
Multi-Oriented Scene Text Detection via

Corner Localization and Region Segmentation

Pengyuan Lyu1,2, Cong Yao2, Wenhao Wu2, Shuicheng Yan3, Xiang Bai1 ∗

1Huazhong University of Science and Technology
2Megvii (Face++) Technology Inc. 3National University of Singapore

{lvpyuan, yaocong2010}@gmail.com, wwh@megvii.com, eleyans@nus.edu.sg, xbai@hust.edu.cn

Abstract

Previous deep learning based state-of-the-art scene text

detection methods can be roughly classified into two cate-

gories. The first category treats scene text as a type of gen-

eral objects and follows general object detection paradigm

to localize scene text by regressing the text box locations,

but troubled by the arbitrary-orientation and large aspect

ratios of scene text. The second one segments text regions

directly, but mostly needs complex post processing. In this

paper, we present a method that combines the ideas of the

two types of methods while avoiding their shortcomings.

We propose to detect scene text by localizing corner points

of text bounding boxes and segmenting text regions in rel-

ative positions. In inference stage, candidate boxes are

generated by sampling and grouping corner points, which

are further scored by segmentation maps and suppressed

by NMS. Compared with previous methods, our method

can handle long oriented text naturally and doesn’t need

complex post processing. The experiments on ICDAR2013,

ICDAR2015, MSRA-TD500, MLT and COCO-Text demon-

strate that the proposed algorithm achieves better or com-

parable results in both accuracy and efficiency. Based on

VGG16, it achieves an F-measure of 84.3% on ICDAR2015

and 81.5% on MSRA-TD500.

1. Introduction

Recently, extracting textual information from natural

scene images has become increasingly popular, due to the

growing demands of real-world applications (e.g., product

search [4], image retrieval [20], and autonomous driving).

Scene text detection, which aims at locating text in natu-

ral images, plays an important role in various text reading

systems [35, 11, 50, 6, 21, 52, 5, 42, 41, 14, 8, 26].

Scene text detection is challenging due to both external

and internal factors. The external factors come from the en-

∗Corresponding author

Figure 1. The images in top row and bottom row are the predicted

corner points and position-sensitive maps in top-left, top-right,

bottom-right, bottom-left order, respectively.

vironment, such as noise, blur and occlusion, which are also

major problems disturbing general object detection. The

internal factors are caused by properties and variations of

scene text. Compared with general object detection, scene

text detection is more complicated because: 1) Scene text

may exist in natural images with arbitrary orientation, so

the bounding boxes can also be rotated rectangles or quad-

rangles; 2) The aspect ratios of bounding boxes of scene text

vary significantly; 3) Since scene text can be in the form of

characters, words, or text lines, algorithms might be con-

fused when locating the boundaries.

In the past few years, scene text detection has been

widely studied [58, 11, 6, 53, 21, 46, 56, 40, 45] and has

achieved obvious progresses recently, with the rapid devel-

opment of general object detection and semantic segmenta-

tion. Based on general object detection and semantic seg-

mentation models, several well-designed modifications are

made to detect text more accurately. Those scene text detec-

tors can be split into two branches. The first branch is based

on general object detectors (SSD [31], YOLO [38] and

DenseBox [19]), such as TextBoxes [28], FCRN [15] and

EAST [57] etc., which predict candidate bounding boxes

directly. The second branch is based on semantic segmen-

tation, such as [56] and [54], which generate segmentation

maps and produce the final text boxes by post-processing.

Different from previous methods, in this paper we com-

bine the ideas of object detection and semantic segmenta-

tion and apply them in an alternative way. Our motivations

mainly come from two observations: 1) a rectangle can be

determined by corner points, regardless of the size, aspect

ratio or orientation of the rectangle; 2) region segmenta-

7553



...

Feature 
Extraction

Corner
Detection

Position Sensitive 
Segmentation

Sampling&
Grouping

Scoring

NMS
Average

0.75

Figure 2. Overview of our method. Given an image, the network outputs corner points and segmentation maps by corner detection and

position-sensitive segmentation. Then candidate boxes are generated by sampling and grouping corner points. Finally, those candidate

boxes are scored by segmentation maps and suppressed by NMS.

tion maps can provide effective location information of text.

