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Abstract

We present an efficient subpixel refinement method using

a learning-based approach called Linear Predictors. Two

key ideas are shown in this paper. Firstly, we present a

novel technique, called Symbolic Linear Predictors, which

makes the learning step efficient for subpixel refinement.

This makes our approach feasible for online applications

without compromising accuracy, while taking advantage of

the run-time efficiency of learning based approaches. Sec-

ondly, we show how Linear Predictors can be used to pre-

dict the expected alignment error, allowing us to use only

the best keypoints in resource constrained applications. We

show the efficiency and accuracy of our method through ex-

tensive experiments.

1. Introduction

A small but important step for accurate 3D reconstruc-

tions in robotic applications such as visual SLAM is sub-

pixel refinement. One of the first steps in a conventional

visual SLAM pipeline involves the extraction of salient key-

points, followed by the formation of point correspondences.

As keypoint extraction methods [8, 14] are usually accurate

up to only one pixel, the goal of subpixel refinement is to

refine the position of these keypoints in order to improve

the quality of the final 3D reconstruction.

Energy minimization methods [13, 7, 16, 1, 3] have been

the de-facto method for performing subpixel refinement.

These can be divided into variants of the Lucas-Kanade

(LK) algorithm, or the efficient second-order minimization

(ESM) algorithm. Among them, the inverse compositional

variant of the LK algorithm (IC-LK) [13], along with the

ESM algorithm [3] are preferred due to their computational

efficiency. The IC-LK method is efficient as the Jacobian

can be pre-computed and re-used during subsequent itera-

tions, while the ESM method has a high convergence rate.

Besides energy-based methods, learning-based ap-

proaches [4, 11, 19, 20, 21] have been studied extensively in

the broader context of template matching, with subpixel re-

finement being one of its applications. In a pre-computation

step, a set of synthetic warps is applied to a template patch,

and the resulting change in pixel intensities is measured.

A Linear Predictor, which predicts the change in pixel in-

tensities to the corresponding update in warp parameters is

then learned. Once learned, warp updates can be obtained

via simple matrix-vector multiplications, making it compu-

tationally cheaper compared to energy-based methods.

However, the pre-computation step is usually computa-

tionally expensive. Thus, learning-based approaches have

so far only been used for a single large image patch consist-

ing of a sub-sampled grid of points. Holzer et al. [10] pro-

posed methods to make the pre-computation step more ef-

ficient. However, the computational savings obtained from

this method do not translate well to the problem of subpixel

refinement. Further, in an image, an additional challenge is

that there are typically hundreds of keypoints of interest.

In this paper, we present an approach which makes the

learning step efficient for subpixel refinement. We propose

to divide the learning step into two stages. Firstly, we per-

form a once-off step which learns a symbolic representation

of the Linear Predictor. Once learned, it can be re-used mul-

tiple times for different image patches. Our approach is very

efficient for small image patches, thus making it suitable for

subpixel refinement. We envision our approach being used

in situations where Linear Predictors for multiple keypoints

are learned efficiently in the background process of a real-

time application such as visual odometry (VO) or SLAM.

Further, we propose an error measure which allows the ex-

pected error in the warp parameters of an image patch to be

predicted. This allows us to prioritize image patches that

are expected to exhibit smaller alignment errors, especially

when an image consists of hundreds of keypoints.

The rest of this paper is organized as follows: We first

formally define the problem of subpixel refinement in Sec 2.

In order to make the paper self-contained, we briefly review

the IC-LK and ESM methods in Sec 3, followed by Linear

Predictors in Sec 4. We describe our proposed Symbolic

Linear Predictors in Sec. 5 and show experimental results

in Sec 6.
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2. Subpixel Refinement

Throughout this paper, subpixel refinement is defined as

a template matching problem. Given a pair of point corre-

spondences x1 ↔ x2, where x = (x, y)T is a pixel loca-

tion, a template T is centered around x1 and another image

patch I is centered around x2. The goal is to align the tem-

plate with the image patch. Both patches are small and of

equal sizes, typically ranging from 4 × 4 to 8 × 8 pixels.

