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Abstract

Unsupervised image translation, which aims in translat-

ing two independent sets of images, is challenging in discov-

ering the correct correspondences without paired data. Ex-

isting works build upon Generative Adversarial Networks

(GANs) such that the distribution of the translated im-

ages are indistinguishable from the distribution of the tar-

get set. However, such set-level constraints cannot learn

the instance-level correspondences (e.g. aligned semantic

parts in object transfiguration task). This limitation often

results in false positives (e.g. geometric or semantic ar-

tifacts), and further leads to mode collapse problem. To

address the above issues, we propose a novel framework

for instance-level image translation by Deep Attention GAN

(DA-GAN). Such a design enables DA-GAN to decompose

the task of translating samples from two sets into translat-

ing instances in a highly-structured latent space. Specif-

ically, we jointly learn a deep attention encoder, and the

instance-level correspondences could be consequently dis-

covered through attending on the learned instances. There-

fore, the constraints could be exploited on both set-level and

instance-level. Comparisons against several state-of-the-

arts demonstrate the superiority of our approach, and the

broad application capability, e.g, pose morphing, data aug-

mentation, etc., pushes the margin of domain translation

problem. 1

1. Introduction

Can machines possess human ability to relate different

image domains and translate them? This question can be

formulated as image translation problem. In other words,

learning a mapping function, by finding some underlying

correspondences (e.g. similar semantics), from one image

domain to the other. Years of research have produced pow-

erful translation systems in supervised setting, where ex-

1This work was done while Shuang’s internship in Microsoft Research

Figure 1: (a) text-to-image generation. (b) object configu-

ration. We can observe that the absence of instance-level

correspondences results in both semantic artifacts (labeled

by red boxes) exist in StackGAN and geometry artifacts ex-

ist in CycleGAN. Our approach successfully produces the

correct correspondences (labeled by yellow boxes) because

of the proposed instance-level translating. Details can be

found in Sec. 1

ample pairs are available, e.g. [14]. However, obtaining

paired training data is difficult and expensive. Therefore, re-

searchers turned to develop unsupervised learning approach

which only relies on unpaired data.

Following the principle of translation, i.e. remaining the

expected identity from source domain (e.g., semantics in

text-to-image, human-ID in face-to-animation), while gen-

erating samples that match the distribution of target domain,

existing works typically build upon Generative Adversar-

ial Networks (GANs). However, they are trained only on a

holistic characterization of the data distribution, while lacks

an inference mechanism to reason about data at abstract

level. The implicit training process and weak controllability

prevents them from finding meaningful instance-level cor-

respondences, and the identity is thus hard to be governed.

By ’instance-level correspondences’, we refer to high-level

content involving identifiable objects that shared by a set

of samples. These identifiable objects could be adaptively
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task driven. For example, in Fig 1 (a), the words in the

description corresponds to according parts and attributes of

the bird image. Therefore, false positives often occur be-

cause of the instance-level correspondences missing in ex-

isting works. For example, in object transfiguration, the re-

sults just showing changes of color and texture, while fail

in geometry changes (Fig. 1). In text-to-image synthesis,

fine-grained details are often missing (Fig. 1).

