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Abstract

Generating novel, yet realistic, images of persons is a

challenging task due to the complex interplay between the

different image factors, such as the foreground, background

and pose information. In this work, we aim at generat-

ing such images based on a novel, two-stage reconstruc-

tion pipeline that learns a disentangled representation of

the aforementioned image factors and generates novel per-

son images at the same time. First, a multi-branched recon-

struction network is proposed to disentangle and encode the

three factors into embedding features, which are then com-

bined to re-compose the input image itself. Second, three

corresponding mapping functions are learned in an adver-

sarial manner in order to map Gaussian noise to the learned

embedding feature space, for each factor, respectively. Us-

ing the proposed framework, we can manipulate the fore-

ground, background and pose of the input image, and also

sample new embedding features to generate such targeted

manipulations, that provide more control over the gener-

ation process. Experiments on the Market-1501 and Deep-

fashion datasets show that our model does not only generate

realistic person images with new foregrounds, backgrounds

and poses, but also manipulates the generated factors and

interpolates the in-between states. Another set of experi-

ments on Market-1501 shows that our model can also be

beneficial for the person re-identification task1.

1. Introduction

The process of generating realistic-looking images of

persons has several applications, like image editing, person

re-identification (re-ID), inpainting or on-demand generated

art for movie production. The recent advent of image gener-

∗Corresponding author
1Project page is at http://homes.esat.kuleuven.be/

˜liqianma/CVPR18_DPIG/index.html

Foreground (FG) sampling (fixed BG and Pose)

Background (BG) sampling (fixed FG and Pose)
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FG, BG and Pose sampling Appearance and Pose sampling

Figure 1: Left: image sampling results on Market-1501.

Three factors, i.e. foreground, background and pose, can be

sampled independently (1st-3rd rows) and jointly (4th row).

Right: similar joint sampling results on DeepFashion.This

dataset contains almost no background, so we only disen-

tangle the image into appearance and pose factors.

ation models, such as variational autoencoders (VAE) [12],

generative adversarial networks (GANs) [7] and autoregres-

sive models (ARMs) (e.g. PixelRNN [34]), has provided

powerful tools towards this goal. Several papers [24, 2, 1]

have then exploited the ability of these networks to generate

sharp images in order to synthesize realistic photos of faces

and natural scenes. Recently, Ma et al. [20] proposed an

architecture to synthesize novel person images in arbitrary

poses given as input an image of that person and a new pose.

From an application perspective however, the user often

wants to have more control over the generated images (e.g.

change the background, a person’s appearance and clothing,

or the viewpoint), which is something that existing meth-
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ods are essentially uncapable of. We go beyond these con-

straints and investigate how to generate novel person im-

ages with a specific user intention in mind (i.e. foreground

(FG), background (BG), pose manipulation). The key idea

is to explicitly guide the generation process by an appropri-

ate representation of that intention. Fig. 1 gives examples

of the intended generated images.

To this end, we disentangle the input image into interme-

diate embedding features, i.e. person images can be reduced

to a composition of features of foreground, background, and

pose. Compared to existing approaches, we rely on a differ-

ent technique to generate new samples. In particular, we

aim at sampling from a standard distribution, e.g. a Gaus-

sian distribution, to first generate new embedding features

and from them generate new images. To achieve this, fake

embedding features ẽ are learned in an adversarial manner

to match the distribution of the real embedding features e,

where the encoded features from the input image are treated

as real whilst the ones generated from the Gaussian noise

as fake (Fig. 2). Consequently, the newly sampled images

come from learned fake embedding features ẽ rather than

the original Gaussian noise as in the traditional GAN mod-

els. By doing so, the proposed technique enables us not only

to sample a controllable input for the generator, but also to

preserve the complexity of the composed images (i.e. real-

istic person images).

To sum up, our full pipeline proceeds in two stages as

shown in Fig. 2. At stage-I, we use a person’s image as

input and disentangle the information into three main fac-

tors, namely foreground, background and pose. Each disen-

tangled factor is modeled by embedding features through a

reconstruction network. At stage-II, a mapping function is

learned to map a Gaussian distribution to a feature embed-

ding distribution.

Our contributions are: 1) A new task of generating natu-

ral person images by disentangling the input into weakly

correlated factors, namely foreground, background and

pose. 2) A two-stage framework to learn manipulatable em-

bedding features for all three factors. In stage-I, the en-

coder of the multi-branched reconstruction network serves

conditional image generation tasks, whereas in stage-II the

mapping functions learned through adversarial training (i.e.

mapping noise z to fake embedding features emb) serve

sampling tasks (i.e. the input is sampled from a standard

Gaussian distribution). 3) A technique to match the distri-

bution of real and fake embedding features through adver-

sarial training, not bound to the image generation task. 4)

An approach to generate new image pairs for person re-ID.