Further, different sampling methods can be used to select

the pixels that will be used within the patch. We let n de-

note the number of pixels used in a patch.

We let M define an affine warp matrix parametrized by

the warp parameters p ∈ R
6, which maps a pixel location

x to a subpixel location. We define M as

M =

[

1 + p0 p1 p2
p3 1 + p4 p5

]

. (1)

3. Energy Minimization Methods

In this section, we provide a brief review of energy min-

imization methods for sub-pixel refinement.

3.1. The LucasKanade Algorithm

The Lucas-Kanade (LK) algorithm [13] minimizes a cost

function defined by the sum of squared differences (SSD)

over pixel correspondences between a warped input image

patch and the template patch. Given an initial estimate of

the parameters, p, the cost function is defined as

min∆p||I(p+∆p)− T (0)||22, (2)

where I(p) is the warped image patch, and ∆p is the warp

update being estimated. The cost function is linearized by

performing a first-order Taylor expansion around ∆p = 0:

min∆p||I(p) +
∂I(p)

∂∆p
∆p− T (0)||22, (3)

where the term
∂I(p)
∂∆p

, known as the steepest descent im-

age [1], is the composition of the gradient image and the

Jacobian with respect to the warp parameters. As the cost

function is non-linear, the LK algorithm is applied itera-

tively, with the update computed as p ← p + ∆p. How-

ever, the steepest descent image must be computed on the

re-warped image at every iteration, thus making the LK al-

gorithm computationally demanding.

Baker and Matthews [1] proposed a computationally ef-

ficient variant of the LK algorithm, known as the inverse

compositional method (IC-LK). The IC-LK algorithm is de-

rived by swapping the roles of the input image and the tem-

plate, thus minimizing the cost function

min∆p||I(p)− T (∆p)||22. (4)

Proceeding in a manner similar to the LK algorithm, the

cost function (4) is linearized:

min∆p||I(p)− T (0)−
∂T (0)

∂∆p
∆p||22, (5)

and the warp update is computed as

∆p =
∂T (0)

∂∆p

†

(I(p)− T (0)), (6)

where the subscript † denotes the pseudo-inverse operator.

The advantage of this formulation is that the Jacobian and

the pseudo-inverse are independent of ∆p, and hence can

be pre-computed and re-used during subsequent iterations.

3.2. Efficient Secondorder Minimization

The Efficient Second-order Minimization (ESM) algo-

rithm was proposed by Benhimane et al. [3]. It is derived

by performing a second-order Taylor expansion on the cost

function (2):

min∆p||I(p)+
∂I(p)

∂∆p
∆p+

1

2
∆pTH∆p−T (0)||22, (7)

where H is the Hessian matrix. A first-order Taylor expan-

sion is then performed on the steepest descent image:

∂I(p)

∂∆p
≈

∂I(0)

∂∆p
+H∆p. (8)

Substituting this first-order Taylor expansion (8) into (7)

yields

min∆p||I(p) +
1

2
(
∂I(0)

∂∆p
+

∂I(p)

∂∆p
)− T (0)||22 (9)

where the Hessian matrix has now been approximated from

two steepest descent images, one which is independent of

the warp updates whereas the other has to be computed from

the re-warped image.

4. Learning-based Methods

In this section we briefly review the Linear Predictor

(LP) method proposed by Jurie and Dhome [11] and its

efficient variants [10]. Note that there are other variants

[19, 20, 21] where multiple LPs are applied to learn a non-

linear function, with each LP responsible for one iteration

of the update step. These methods are beyond the scope of

this paper.