Driven by this important issue, a question arises: Can

we seek an approach which is capable of finding meaning-

ful correspondences from both set-level and instance-level

under unsupervised setting? To resolve this issue, in this

paper, we introduce a dedicated unsupervised domain trans-

lation approach builds upon Generative Adversarial Net-

works - DA-GAN. It provides the first solution by decom-

posing the task of translating samples from two indepen-

dent sets into translating instances in a highly-structured

latent space. Specifically, we jointly learn a Deep Atten-

tion Encoder (DAE) to integrate the attention mechanism

[7] into the learning of the mapping function F . The learn-

ing consists of two closely-related steps: 1) DAE first de-

composes the original data into instances, which makes it

possible to find correct semantic alignments (Fig.1(a)) and

exploit geometry changes (Fig.1(b)); 2) once the aligned

instances have been inferred, the instance-level constraints

are employed (Eq.5,6), in which the identity can be ex-

clusively governed but not interweaves with other factors

from the target domain (e.g. different styles in face-to-

animation). As a result, the instance-level constraints en-

able the mapping function to find the meaningful semantic

corresponding, and therefore producing true positives and

visually appealing results. Compared with existing works

which uses foreground masks LRGAN [41] or normal maps

SSGAN [39] to retain the identity in a specific task, the

proposed DA-GAN can automatically and adaptively learn

task-driven identity representations by attention mechanism

without human-involvement. Our main contributions can be

summarized into three-fold:

• We decompose the task to instance-level image trans-

lation such that the controllability is much enhanced,

and the could be exploited on both instance-level and

set-level.

• To the best of our knowledge, we are the first that inte-

grate the attention mechanism into Generative Adver-

sarial Networks.

• We introduce a novel framework DA-GAN, which pro-

duces visually appealing results and is applicable in a

large variety of tasks.

2. Related Work

Generative Adversarial Networks

Since the Generative Adversarial Networks (GANs) was

proposed by Goodfellow et al., [10] researchers have stud-

ied it vigorously. Several techniques have been proposed

to stabilize the training techniques [25, 22, 28, 1, 44] and

generate compelling results. Built upon these generative

models, several methods were developed to generate images

based on GAN. Most methods utilized conditioning vari-

ables such as attributes or class labels [40, 37, 5, 24, 11].

There are also works conditioned on images to generate

images, e.g. photo editing [4, 13], and super-resolution

[19, 33]. Other approaches used conditional features from

a completely different domain for image generation. Reed

et al. [26] used encoded text description of images as the

conditional information to generating 64 × 64 images that

match the description. Their follow-up work [26] can pro-

duce 128 × 128 images by utilizing additional annotations

on object part locations. In StackGAN [43], two GANs in

different stages are adopted to generate high resolution im-

ages. Comparing with StackGAN, the proposed DA-GAN

can generated 256 × 256 images directly. More impor-

tantly, we trained the network by unpaired data, and achieve

visually appealing results.

ImagetoImage Translation

’pix2pix’[14] of Isola et al. uses a conditional GAN [10]

to learn a mapping from input to output images. Similar

ideas have been applied to various tasks such as generat-

ing photographs from sketches [30] or from attribute and

semantic layouts [16]. Recently, [8] proposed the domain

transformation network (DTN) and achieved promising re-

sults on translating small resolution face and digit images.

CoGAN [21] and cross modal scene networks [2] use a

weight-sharing strategy to learn a common representation

across domains. Another line of concurrent work [3, 31, 34]

encourages the input and output to share certain content fea-

tures even though they may differ in style. They also use ad-

versarial networks, with additional terms to enforce the out-

put to be close to the input in a predefined metric space, such

as class label space, image pixel space, and image feature

space. In CycleGAN [45], a cycle consistency loss is pro-

posed to enforce one-to-one mapping. We note that several

contemporary works [42, 17] are all introduced the cycle-

consistency constraint for the unsupervised image transla-

tion. Neural Style Transfer [9, 15, 36] is another way to

perform image-to-image translation, which synthesizes an

image by combining the content of one image with the style

of another image based on pre-trained deep features. Differ-

ent with style transfer, domain translation aims in learning

the mapping between two image collections, rather than be-

tween two specific images.
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Figure 2: A pose morphing example for illustration the pipeline of DA-GAN. Given two images of birds from source domain

S and target domain T , the goal of pose morphing is to translate the pose of source bird s into the pose of target one t, while

still remain the identity of s. The feed-ward process is shown in (a), where two input images are fed into DAE which projects

them into a latent space (labeled by dashed box). Then G takes these structured representations (DAE(s) and DAE(t)) from

the latent space to generated the translated samples, i.e.s′ = G(DAE(s)), t′ = G(DAE(t)). The details of the proposed

DAE (labeled by orange block) is shown in (b). Given an image X , a localization function floc first predicts N attention

regions’ coordinates from the feature map of X , (i.e. E(X), where E is an encoder, which can be utilized in any form).

