specific phrases or entities in the caption.

To identify visual words, we manually constructed an ob-

ject category to word mapping that maps object categories

like <person> to a list of potential fine-grained labels like

[“child”, “baker”, ...]. This results in 80 categories with a

total of 413 fine-grained classes. See supp. for details.
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A cat is standing on a sign

that says “UNK”.

A young boy with blond-hair and

a blue shirt is eating a chocolate

A band is performing on a 

stage.

A dog is laying in the grass

with a Frisbee.

A bride and groom cutting a

cake together.

A little girl holding a cat in 

her hand.

Two people are sitting on a 

boat in the water.

A woman sitting on a boat

in the water.

Figure 5. Generated captions and corresponding visual grounding regions on the standard image captioning task (Top: COCO, Bottom:

Flickr30k). Different colors show a correspondence between the visual words and grounding regions. Grey regions are the proposals not

selected in the caption. First 3 columns show success and last column shows failure cases (words are grounded in the wrong region).

Method BLEU1 BLEU4 METEOR CIDEr SPICE

Hard-Attention [45] 66.9 19.9 18.5 - -

ATT-FCN [49] 64.7 23.0 18.9 - -

Adaptive [27] 67.7 25.1 20.4 53.1 14.5

NBT 69.0 27.1 21.7 57.5 15.6

NBToracle 72.0 28.5 23.1 64.8 19.6

Table 1. Performance on the test portion of Karpathy et al. [20]’s

splits on Flickr30k Entities dataset.

Detector pre-training. We use open an source imple-

mentation [46] of Faster-RCNN [37] to train the detector.

For Flickr30K Entities, we use visual words that occur at

least 100 times as detection labels, resulting in a total of 460
detection labels. Since detection labels and visual words

have a one-to-one mapping, we do not have fine-grained

classes for the Flickr30K Entities dataset – the caption re-

finement process only determines the plurality of detection

labels. For COCO, ground truth detection annotations are

used to train the object detector.

Caption pre-processing. We truncate captions longer

than 16 words for both COCO and Flickr30k Entities

dataset. We then build a vocabulary of words that occur at

least 5 times in the training set, resulting in 9,587 and 6,864

words for COCO and Flickr30k Entities, respectively.

4.1. Standard Image Captioning

For standard image captioning, we use splits from

Karpathy et al. [20] on COCO/Flickr30k. We report re-

sults using the COCO captioning evaluation toolkit [26],

which reports the widely used automatic evaluation metrics,

BLEU [34], METEOR [10], CIDEr [41] and SPICE [1].

Method BLEU1 BLEU4 METEOR CIDEr SPICE

Adaptive [27] 74.2 32.5 26.6 108.5 19.5

Att2in [38] - 31.3 26.0 101.3 -

Up-Down [3] 74.5 33.4 26.1 105.4 19.2

Att2in∗ [38] - 33.3 26.3 111.4 -

Up-Down† [3] 79.8 36.3 27.7 120.1 21.4

NBT 75.5 34.7 27.1 107.2 20.1

NBToracle 75.9 34.9 27.4 108.9 20.4

Table 2. Performance on the test portion of Karpathy et al. [20]’s

splits on COCO dataset. ∗ directly optimizes the CIDEr Metric, †
uses better image features, and are thus not directly comparable.

We present our methods trained on different object de-

tectors: Flickr and COCO. We compare our approach (re-

ferred to as NBT) to recently proposed Hard-Attention [45],

ATT-FCN [49] and Adaptive [27] on Flickr30k, and Att2in

[38], Up-Down [3] on COCO. Since object detectors have

not yet achieved near-perfect accuracies on these datasets,

we also report the performance of our model under an oracle

setting, where the ground truth object region and category

is also provided during test time. (referred to as NBToracle)

This can be viewed as the upper bound of our method when

we have perfect object detectors.

Table 1 shows results on the Flickr30k dataset. We see

that our method achieves state of the art on all automatic

evaluation metrics, outperforming the previous state-of-art

model Adaptive [27] by 2.0 and 4.4 on BLEU4 and CIDEr.

When using ground truth proposals, NBToracle significantly

outperforms previous methods, improving 5.1 on SPICE,

which implies that our method could further benefit from

improved object detectors.
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A cat laying on the floor next 

to a remote control.

A man sitting on a bench next 

to a bird.

A dog is standing on a skateboard

in the grass.