4.1. Linear Predictors

The concept of a Linear Predictor (LP) was first pro-

posed by Jurie and Dhome [11]. Assuming that prior knowl-

edge of the distribution of warp displacements is known,
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a set of m synthetic warps, usually much greater than the

number of pixels n used (m ≫ n), is applied to the tem-

plate. Let ∆i denote the SSD score from (2) rasterized

as a column vector. Each synthetic warp update generates

one such column vector, and these vectors can be stacked

to form the error matrix E = [∆i1,∆i2, · · · ,∆im]. Simi-

larly, the warp updates can be stacked to form a warp matrix

P = [∆p1,∆p2, · · · ,∆pm]. The Linear Predictor, A, re-

lates P and E as

P = AE, (10)

and it can be computed in closed-form as

A = PET (EET )−1. (11)

The drawback is that the learning step can be computation-

ally expensive, depending on (1) the number of synthetic

warps used, and (2) the cost of inverting the term EET .

4.2. Efficient Linear Predictors

Holzer et al. [10] proposed three approaches to make the

learning step of LPs faster.

Discrete Cosine Transform DCT is commonly used for

image compression, where the image is transformed into the

frequency space and the DCT coefficients containing high

frequencies are discarded. For a h × h matrix V, a DCT

operation is defined as

U = CVCT , (12)

where C is called the DCT matrix. Each element in C is

defined as

Ci,j =

√

αi

d
cos

[

π(2j + 1)i

2h

]

, (13)

where αi = 1 if i = 0 and αi = 2 otherwise. In order to

adapt (12) for a rasterized column vector such as ∆i (see

Sec. 4.1), let [B1,B2, · · · ,Bn] be a set of matrices, where

each matrix B has the same size as the image template. As-

suming a row-major order, all the elements in Bn are zero

except for the nth element, which is set to a value of 1.

Hence, Bn is a basis of the template in the image space. The

matrix V in (12) is substituted with the basis Bn, and the

resultant matrix U is rasterized as a column vector which

we denote as w. Stacking these column vectors together

produces an n × n matrix W = [w1,w2, · · · ,wn], which

is used to transform the error matrix E into the frequency

domain:

Ê = WE. (14)

A faster learning step can be achieved by retaining only

the top r DCT coefficients, resulting in an r×n matrix Wr.

This results in a low-rank approximation of the error matrix,

denoted as Ê = WrE. Substituting Ê into (10), the LP can

be computed as

A = PÊr(ÊrÊ
T
r )

−1Wr, (15)

where the matrix to be inverted is of size r × r.

Re-formulation Instead of learning the LP using (11), the

pseudo-inverse of the warp matrix P is used in (10), result-

ing in

I6×6 = AEPT (PPT )−1. (16)

Now, if we denote I6×6 = AD, where D =
EPT(PPT )−1, we can compute the LP as

A = (DTD)−1DT . (17)

Although two matrix inversions have to be performed, both

matrices are only of the size 6× 6.

Hybrid method This approach combines the two meth-

ods described above. Firstly, recall that the matrix D is

defined as D = EPT(PPT )−1. If we use the low-rank

approximation of the error matrix Êr in the matrix D, we

end up with a dimensionally reduced version of D, denoted

as D̂ = W−1
r ÊrP

T (PPT )−1. In a manner similar to the

re-formulation approach, the LP is then computed as

A = (D̂T D̂)−1D̂T (18)

where, again, the size of the matrix to be inverted is 6× 6.

5. Symbolic Linear Predictors

From Sec. 3 and Sec. 4, we see that both energy

and learning-based methods consist of two steps: (1) a

pre-computation step and (2) a run-time step. Although

learning-based methods are faster during run-time, they also

have a huge cost associated with the pre-computation step.

The methods in Sec. 4.2 reduce learning time through di-

mensionality reduction that results in a smaller matrix in-

version. Although this results in computational savings for

the application of planar target tracking, these savings do

not translate to the problem of subpixel refinement.

5.1. Symbolic Error Matrix

We propose a once-off, pre-training step to learn a sym-

bolic representation for LPs that is independent of pixel in-

tensities. Once learned, it can be re-used on different image

patches to learn the specific LP for that patch.