Sec. 4 constructs a Virtual Market re-ID dataset by fixing

foreground features and changing background features and

pose keypoints to generate samples of one identity.
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Note1:      is either 
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Figure 2: Our two-stage framework. In stage-I, we use a re-

construction network to obtain the real embedding features

e for each factor, i.e. foreground, background and pose. The

architectural details of stage-I are shown in Figure 3. In

stage-II, we propose a novel, two-step mapping technique

for adversarial embedding feature learning that first map

Gaussian noise z to intermediate embedding features ẽ then

to the data x̃. We use the pre-trained encoder and decoder

of stage-I to guide the learning of mapping functions Φ.

2. Related work

Image generation from noise. The ability of generative

models, such as GANs [7], adversarial autoencoders (AAE)

[21], VAEs [12] and ARMs (e.g. PixelRNN [34]), to syn-

thesize realistic-looking, sharp images has led image gen-

eration research lately. Traditional image generation works

use GANs [7] or VAEs [12] to map a distribution generated

by noise z to the distribution of real data. Convolutional

VAEs and AAEs [21] have shown how to transform an auto-

encoder into a generator, but in this case, it is rather difficult

to train the mapping function for complex data distributions,

such as person images (as also mentioned in ARAE-GAN

[11]). As such, traditional image generation methods are

not optimal when it comes to the human body. For exam-

ple, Zheng et al. [41] directly adopted the DCGAN archi-

tecture [24] to generate person images from noise, but as

Fig. 7(b) shows, vanilla DCGAN leads to unrealistic results.

Instead, we propose a two-step mapping technique in stage-

II to guide the learning, i.e. z → e → x (Fig. 2). Similar to

[11], we use a decoder to adversarially map the noise distri-

bution to the feature embedding distribution learned by the

reconstruction network.

Conditional image generation. Since the human body

has a complex non-rigid structure with many degrees of

freedom [22], several works have used structure conditions

to generate person images. Reed et al. in [25] proposed

the Generative Adversarial What-Where Network that uses

pose keypoints and text descriptions as condition, whereas

in [26] they used an extension of PixelCNN in addition

to conditioning on part keypoints, segmentation masks and

text to generate images on the MPI Human Pose dataset,
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Figure 3: Stage-I: disentangled image reconstruction. This framework is composed of three branches: foreground, back-

ground and pose. Note that we use a fully-connected auto-encoder network to reconstruct the pose (incl. keypoint coordinates

and visibility), so that we can decode the embedded pose features to obtain the heatmaps at the sampling phase.

among others. Lassner et al. [14] generated full-body im-

ages of persons in clothing by conditioning on fine-grained

body and clothing segments, e.g. pose, shape or color. Zhao

et al. [38] combined the strengths of GANs with variational

inference to generate multi-view images of persons in cloth-

ing in a coarse-to-fine manner. Closer to our work, Ma

et al. [20] proposed to condition on image and pose key-

points to transfer the human pose in a flexible way. Facial

landmarks can be transfered accordingly [31]. Yet, their

methods need the training set of aligned person image pairs

which costs expensive human annotations. Most recently,

Zhu et al. [42] proposed the CycleGAN that uses cycle con-

sistency to achieve unpaired image-to-image translation be-

tween domains. They achieve compelling results in appear-

ance changes but show little success in geometric changes.

Since images themselves contain abundant context infor-

mation [32], some works have tried to tackle the problem in

an unsupervised way. Doersch et al. [4] explored the use of

spatial context, i.e. relative position between two neighbor-

ing patches in an image, as a supervisory signal for unsu-

pervised visual representation learning. Noroozi et al. [23]

extended the task to a jigsaw puzzle solved by observing

all the tiles simultaneously, which can reduce the ambigu-

ity among these local patch pairs. Lee et al. [15] utilized

context in an image generation task by inferring the spa-

tial arrangement and generating the image at the same time.

We use the supervision in a different way. To extract pose-

invariant appearance features, we arrange the body part fea-

ture embeddings according to the region-of-interest (ROI)

bounding boxes obtained with pose keypoints. Then, we ex-

plicitly utilize these pose keypoints as structure information

to select the necessary appearance features for each body

part and generate the entire person image.

In general, this paper studies a different problem than

these supervised or unsupervised approaches and tries to

solve the disentangled person image generation task in

an unpaired, self-supervised manner, by leveraging fore-

ground, background and pose sampling at the same time,

in order to gain more control over the generation process.