Then N attention masks are generated and activated on X to produce N attention regions {Ri}
N
i=1. Finally, each region’s

feature consists the instance-level representations {Insti}
N
i=1. By operating the same way on both S and T , the instance-level

correspondences can consequently be found in the latent space. We exploit constraints on both instance-level and set-level

for optimization, it is illustrated in (c). All of the notations are listed in (d). [Best viewed in color.]

3. Approach

Our aim is to learn a mapping function F that maps

samples from source domain S : {si}
N
i=1 to target domain

T : {ti}
M
i=1, denoted as F : S → T . As illustrated in

Fig. 2, the proposed DA-GAN consists of four modules: a

Deep Attention Encoder (DAE), a Generator(G) and two

discriminators (D1, D2). The mapping is conducted from

both source domain and target domain. The translated sam-

ples sets from source domain and target domain are denoted

as S′ and T ′, respectively. We introduce the DAE in Sec.

3.1. The translation on instance-level and set-level are in-

troduced in Sec. 3.2 and in Sec. 3.3, respectively.

3.1. Deep Attention Encoder

To project samples into the latent space, we integrate at-

tention mechanism to jointly learn an Deep Attention En-

coder DAE. Given a feature map E(X) of an input im-

age X (where E is an encoder that could be utilized in any

form), we first adopt a localization function floc(·) to pre-

dict a set of attention regions’ location, which is given by:

floc(E(X)) = [xi, yi]
N ′

i=1, (1)

where [xi, yi] denotes a region’s center coordinates, N ′ de-

notes the number of regions predicted. Once the location

of an attended region is hypothesized, we generate an atten-

tion mask Mi. Specifically, we denote w and h as half of

the width and half of the height of X . Then we can adopt

the parameterizations of attend region by:

xleft
i = xi − w, xright

i = xi + w,

ytopi = yi − h, ybottomi = yi + h.
(2)

The cropping operation can therefore be achieved by an

element-wise multiplication applied on X , i.e. Ri =
X◦Mi, which produces the attended regions {Ri}

N ′

i=1.

Then instance-level representations of X in the latent space

are defined by:
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{E(Ri)}
N ′

i=1 = {Inst}N
′

i=1, (3)

To allow back-propagation, here we adopt the attention

mask as:

Mi = [σ(x− xleft
i )− σ(x− xright

i )]·

[σ(y − ytopi )− σ(y − ybottomi )],
(4)

where σ(·) = 1/(1+exp−kx) is a sigmoid function. In the-

ory, when k is large enough, σ(·) is approximated as a step

function and Mi will become a two dimensional rectangu-

lar function, then the derivation could be approximated. For

learning these attention regions, we add a geometric regu-

larization EX∼Pdata(X)[d(Y,DAE(X))]. Y is the label of

image X , and d is some similarity metrics in the data space,

In practice, there are many options for the distance measure

d. For instance, a VGG classifier.

3.2. InstanceLevel Image Translation

As the DAE projects s and t into a shared latent space,

we can constrain them to be matched with each other in

this latent space. Therefore, we adopt a consistency loss on

the samples from source domain {si}
N
i=1 and the according

translated samples {s′i}
N
i=1:

Lcst = Es∼Pdata(s) d(DAE(s), DAE(F (s)), (5)

On the other hand, we also consider the samples from

the target domain to further enforce the mapping to be de-

terministic. In theory, if a mapping is bijective (one-to-one

corresponding), the operation from a set to itself form a

symmetric group. The mapping can then be considered as

a permutation operation on itself. We therefore exploit a

symmetry loss to enforce F can map samples from T to

themselves, i.e. ti ≈ F (ti). The loss function is defined as:

Lsym = Et∼Pdata(t) d(DAE(t), DAE(F (t)), (6)

this can also be considered as an auto-encoder type of loss

applied on samples from T , where d is a distance measure.