Our approach revolves around creating a representation

for the error matrix E that is independent of pixel intensi-

ties. Fig. 1 illustrates how this is done. A bounding box, B
(shown as the red box), encapsulates all possible pixel lo-

cations that can be reached by the m number of of warps
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Figure 1. Overview of the symbolic error matrix. See Sec. 5.1 for more details.

during pre-computation. An example warped template is

shown in Fig. 1 as the black box, where each pixel from the

template is transformed to a subpixel location.

For each sample warp, we first rasterize the warped tem-

plate into an n-vector, t, and the pixels in the bounding box

into an l-vector, u. An equivalent representation of the vec-

tor t is shown in Fig. 1 as a multiplication of a Warp Coef-

ficient Matrix, WCM(∆p), and the vector u. This matrix

is a function of the warp update, where each row has 4 non-

zero values representing bilinear interpolation coefficients.

For m number of sample warps, we obtain m number of

WCM(∆p), which can be stacked up to create a tensor of

size n ×m × l (shown as the blue cuboid). We also define

a WCM(0) at the identity warp, whereby each row has 1

non-zero value with a coefficient of 1.0, representing a pixel

location in the template. Stacking m number of WCM(0)
gives another tensor of size n×m× l (shown as the green

cuboid). Now, if we subtract the tensor of WCM(0) from

the tensor of WCM(∆p), the resultant tensor, Y consists

of coefficient values for pixel intensities. Most importantly,

Y is now independent of pixel intensities.

5.2. Symbolic Terms

Referring to (11), two terms have to be computed to learn

the LP, which are (1) PET , which is a linear combination

of pixel intensities, and (2) EET , which is a quadratic com-

bination of pixel intensities. In order to create a symbolic

linear predictor, we replace the error matrix E with the ten-

sor Y from Sec. 5.1. We first define the following index

variables:

• a ∈ 1, · · · , 6→ index for the parameter update ∆p,

• b ∈ 1, · · · , n → index for the pixel location in the n-

vector t (the rasterized template),

• c ∈ 1, · · · ,m→ index for the sample warps, and

• d ∈ 1, · · · , l→ index for the l-vector u (the rasterized

bounding box).

With these indices, we can then compute a symbolic lin-

ear tensor L ∈ R
6×n×l as

La,b,d =
m
∑

c=1

Pa,cYb,c,d. (19)

For the quadratic term, EET , we can compute a sym-

bolic quadratic tensor, Q ∈ R
n×n×q , where q ≈ 1

2 l
2 as the

result of EET is symmetric. The tensor Q is computed as

Qb1,b2,e(d1,d2) =

m
∑

c=1

Yb1,c,d1
Yb2,c,d2

, (20)

where e = 1, 2, · · · q, noting that every index in e corre-

sponds to a unique combination of the indices d1 and d2.

Fig. 2 provides an illustration of the symbolic terms.

5.3. Linear Predictor from Symbolic Terms

Once the tensors L and Q are learned, they can be used

to compute the Linear Predictor for different templates. The

linear term, PET , can be computed by left-multiplying the

l-vector t (see Sec. 5.1) with the tensor L:

(PET )a,b =
l

∑

d=1

La,b,dtd. (21)

On the other hand, the quadratic term, EET , can be com-

puted as

(EET )b1,b2 =
l

∑

d1=1

l
∑

d2=1

Qb1,b2,etd1
td2

. (22)
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Figure 2. An illustration of how (a) symbolic linear and (b) sym-

bolic quadratic terms are obtained from the symbolic tensor Y.

We note that our approach is complementary with the DCT

method described in Sec. 4.2. For the linear term, this is

done by right multiplying PET with the mapping Wr, re-

sulting in PETWT
r . For the quadratic term, a multiplica-

tion on both sides with Wr results in WrEETWT
r .