A bird sitting on a branch in a 

tree.

Figure 6. Generated captions and corresponding visual grounding regions for the robust image captioning task. “cat-remote”, “man-bird”,

“dog-skateboard” and “orange-bird” are co-occurring categories excluded in the training split. First 3 columns show success and last

column shows failure case (orange was not mentioned).

Method BLEU4 METEOR CIDEr SPICE Accuracy

Att2in [38] 31.5 24.6 90.6 17.7 39.0

Up-Down [3] 31.6 25.0 92.0 18.1 39.7

NBT 31.7 25.2 94.1 18.3 42.4

NBToracle 31.9 25.5 95.5 18.7 45.7

Table 3. Performance on the test portion of the robust image cap-

tioning split on COCO dataset.

Table 2 shows results on the COCO dataset. Our method

outperforms 4 out of 5 automatic evaluation metrics com-

pared to the state of the art [38, 27, 3] without using better

visual features or directly optimizing the CIDEr metric. In-

terestingly, the NBToracle has little improvement over NBT.

We suspect the reason is that explicit ground truth anno-

tation is absent for visual words. Our model can be fur-

ther improved with explicit co-reference supervision where

the ground truth location annotation of the visual word is

provided. Fig. 5 shows qualitative results on both datasets.

We see that our model learns to correctly identify the visual

word, and ground it in image regions even under weak su-

pervision (COCO). Our model is also robust to erroneous

detections and produces correct captions (3rd column).

4.2. Robust Image Captioning

To quantitatively evaluate image captioning models for

novel scene compositions, we present a new split of the

COCO dataset, called the robust-COCO split. This new

split is created by re-organizing the train and val splits of

the COCO dataset such that the distribution of co-occurring

objects in train is different from test. We also present a new

metric to evaluate grounding.

Robust split. To create the new split, we first identify

entity words that belong to the 80 COCO object categories

by following the same pre-processing procedure. For each

image, we get a list of object categories that are mentioned

in the caption. We then calculate the co-occurrence statis-

tics for these 80 object categories. Starting from the least

co-occurring category pairs, we greedily add them to the

test set and ensure that for each category, at least half the

instances of each category are in the train set. As a re-

sult, there are sufficient examples from each category in

train, but at test time we see novel compositions (pairs)

of categories. Remaining images are assigned to the train-

ing set. The final split has 110,234/3,915/9,138 images in

train/val/test respectively.

Evaluation metric. To evaluate visual grounding on the

robust-COCO split, we want a metric that indicates whether

or not a generated caption includes the new object combina-

tion. Common automatic evaluation metrics such as BLEU

[34] and CIDEr [41] measure the overall sentence fluency.

We also measure whether the generated caption contains the

novel co-occurring categories that exist in the ground truth

caption. A generated caption is deemed 100% accurate if it

contains at least one mention of the compositionally novel

category-pairs in any ground truth annotation that describe

the image.

Results and analysis. We compare our method with

state of the art Att2in [38] and Up-Down [3]. These are

implemented using the open source implementation from

[28] that can replicate results on Karpathy’s split. We fol-

low the experimental setting from [38] and train the model

using the robust-COCO train set. Table 3 shows the results

on the robust-COCO split. As we can see, all models per-

form worse on the robust-COCO split than the Karpathy’s

split by 2∼3 points in general. Our method outperforms

the previous state of the art methods on all metrics, outper-

forming Up-Down [3] by 2.7 on the proposed metric. The

oracle setting (NBToracle) has consistent improvements on

all metrics, improving 3.3 on the proposed metric.

Fig. 6 shows qualitative results on the robust image cap-

tioning task. Our model successfully produces a caption

with novel compositions, such as “cat-remote”, “man-bird”

and “dog-skateboard” to describe the image. The last col-

umn shows failure cases where our model didn’t select “or-

ange” in the caption. We can force our model to produce

a caption containing “orange” and “bird” using constrained

beam search [2], further illustrated in Sec. 4.3.

4.3. Novel Object Captioning

Since our model directly fills the “slotted” caption tem-

plate with the concept, it can seamlessly generate descrip-
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A zebra that is standing in the

dirt.

A little girl wearing a helmet 

and holding a tennis racket.

A woman standing in front of

a red bus.

A plate of food with a bottle

and a cup of beer.