In theory, there are many options for d. For instance, the Ln

distance, or the distance of learned features by the discrim-

inator or by other networks, such as a VGG classifier.

3.3. SetLevel Image Translation

It is straight-forward to use a discriminator D1 to distin-

guish the translated samples {s′i}
N
i=1 from the real samples

in the target domain {t}Mi=1, and generator is forced to trans-

late samples that is indistinguishable from real samples in

target domain, which is given by:

Ls
GAN = Et∼Pdata(t)[logD1(t)]

+ Et∼Pdata(s)[log(1−D1(F (s)))].
(7)

While there still exists another issue - mode collapse. In

theory, large modes usually have a much higher chance of

attracting the gradient of discriminator, and the generator

is not penalized for missing modes. In practice, all input

samples map to the same output, and the optimization fails

Figure 3: Visualized distribution of 10 classes of birds.

Each color represents a birds class. Black crosses repre-

sents the distribution of the generated samples. (a): gener-

ated data distribution of DA-GAN. (b) generated data dis-

tribution of StackGAN [43].

Figure 4: The attention locations predicted by DAE on birds

images and face images.

to make progress. This issue asks for adding penalty on

generator for missing modes.

As we mentioned before, DAE ◦ G can be consid-

ered as an auto-encoder for {ti}
M
i=1. Then for every

modes in T , F (t) is expected to generate very closely

located modes. We therefore add another discriminator

D2 for samples from the target domain to enforce the re-

constructed t′ is indistinguishable from t. An additional

optimization objective for the generator is hence added

Et∼pdata(t)[logD2(F (t))]. The objective function is given

by:

Lt
GAN = Et∼Pdata(t)[logD2(t)]

+ Et∼Pdata(t)[log(1−D2(F (t)))].
(8)

This multi-adversarial training procedure is critical for pe-

nalizing the missing modes, it encourage F (t) to move to-

wards a nearby mode of the data generating distribution. In

this way, we can achieve fair probability mass distribution

across different modes.

3.4. Full Objective and Implementation Details

Our full objective is given by:

L(DAE,G,D1, D2) = Ls
GAN (DAE,G,D1, S, T )

+Lt
GAN (DAE,G,D2,T )

+αLcst(DAE,G, S)
+βLsym(DAE,G, T ),

(9)
where α and β are weights for the consistency loss and sym-

metry loss, respectively. We aim to solve:

F ∗ = argmin
F

max
D1,D2

L(F,D1, D2) (10)

where F = DAE ◦G.
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Figure 5: Examples results of text to image synthesis.

Datasets Label Y ♯ Instances d(·)

MNIST & SVHN 10 1 object ResBlock

CUB-200-2011 200 4 parts VGG

FaceScrub 80 4 parts Inception

Skeleton-cartoon 20 4 parts VGG

CMP [35] None 4 parts L2

Colorization [45] Binary 1 object ResBlock

Table 1: Implementation details for learning the DAE.

During the training stage, the outputs of DAE are con-

nected to two ways. One is connected to the generator,

the other one is connected to the geometric regularization

term (Sec. 3.1). We utilize different regularization terms

for different tasks, which can be found in Table 1. The reg-

ularization term enables DAE learns to attend on meaning-

ful instances. In the meantime, these instances are fed into

G to generate the translated samples. Thus, the DAE and

GAN are playing a collaborative game during training. At

the testing stage, the outputs of DAE are just sent into G to

produce the translated results.

We adopt the generator consists of several residual

blocks [13]. For the generator, the instance-level represen-

tations are concatenated along the channel dimension and

fed into several residual blocks. Finally, a series of up-

sampling layers are used to generate a the translated image.

For the discriminator, the generated image is fed through a

series of down-sampling blocks. Finally, a fully-connected

layer with one node is used to produce the decision score.