Thus, we first detect the corner points (top-left, top-right,

bottom-right, bottom-left, as shown in Fig. 1) of text region

rather than text boxes directly. Besides, we predict position-

sensitive segmentation maps (shown in Fig. 1) instead of a

text/non-text map as in [56] and [54]. Finally, we generate

candidate bounding boxes by sampling and grouping the de-

tected corner points and then eliminate unreasonable boxes

by segmentation information. The pipeline of our proposed

method is depicted in Fig. 2.

The key advantages of the proposed method are as fol-

lows: 1) Since we detect scene text by sampling and

grouping corner points, our approach can naturally han-

dle arbitrary-oriented text; 2) As we detect corner points

rather than text bounding boxes, our method can sponta-

neously avoid the problem of large variation in aspect ra-

tio; 3) With position-sensitive segmentation, it can segment

text instances well, no matter the instances are characters,

words, or text lines; 4) In our method, the boundaries of

candidate boxes are determined by corner points. Com-

pared with regressing text bounding box from anchors (

[28, 33]) or from text regions ([57, 17]), the yielded bound-

ing boxes are more accurate, particularly for long text.

We validate the effectiveness of our method on horizon-

tal, oriented, long and oriented text as well as multi-lingual

text from public benchmarks. The results show the ad-

vantages of the proposed algorithm in accuracy and speed.

Specifically, the F-Measures of our method on ICDAR2015

[23], MSRA-TD500 [53] and MLT [2] are 84.3%, 81.5%
and 72.4% respectively, which outperform previous state-

of-the-art methods significantly. Besides, our method is also

competitive in efficiency. It can process more than 10.4 im-

ages (512x512 in size) per second.

The contributions of this paper are four-fold: (1) We pro-

pose a new scene text detector that combines the ideas of ob-

ject detection and segmentation, which can be trained and

evaluated end-to-end. (2) Based on position-sensitive ROI

pooling [10], we propose a rotated position-sensitive ROI

average pooling layer that can handle arbitrary-oriented

proposals. (3) Our method can simultaneously handle the

challenges (such as rotation, varying aspect ratios, very

close instances) in multi-oriented scene text, which are suf-

fered by previous methods. (4) Our method achieves better

or competitive results in both accuracy and efficiency.

2. Related Work

2.1. Regression Based Text Detection

Regression based text detection has become the main-

stream of scene text detection in the past two years. Based

on general object detectors, several text detection methods

were proposed and achieved substantial progress. Originat-

ing from SSD [31], TextBoxes [28] use “long” default boxes

and “long” convolutional filters to cope with the extreme as-

pect ratios. Similarly, in [33] Ma et al. utilize the architec-

ture of Faster-RCNN [39] and add rotated anchors in RPN

to detect arbitrary-oriented scene text. SegLink [40] pre-

dicts text segments and the linkage of them in a SSD style

network and links the segments to text boxes, in order to

handle long oriented text in natural scene. Based on Dense-

Box [19], EAST [57] regresses text boxes directly.

Our method is also adapted from a general object detec-

tor DSSD [12]. But unlike the above methods that regress

text boxes or segments directly, we propose to localize the

positions of corner points, and then generate text boxes by

sampling and grouping the detected corners.

2.2. Segmentation Based Text Detection

Segmentation based text detection is another direction of

text detection. Inspired by FCN [32], some methods are

proposed to detect scene text by using segmentation maps.

In [56], Zhang et al. first attempt to extract text blocks from

a segmentation map by a FCN. Then they detect characters

in those text blocks with MSER [35] and group the char-

acters to words or text lines by some priori rules. In [54],

Yao et al. use a FCN to predict three types of maps (text re-

gions, characters, and linking orientations) of the input im-

ages. Then some post-processings are conducted to obtain

7554



text bounding boxes with the segmentation maps.

Different from the previous segmentation based text

detection methods, which usually need complex post-

processing, our method is simpler and clearer. In infer-

ence stage, the position-sensitive segmentation maps are

used to score the candidate boxes by our proposed Rotated

Position-Sensitive Average ROI Pooling layer.

2.3. Corner Point Based General Object Detection

Corner point based general object detection is a new

stream of general object detection methods. In DeNet [48],

Tychsen-Smith et al. propose a corner detect layer and a

sparse sample layer to replace RPN in a Faster-RCNN style

two-stage model. In [51], Wang et al. propose PLN (Point

Linking Network) which regresses the corner/center points

of bounding-box and their links using a fully convolutional

network. Then the bounding boxes of objects are formed

using the corner/center points and their links.