Figure 7. Generated captions and corresponding visual grounding regions for the novel object captioning task. “zebra”, “tennis racket”,

“bus” and “pizza” are categories excluded in the training split. First 3 columns show success and last column shows a failure case.

Out-of-Domain Test Data In-Domain Test Data

Method bottle bus couch microwave pizza racket suitcase zebra Avg SPICE METEOR CIDEr SPICE METEOR CIDER

DCC [4] 4.6 29.8 45.9 28.1 64.6 52.2 13.2 79.9 39.8 13.4 21.0 59.1 15.9 23.0 77.2

NOC [42] 17.8 68.8 25.6 24.7 69.3 68.1 39.9 89.0 49.1 - 21.4 - - - -

C-LSTM [48] 29.7 74.4 38.8 27.8 68.2 70.3 44.8 91.4 55.7 - 23.0 - - - -

Base+T4 [2] 16.3 67.8 48.2 29.7 77.2 57.1 49.9 85.7 54.0 15.9 23.3 77.9 18.0 24.5 86.3

NBT∗+G 7.1 73.7 34.4 61.9 59.9 20.2 42.3 88.5 48.5 15.7 22.8 77.0 17.5 24.3 87.4

NBT†+G 14.0 74.8 42.8 63.7 74.4 19.0 44.5 92.0 53.2 16.6 23.9 84.0 18.4 25.3 94.0

NBT†+T1 36.2 77.7 43.9 65.8 70.3 19.8 51.2 93.7 57.3 16.7 23.9 85.7 18.4 25.5 95.2

NBT†+T2 38.3 80.0 54.0 70.3 81.1 74.8 67.8 96.6 70.3 17.4 24.1 86.0 18.0 25.0 92.1

Table 4. Evaluation of captions generated using the proposed method. G means greedy decoding, and T1−2 means using constrained beam

search [2] with 1−2 top detected concepts. ∗ is the result using VGG-16 [40] and † is the result using ResNet-101.

tions for out-of-domain images. We replicated an existing

experimental design [4] on COCO which excludes all the

image-sentence pairs that contain at least one of eight ob-

jects in COCO. The excluded objects are ‘bottle’, “bus”,

“couch”, “microwave”, “pizza”, “racket”, “suitcase” and

“zebra”. We follow the same splits for training, valida-

tion, and testing as in prior work [4]. We use Faster R-

CNN in conjunction with ResNet-101 which is pre-trained

on COCO train split as the detection model. Note that we

do not pre-train the language model using COCO captions

as in [4, 42, 48], and simply replace the novel object’s word

embedding with an existing one which belongs to the same

super-category in COCO (e.g., bus← car).

Following [2], the test set is split into in-domain and out-

of-domain subsets. We report F1 as in [4], which checks if

the specific excluded object is mentioned in the generated

caption. To evaluate the quality of the generated caption, we

use SPICE, METEOR and CIDEr metrics and the scores on

out-of-domain test data are macro-averaged across eight ex-

cluded categories. For consistency with previous work [3],

the inverse document frequency statistics used by CIDEr are

determined across the entire test set.

As illustrated in Table 4.1, simply using greedy decod-

ing, our model (NBT∗+G) can successfully caption novel

concepts with minimum changes to the model. When us-

ing ResNet-101 and constrained beam search [2], our model

significantly outperforms prior works under F1 scores,

SPICE, METEOR, and CIDEr, across both out-of-domain

and in-domain test data. Specifically, NBT†+T2 outper-

forms the previous state-of-art model C-LSTM by 14.6%

on average F1 scores. From the category F1 scores, we

can see that our model is less likely to select small objects,

e.g. “bottle”, “racket” when only using the greedy decod-

ing. Since the visual words are grounded at the object-level,

by using [2], our model was able to significantly boost the

captioning performance on out-of-domain images. Fig. 7

shows qualitative novel object captioning results. Also see

rightmost example in Fig. 2.

5. Conclusion

In this paper, we introduce Neural Baby Talk, a novel im-

age captioning framework that produces natural language

explicitly grounded in entities object detectors find in im-

ages. Our approach is a two-stage approach that first gener-

ates a hybrid template that contains a mix of words from a

text vocabulary as well as slots corresponding to image re-

gions. It then fills the slots based on categories recognized

by object detectors in the image regions. We also introduce

a robust image captioning split by re-organizing the train

and val splits of the COCO dataset. Experimental results on

standard, robust, and novel object image captioning tasks

validate the effectiveness of our proposed approach.
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