5.4. Prediction of Alignment Quality

As there can be hundreds of keypoints of interest in an

image, it is useful to measure the quality of the warp updates

estimated by a LP. We propose an approach to estimate the

expected squared error of a LP. From (10), the LP A at-

tempts to minimize the following error function through

least-squares:

minA||AE−P||22. (23)

The expansion of (23) can be expressed as

minA(AE−P)(AE−P)T . (24)

As we are only interested in the expected squared error of

the 6 parameters in the affine warp, we are only concerned

with the diagonal elements of the result in (24). This implies

that we can express the expected squared error as

ē2 = Tr[(AE−P)(AE−P)T ], (25)

where Tr(.) is the trace operator. After expanding (25) and

performing some simple manipulations, we can express the

expected squared error as

ē2 = Tr(PPT )− Tr(A(PET )). (26)

From (26), the first term, Tr(PPT ) does not depend on

pixel intensities and can be computed in a once-off, offline

step. The second term, Tr(A(PET )), has a computational

complexity which grows with the number of pixels used, n,

but is independent of the number of sample warps, m. As

m ≫ n, this term is computationally cheap. To find out

how (26) is derived, we refer the reader to the supplemen-

tary material.

Figure 3. (a) Image with detected FAST keypoints used for syn-

thetic experiment. (b) Example warped images centered around a

keypoint of interest.

6. Experimental Results

We evaluate our approach against the IC-LK and ESM

methods in Sec. 3, and the Linear Predictors in Sec. 4.

Tracking by detection methods such as [9, 22] are not eval-

uated as they are usually used for tracking a single, large

patch and they do not account for affine warp models.

Experimental Settings All methods were implemented

in C++ in order to enable a fair comparison. We have also

implemented a CUDA version of our approach, whereby the

pre-computation step is done using a GPU (NVIDIA 1080).

Notation Throughout this section, “jd” represents the

method of Jurie and Dhome, “dct-r” denotes the DCT

method with r number of retained coefficients, “hp” de-

notes the re-formulation approach, and “hpdct-r” denotes

the hybrid approach. Further, “sym” denotes our proposed

approach, and “symdct-r” represents a combination of our

approach with the DCT approach.

6.1. Synthetic Experiment

In this experiment, the image in Fig. 3(a) is used. Firstly,

FAST corners are extracted, and a LP is learned for each

corner, where each learning method is trained with the same

parameters. Then, 100 test warps are applied to each corner

to generate synthetically warped images (see Fig. 3(b)). For

each test warp, the estimated warp update for each method

under evaluation is recorded. 10 iterations are used for the

energy-based methods. For the learning-based methods, ex-

cept specified otherwise, we train the LPs to handle trans-

lations between -1.0 to 1.0, whereas other parameters are

trained to vary between -0.2 and 0.2. The RMSE of the

warp updates over all corners, as well as the timing for each

method is recorded.

We first compare our proposed approach with other LPs

under different training settings:

• Number of sample warps: The number of sample

warps used for training is increased, with the patch size

used fixed at 9× 9 pixels.
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dct-49
dct-25 hphpdct-49

hpdct-25
jd sym(CPU)

sym+dct-25 (CPU)

(a) Increasing no. of sample warps (x1000) 

(b) Increasing template width (pixels)

(c) Increasing translation variation (pixels)

Figure 4. Comparison of Symbolic Linear Predictor with other

Linear Predictors with different training settings. (a) Increasing

the number of sample warps. (b) Increasing the number of pixels

used. (c) Increasing the maximum parameter variation.

• Number of pixels used: The patch size is increased,

with the number of sample warps fixed at m = 5000.

• Maximum parameter variation: Using m = 5000
sample warps and a 9×9 patch, we increase the amount

of variation in the translation parameters for training.