Our method is inspired by those corner point based ob-

ject detection methods, but there are key differences. First,

the corner detector of our method is different. Second, we

use segmentation map to score candidate boxes. Third, it

can produce arbitrary-oriented boxes for objects (text).

2.4. Position­Sensitive Segmentation

Recently, instance-aware semantic segmentation meth-

ods are proposed with position-sensitive maps. In [9], Dai et

al. first introduce relative position to segmentation and pro-

pose InstanceFCN for instance segment proposal. In FCIS

[27], with the assistance of position-sensitive inside/outside

score maps, Li et al. propose an end-to-end network for

instance-aware semantic segmentation.

We also adopt position-sensitive segmentation maps to

predict text regions. Compared with the above-mentioned

methods, there are three key differences: 1) We optimize the

network with position-sensitive ground truth directly (de-

tailed in Sec 4.1.1); 2) Our position-sensitive maps can be

used to predict text regions and score proposals simultane-

ously (detailed in Sec 4.2.2), different from FCIS which

uses two types of position-sensitive maps (inside and out-

side); 3) Our proposed Rotated Position-Sensitive ROI Av-

erage Pooling can handle arbitrary-oriented proposals.

3. Network

The network of our method is a fully convolutional net-

work that plays the roles of feature extraction, corner detec-

tion and position-sensitive segmentation. The network ar-

chitecture is shown in Fig. 3. Given an image, the network

produces candidate corner points and segmentation maps.

3.1. Feature Extraction

The backbone of our model is adapted from a pre-trained

VGG16 [44] network and designed with the following con-

siderations: 1) the size of scene text varies hugely, so the

backbone must has enough capacity to handle this problem

well; 2) backgrounds in natural scenes are complex, so the

features should better contain more context. Inspired by the

good performance achieved on those problem by FPN [29]

and DSSD [12], we adopt the backbone in FPN/DSSD ar-

chitecture to extract features.

In detail, we convert the fc6 and fc7 in the VGG16 to

convolutional layers and name them conv6 and conv7 re-

spectively. Then several extra convolutional layers (conv8,

conv9, conv10, conv11) are stacked above conv7 to en-

large the receptive fields of extracted features. After that,

a few deconvolution modules proposed in DSSD [12] are

used in a top-down pathway (Fig. 3). Particularly, to de-

tect text with different sizes well, we cascade deconvolution

modules with 256 channels from conv11 to conv3 (the fea-

tures from conv10, conv9, conv8, conv7, conv4, conv3 are

reused), and 6 deconvolution modules are built in total. In-

cluding the features of conv11, we name those output fea-

tures F3, F4, F7, F8, F9, F10 and F11 for convenience. In

the end, the feature extracted by conv11 and deconvolution

modules which have richer feature representations are used

to detect corner points and predict position-sensitive maps.

3.2. Corner Detection

For a given rotated rectangular bounding box

R = (x, y, w, h, θ), there are 4 corner points

(top-left, top-right, bottom-right, bottom-left) and

can be represented as two-dimensional coordinates

{(x1, y1), (x2, y2), (x3, y3), (x4, y4)} in a clockwise

direction. To expediently detect corner points, here we

redefine and represent a corner point by a horizontal square

C = (xc, yc, ss, ss), where xc, yc are the coordinate of a

corner point (such as x1, y1 for top-left point) as well as the

center of the horizontal square. ss is the length short side

of the rotated rectangular bounding box R.

Following SSD and DSSD, we detect corner points with

default boxes. Different from the manner in SSD or DSSD

where each default box outputs the classification scores and

offsets of the corresponding candidate box, corner point de-

tection is more complex because there might be more than

one corner points in the same location (such as a location

can be the bottom-left corner and top-right corner of two

boxes simultaneously). So in our case, a default box should

output classification scores and offsets for 4 candidate boxes

corresponding to the 4 types of corner points.

We adapt the prediction module proposed in [12] to pre-

dict scores and offsets in two branches in a convolutional

manner. In order to reduce the computational complexity,

the filters of all convolutions are set to 256. For an m × n

feature map with k default boxes in each cell, the “score”

branch and “offset” branch output 2 scores and 4 offsets re-

spectively for each type of corner point of each default box.