The up-sampling blocks consist of the nearest-neighbor up-

sampling followed by a 3×3 stride 1 convolution. Batch

normalization and ReLU activation are applied after every

convolution except the last one. The residual blocks con-

sist of 3×3 stride 1 convolutions, Batch normalization and

ReLU. All networks are trained using Adam solver with

batch size 64 and an initial learning rate of 0.0002.

4. Experiments

In this section, we validate the effectiveness of the

proposed DA-GAN in a large variety of tasks, includ-

ing domain adaption, text-to-image synthesis, object con-

figuration, pose morphing for data augmentation, face-to-

animation synthesis and skeleton to cartoon figure synthe-

sis. We conduct these experiments on several datasets,

including MNIST [18], CUB-200-2011 [38], SVHN [12],

FaceScrub [23] and AnimePlanet 2.

Experiments (Sec.4.2 Table 1(a)) further validate the

2It is retrieved from http://www.anime-planet.com/, which has about

60k images.
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Figure 6: Example results of object configuration. Each row from top to bottom are the real samples, results generated by

VAT[20], CycleGAN [45] and DA-GAN, respectively.

Figure 7: Example results of pose morphing. In each group,

the first column are a source bird s, the second column are

the target bird t, the third column are birds that generated

by DA-GAN

contribution of DAE. Especially, it is important for more

complected and structured 074 data. Without DAE, the ac-

curacy for CUB-200-2011 drops 075 from 71.2

4.1. Baselines

• GAN-INT-CLS [26] succeeds in synthesizing 64 × 64

birds and flowers images based on text descriptions.

• GAWWN is Reed’s follow-up work [27] that was able

to generate 128 × 128 images.

• StackGAN is the latest work that can synthesize high-

quality images in 256 × 256, from text descriptions.

• SA is an early work that explored ideas from subspace

learning for domain adaption [6].

• DANN It is another domain adaption work that con-

ducted by [8] deep feature learning.

• UNIT is a recent unsupervised image-to-image trans-

lation work [21] which based on the shared-latent

space assumption and cycle loss.

• DTN [34] employs a compound loss function for un-

supervised domain translation.

• CycleGAN is an image-to-image translation work that

adopt GAN with cycle-loss [45, 17, 21, 42].

• VAT [20] is a new technique derives from style trans-

fer, while it is different in finding dense correspon-

dences.

4.2. Component Analysis of DAGAN

We trained a classifier on MNIST dataset and employ it

on the translated samples for quantitative evaluation. The

results are shown in Table 2. As we can see, the DA-GAN

approaches very high accuracy on the translated sample set.

While the results is impaired without the DAE. We also fine-

tune a VGG [32] classifier on on the CUB-200-2011, and

use it to test our generated images from text, The accuracy

drops a lot to 60.6 %. We also show some results produced

by DAE in Fig. 4. It can be seen that f is capable of attend-

ing on semantic regions. For example, birds head, wings,

and etc. human’s eyes, mouth, and etc.

To validate that the proposed DA-GAN is effective in

mitigating the mode collapse problem. We conduct a toy

experiment on a subset of samples from CUB-200-2011.

We select 10 classes of birds. To mimic the large mode, we

picked some similar classes (e.g. some of them are from the

same category). The dense region in Fig. 3 shows the birds

that have similar looking. We generate about 600 images by

input the according text descriptions and the distribution of

the generated data is shown in Fig. 3(a). The same setting

is conducted on StackGAN, the results is shown in 3(b). As

we can see that, comparing with StackGAN, the samples

generated by DA-GAN are more divers and have a larger

coverage.

4.3. Domain Adaptation

We applied the proposed framework to the problem of

domain adaptation, i.e. adapting a classifier trained using
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Figure 8: (a) Comparisons of face translation with VAT. Each row from left to right is human face, results produced by

DA-GAN and VAT, respectively. (b) Human face to animation face synthesis. Human faces are placed in the first and third

rows, the according translated animation faces are placed in the second row and fourth row.