The results are shown in Fig. 4, where we show dis-

play RMSE with two plots as methods based on the re-

formulation approach exhibit a much larger error compared

to the other methods. From Fig. 4(a), we see that the learn-

ing time for our method increases very slowly as the number

of sample warps increases. In contrast, the learning time for

all other methods increases quickly with the number of sam-

ple warps. As the number of sample warps increases, the

accuracy of all methods improves until around 5000 sample

warps, and do not improve by much subsequently.

From Fig. 4(b), the learning time for our method is again

much lower compared to other methods when larger patch

sizes are used. In contrast to Fig. 4(a), learning time in-

creases more quickly, and starts becoming expensive at a

size of 13 × 13 pixels. This is because the number of pos-

sible pixel locations increases, resulting in an increase in

the number of non-zero coefficients in the symbolic terms.

With a 13×13 patch, the “hp” method is only slightly more

expensive than our method. This is unsurprising as the tech-

niques proposed by Holzer et al. [10] reduces training time

by reducing the dimensionality of the matrix to be inverted,

which depends on the number of pixels used. Similar to Fig.

Method Training Refinement RMSE

time (ms) time (ms)

ESM 0.10 3.26 0.12

IC-LK 0.19 0.99 0.16

Sym (CPU) 3.75
0.002 0.04

Sym (GPU) 0.41
Table 1. Comparison with energy-based methods.

Figure 5. Thumbnails of images used for real data experiment.

4(a), the accuracy of all methods improve with an increas-

ing patch size. Increasing the maximum parameter variation

results in a similar pattern to Fig. 4(b) in terms of timing

for the same reasons above. The accuracy of all methods

degrades as the amount of parameter variation increases.

Note that the “jd” RMSE plot overlaps with the RMSE

plot of our approach, whereas the “symdct-25” RMSE plot

overlaps with the “dct-25” RMSE plot. This is because the

LP obtained by the “sym” method is identical to the LP of

the “jd” method, and the same applies to the LPs obtained

by the “symdct-25” and the “dct-25”. The only difference

is that our approach produces a much shorter learning time.

Finally, using a patch size of 9× 9 pixels and m = 5000
sample warps, we compare our proposed approach with the

IC-LK and ESM methods. The results are shown in Table 1,

where we also show timing results for our approach where

the learning step is done on a GPU. As expected, energy-

based methods exhibit faster training time on a CPU but

they also suffer from a longer refinement time as well as

slightly lower accuracy compared to our approach. How-

ever, note that on a GPU, the learning step is almost as effi-

cient as energy-based methods for our approach.

6.2. Still Image Pairs Experiment

In this experiment, we perform an evaluation using the

“Hannover” dataset [5] which provides accurate ground

truth homographies for different scenes shown in Fig. 5.

Similar to the previous experiment, we first extract FAST

corners [14] for each image. ORB descriptors [15] are then

computed for every corner. Using image pairs between suc-

cessive images in each scene, we obtain inlier point corre-

spondences by first performing feature matching, followed

by a verification step using the ground-truth homography.

For each inlier point correspondence, the ground-truth

affine warp is estimated from the homography using the

method of [2]. All LPs are then trained using m = 5000
sample warps. Further, we train the translational parameters

to vary from -1.0 to 1.0, whereas the remaining parameters

vary from -0.3 to 0.3.
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Sequence Pair
RMSE

IC-LK ESM hp hpdct-25 hpdct-49 dct-25 dct-49 jd sym symdct-25

posters
1,2 0.2433 0.1946 0.3164 0.3142 0.2433 0.1409 0.1677 0.1677 0.1677 0.1409