7555



F11 F10 F9 F8 F7 F4 F3

Backbone

Corner Point Detection

�L�)

score branch

offset branch

�������
�
 �u�u�u�u �T�N�K�Z

�������
�
 �u�u�u�u �T�N�K�Z

x 16
x 8

x 4
x 2

oÙoÌ oÙoË oÙoÊ oÙoÇ oÙoÆ

x 2 x 2

�J�J�u�u�u�K�Z

Position Sensitive Segmentation

x 2

�9�*�*�������/�D�\�H�U

�'�H�F�R�G�H���/�D�\�H�U

�(�[�W�U�D���/�D�\�H�U

�'�D�W�D���)�O�R�Z

�'�H�F�R�Q�Y���0�R�G�X�O�H

�(�O�W�Z�L�V�H���6�X�P

Figure 3. Network Architecture. The network contains three parts: backbone, conner point detector and position-sensitive segmentation

predictor. The backbone is adapted from DSSD [12]. Conner point detectors are built on multiple feature layers (blocks in pink). position-

sensitive segmentation predictor shares some features (pink blocks) with corner point detectors.

Here, 2 for “score” branch means whether a corner point

exists in this position. In total, the output channels of the

”score” branch and the “offset” branch are k × q × 2 and

k × q × 4, where q means the type of corner points. By

default, q is equal to 4.

In the training stage, we follow the matching strategy

of default boxes and ground truth ones in SSD. To detect

scene text with different sizes, we use default boxes of mul-

tiple sizes on multiple layer features. The scales of all de-

fault boxes are listed in Table 1. The aspect ratios of default

boxes are set to 1.

3.3. Position­Sensitive Segmentation

In the previous segmentation based text detection meth-

ods [56, 54], a segmentation map is generated to repre-

sent the probability of each pixel belonging to text regions.

However those text regions in score map always can not be

separated from each other, as a result of the overlapping of

text regions and inaccurate predictions of text pixels. To get

the text bounding boxes from the segmentation map, com-

plex post-processing are conducted in [56, 54].

Inspired by InstanceFCN [9], we use position-sensitive

segmentation to generate text segmentation maps. Com-

pared with previous text segmentation methods, relative po-

sitions are generated. In detail, for a text bounding box R,

a g × g regular grid is used to divide the text bounding box

into multiple bins (i.e., for a 2 × 2 grid, a text region can

be split into 4 bins, that is top-left, top-right, bottom-right,

bottom-left). For each bin, a segmentation map is used to

determine whether the pixels in this map belong to this bin.

We build position-sensitive segmentation with corner

point detection in a unified network. We reuse the fea-

tures of F3, F4, F7, F8, F9 and build some convolutional

blocks on them follow the residual block architecture of

corner point detection branch (Shown in Fig. 3). All out-

puts of those blocks are resized to the scale of F3 by bilin-

ear upsampling with the scale factors set to 1, 2, 4, 8, 16.

Then all those outputs with the same scale are added to-

gether to generate richer features. We further enlarge the

resolution of fused features by two continuous Conv1x1-

BN-ReLU-Deconv2x2 blocks and set the kernels of the last

deconvolution layer to g×g. So, the final position-sensitive

segmentation maps have g × g channels and the same size

as the input images. In this work, we set g to 2 in default.

4. Training and Inference

4.1. Training

4.1.1 Label Generation

For an input training sample, we first convert each text box

in ground truth into a rectangle that covers the text box re-

gion with minimal area and then determine the relative po-

sition of 4 corner points.

We determine the relative position of a rotated rectan-

gle by the following rules: 1) the x-coordinates of top-

left and bottom-left corner points must less than the x-

coordinates of top-right and bottom-right corner points; 2)

the y-coordinates of top-left and top-right corner points

must less than the y-coordinates of bottom-left and bottom-

right corner points respectively. After that, the original

ground truth can be represented as a rotated rectangle with

relative position of corner points. For convenience, we term

the rotated rectangle R = {Pi|i ∈ {1, 2, 3, 4}}, where

Pi = (xi, yi) are the corner points of the rotated rectangle

in top-left, top-right, bottom-right, bottom-left order.

We generate the label of corner point detection and

7556
