Method Accuracy

DA-GAN 94.3 %
DA-GAN w/o DAE 90.2 %
DA-GAN w/o const 79.8%
DA-GAN w/o Sym 90.6%
DA-GAN w/o D2 88.2%

(a)

Method Accuracy

SA[6] 59.32 %
DANN[8] 73.85 %
DTN [34] 84.44%
UNIT [21] 90.53 %
DA-GAN 93.60 %

(b)

Method Inception ♯ miss

GAN-INT-CLS 2.9 ± 0.4 89.0

GAWWN 3.6 ± 0.4 61.0

StackGAN 3.7 ± 0.4 36.0

DA-GAN 5.6± 0.4 19.0

(c)
Table 2: (a): Component evaluation of DA-GAN. (b): Comparisons with state-of-the-arts on domain adaption. (c): Compar-

isons with state-of-the-arts on text-to-image synthesis.

Figure 9: Example results of skeleton-cartoon synthesis.

labeled samples in one domain (source domain) to classify

samples in a new domain (target domain) where labeled

samples in the new domain are unavailable during training.

For this purposes, we transform images from SHVN to the

MNIST domain. The results of this experiment are reported

in Table 2. We found that our method achieved a 94.6 % ac-

curacy for the SVHN to MNIST translation task, which was

much better than 90.53 % achieved by the previous state-of-

the-art method.

4.4. Text to Image Synthesis

We conduct qualitative and quantitative evaluation on

the text-to-image synthesis task. Comparisons with sev-

eral state-of-the-arts [43, 27, 26] on CUB-200-2011 dataset

are shown in Fig. 6. The quantitative evaluation are mea-

sured by two metrics: inception score [29] and the number

of missing modes (denote as ♯ miss). In our experiments,

we fine-tune a VGG19 model which is introduced in Sec.

4.2. While the inception score is considered as a good as-

sessment for sample quality. However, the inception score

is sometimes not a good metric for missing modes evalua-

tion. For stronger validation, we adopt another evaluation

metric - missing mode (♯miss) It represents the classifier

reported number of missing modes, i.e. the size of the num-

bers that the model never generates. As shown in Table 2(c),

DA-GAN achieves much improvements in terms of incep-

tion score, and the missing modes drop dramatically, which

again proves the effectiveness of our proposed framework.

Some examples results are shown in Fig. 5 for a visualized

comparison.

4.5. Object Transfiguration

We use images of seven classes form the CUB-200-2011

dataset to perform object transfiguration, i.e. translate a

source bird into a target breed. Some example results are

show in Fig. 6. The first row is real samples form each

breed, and we aims in translating bird (a) into the follow-

ing six breeds. Among these selected target birds, (b) is

selected as the most similar one with (a) in both spatial and

geometry attributes. (c) is selected sharing similar spatial

attribute while different in geometry attribute. (d-e) are all

selected that have different spatial and geometry attributes
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Figure 10: In each group from left to right are labels, translated architecture photos, and the ground truth.

Figure 11: Results of image colorization. In each group, the input is gray images, and the results are translated color images.

Real VAT CycleGAN DA-GAN

Top-1 acc 98.6 % 42.1 % 62.1 % 88.9 %
Realism 20.9 10.3 11.4 18.9

Table 3: Qualitative evaluations for object configuration.

with (a). We can see that, without similar semantic struc-

ture, VAT [20] fails in translating birds, due to their lim-

ited corresponding matching method. CycleGAN [45] is

robust to spatial changes while fail in changing the birds ge-

ometries. Comparing with the results that produced by DA-

GAN, both shows blurred images that missing fine-grained

details. We can see that, DA-GAN succeeds in translat-

ing images that even have large variance of spatial and ge-

ometry attributes. It strongly validates our claim that the

instance-level corresponding is critical in translation task.

We further conducted quantitative evaluation, which can be

found in Table 3. The images produced by DA-GAN out

performs in both classification accuracy and realism.