2,3 0.2519 0.2151 0.3748 0.3731 0.3748 0.2375 0.2747 0.2747 0.2747 0.2375

3,4 0.4459 0.4185 0.5871 0.6343 0.5871 0.3323 0.3411 0.3411 0.3411 0.3323

4,5 0.3249 0.2898 0.4090 0.4365 0.4090 0.2740 0.2857 0.2857 0.2857 0.2740

5,6 0.3784 0.2676 0.3073 0.3185 0.3073 0.2112 0.2263 0.2263 0.2263 0.2112

grace
1,2 0.2289 0.2178 0.2809 0.2980 0.2809 0.2066 0.2067 0.2067 0.2067 0.2066

2,3 0.1751 0.1590 0.2324 0.2468 0.2324 1604 0.1731 0.1731 0.1731 0.1604

3,4 0.1713 0.1612 0.2670 0.2908 0.2670 0.1584 0.1654 0.1654 0.1654 0.1584

4,5 0.3013 0.2723 0.3575 0.3780 0.3575 0.2612 0.2523 0.2523 0.2523 0.2612

5,6 0.2546 0.2524 0.2882 0.3177 0.2882 0.2074 0.2168 0.2168 0.2168 0.2074

underground
1,2 0.2945 0.2817 0.4951 0.5014 0.4951 0.2204 0.2457 0.2457 0.2457 0.2204

2,3 0.3279 0.3105 0.5394 0.5499 0.5394 0.2040 0.2097 0.2097 0.2097 0.2040

3,4 0.3269 0.3144 0.5716 0.5846 0.5716 0.4444 0.4741 0.4741 0.4741 0.4444

4,5 0.3500 0.3400 0.6497 0.6723 0.6497 0.3542 0.3899 0.3899 0.3899 0.3542

colors
1,2 6.3163 1.3642 0.4547 0.4920 0.4547 0.4072 0.4930 0.4930 0.4930 0.4072

2,3 1.7302 0.7730 0.3936 0.3983 0.3936 0.3701 0.4959 0.4959 0.4959 0.3701

4,5 1.75 0.9822 0.6739 0.7312 0.6739 1.0135 1.0944 1.0944 1.0944 1.0135

5,6 1.11 0.7538 0.7124 0.6952 0.7124 0.8512 0.8067 0.8067 0.8067 0.8512

there 1,2 0.3477 0.3117 0.4117 0.4318 0.4318 0.3999 0.4063 0.4063 0.4063 0.3999
Table 2. RMSE of warp estimates on the “Hannover” data set using image pairs in each sequence provided in the data set.

Figure 6. Evaluating the accuracy of the error prediction scheme.(a) The steps taken to estimate ground-truth homographies and affine

warps. (b) Plots showing how the predicted error varies with test error.

The results from this experiment are shown in Table 2,

where we only show results for image pairs with more than

50 point correspondences. For the energy-based methods,

we find that ESM generally exhibits lower errors compared

to IC-LK. Among all the methods, the results indicate that

“symdct-25” and “dct-25” method are in general the best

performing method, obtaining slightly lower error values

compared to “sym” and “jd”. This may be because some

DCT coefficients corresponding to high frequency noise

have been discarded. The sequences with the lowest errors

are the “posters” and “grace” sequence. The latter half of

the “underground” sequence, as well as the image pair in

the “there” sequence, exhibits medium errors whereas the

“color” sequence exhibits large errors. In the “color” se-

quence, the best performing method is “hpdct-25”. Never-

theless, the error values indicate that all methods in discus-

sion do not provide satisfactory results on this sequence.

6.3. Error Prediction Experiment

In this experiment, we evaluate the usage of a Linear

Predictor to predict its expected error as described in Sec.

5.4. We collect a dataset of 5 planar targets shown in Fig.

6(b), with each planar target consisting of 11 view points

encapsulating the target. This allows us to compute an av-

erage test error for each keypoint which can then be com-

pared against the predicted average error. After extracting a

bounding box surrounding the planar target in each image, a

homography is computed between the first and every other

image in the data set. This homography is then refined us-

ing dense image alignment on all the pixels in the bounding

box. These steps are illustrated in Fig. 6(a).

We estimate the ground-truth affine warps in a manner

similar to Sec. 6.2. To compute the average test error, cor-

ner points lying within the bounding box of the first image

in the data set are computed. These points are projected
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