4.6. More Applications

We further conduct pose morphing, which considered

harder in changing the geometries, by DA-GAN. The results

are shown in Fig. 7. It can be seen that, we succeed in mor-

phing the birds’ pose even when there exists very large gap

of geometry variance. For practical usage, we also make

used of these morphed samples for data augmentation. For

each image, we randomly picked 10 references as the pose

targets. Top-1 result is picked for each image and is used

for augmented data, which produced about 10K images of

birds. We then applied a pre-trained VGG on the augmented

data, which shows improvement on fine-grained classifica-

tion task. The results is shown in Table 4.

We adopt the DA-GAN to translate a human face into a

animation face while still preserve the human identity, the

Method Training Data Accuracy

no data augmentation 8K 79.0 %
DA-GAN 8K + 10K 81.6 %

Table 4: Data augmentation results.

results are shown in Fig. 8. We also compare our results

with the ones produces by VAT [20] in Fig. 8(a). We can

see that, VAT cannot solve the task we are tackling. The

produced images does not belong to the target domain, i.e.

an animation face. More severely, when two query face

shows different shooting angle, VAT produces artifacts due

to the incorrect semantic correspondences. We also con-

ducted experiments on skeleton to cartoon figure transla-

tion, and paired datasets (e.g. image colorization, labels to

photos.) The results are shown in Fig. 9, Fig. 11 and Fig.

10. More experimental details can be found in supplemen-

tary materials.

5. Conclusion
In this paper, we propose a novel framework for unsuper-

vised image translation. Our intuition is to decompose the

task of translating samples from two sets into translating

instances in a highly-structured latent space. The instance-

level corresponding could then be found by integrating at-

tention mechanism into GAN. Extensive quantitative and

qualitative results validate that, the proposed DA-GAN can

significantly improve the state-of-the-arts for image trans-

lation. It is superiority in scalable for broader application,

and succeeds in generating visually appealing images. We

find that, some failure cases are caused by the incorrect at-

tention results. It is because the instances are learned by

a weak supervised attention mechanism, which sometimes

showing a large gap with that learned under fully supervi-

sion. To tackle this challenge we may seek for more robust

and effective algorithm in the future.
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[35] R. Tyleček and R. Šára. Spatial Pattern Templates for Recog-

nition of Objects with Regular Structure, pages 364–374.

Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[36] D. Ulyanov, V. Lebedev, A. Vedaldi, and V. S. Lempitsky.

Texture networks: Feed-forward synthesis of textures and

stylized images. CoRR, abs/1603.03417, 2016.

[37] A. van den Oord, N. Kalchbrenner, L. Espeholt,

k. kavukcuoglu, O. Vinyals, and A. Graves. Condi-

tional image generation with pixelcnn decoders. pages

4790–4798, 2016.

[38] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie.

The Caltech-UCSD Birds-200-2011 Dataset. Technical Re-

port CNS-TR-2011-001, California Institute of Technology,

2011.

[39] X. Wang and A. Gupta. Generative image modeling using

style and structure adversarial networks. In ECCV, 2016.

[40] X. Yan, J. Yang, K. Sohn, and H. Lee. Attribute2image:

Conditional image generation from visual attributes. 2016.

[41] J. Yang, A. Kannan, D. Batra, and D. Parikh. Lr-gan:

Layered recursive generative adversarial networks for image

generation. CoRR, abs/1703.01560, 2017.

[42] Z. Yi, H. Zhang, P. Tan, and M. Gong. Dualgan: Unsuper-

vised dual learning for image-to-image anslation. 2017.

[43] H. Zhang, T. Xu, H. Li, S. Zhang, X. Huang, X. Wang, and

D. N. Metaxas. Stackgan: Text to photo-realistic image syn-

thesis with stacked generative adversarial networks. 2017.

[44] J. J. Zhao, M. Mathieu, and Y. LeCun. Energy-based gener-

ative adversarial network. CoRR, abs/1609.03126, 2016.

[45] J. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-

to-image translation using cycle-consistent adversarial net-

works.

5666