Disentangled image generation. Few papers have al-

ready tried to work towards this direction by learning a dis-

entangled representation of the input image. Chen et al. [2]

proposed InfoGAN, an extension to GANs, to learn disen-

tangled representations using mutual information in an un-

supervised manner, like writing styles from digit shapes on

the MNIST dataset, pose from lighting of 3D rendered im-

ages, and background digits from the central digit on the

SVHN dataset. Cheung et al. [3] added a cross-covariance

penalty in a semi-supervised autoencoder architecture in or-

der to disentangle factors, like hand-writing style for digits

and subject identity in faces. Tran et al. [33] proposed DR-

GAN to learn both a generative and a discriminative rep-

resentation from one or multiple face images to synthesize

identity-preserving faces at target poses. In contrast, our

method gives an explicit representation of the main 3 axis of

variation (foreground, background, pose). Moreover, train-

ing is facilitated without a need for expensive identity an-

notations - which is not readily available at scale.

3. Method

Our goal is to disentangle the appearance and structure

factors in person images, so that we can manipulate the fore-

ground, background and pose separately. To achieve this,

we propose a two-stage pipeline shown in Fig. 2. In stage-I,

we disentangle the foreground, background and pose fac-

tors using a reconstruction network in a divide-and-conquer

manner. In particular, we reconstruct person images by

first disentangling into intermediate embedding features of
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the three factors, then recover the input image by decoding

these features. In stage-II, we treat these features as real to

learn mapping functions Φ for mapping a Gaussian distri-

bution to the embedding feature distribution adversarially.

3.1. Stage­I: Disentangled image reconstruction

At stage-I, we propose a multi-branched reconstruction

architecture to disentangle the foreground, background and

pose factors as shown in Fig. 3. Note that, to obtain the

pose heatmaps and the coarse pose mask we adopt the same

procedure as in [20], but we instead use them to guide the

information flow in our multi-branched network.

Foreground branch. To separate the foreground and back-

ground information, we apply the coarse pose mask to the

feature maps instead of the input image directly. By do-

ing so, we can alleviate the inaccuracies of the coarse pose

mask. Then, in order to further disentangle the foreground

from the pose information, we encode pose invariant fea-

tures with 7 Body Regions-Of-Interest instead of the whole

image similar to [39]. Specifically, for each ROI we extract

the feature maps resized to 48×48 and pass them into the

weight sharing foreground encoder to increase the learning

efficiency. Finally, the encoded 7 body ROI embedding fea-

tures are concatenated into a 224D feature vector. Later, we

use BodyROI7 to denote our model which uses 7 body ROIs

to extract foreground embedding features, and use Whole-

Body to denote our model that extracts foreground embed-

ding features from the whole feature maps directly instead

of extracting and resizing the ROI feature map.

Background branch. For the background branch, we ap-

ply the inverse pose mask to get the background feature

maps and pass them into the background encoder to ob-

tain a 128-dim embedding feature. Then, the foreground

and background features are concatenated and tiled into

128×64×352 appearance feature maps.

Pose branch. For the pose branch, we concatenate the 18-

channel heatmaps with the appearance feature maps and

pass them into the a “U-Net”-based architecture [28], i.e.,

convolutional autoencoder with skip connections, to gen-

erate the final person image following PG2 (G1+D) [20].

Here, the combination of appearance and pose imposes a

strong explicit disentangling constraint that forces the net-

work to learn how to use pose structure information to se-

lect the useful appearance information for each pixel. For

pose sampling, we use an extra fully-connected network to

reconstruct the pose information, so that we can decode the

embedded pose features to obtain the heatmaps. Since some

body regions may be unseen due to occlusions, we intro-

duce a visibility variable αi ∈ {0, 1}, i = 1, ..., 18 to repre-

sent the visibility state of each pose keypoint. Now, the pose

information can be represented by a 54-dim vector (36-dim

keypoint coordinates γ and 18-dim keypoint visibility α).

3.2. Stage­II: Embedding feature mapping

Images can be represented by a low-dimensional, con-

tinuous feature embedding space. In particular, in [35,

29, 36, 5] it has been shown that they lie on or near a

low-dimensional manifold of the original high-dimensional

space. Therefore, the distribution of this feature embedding

space should be more continuous and easier to learn com-

pared to the real data distribution. Some works [37, 8, 27]

have then attempted to use the intermediate feature repre-

sentations of a pre-trained DNN to guide another DNN.

Inspired by these ideas, we propose a two-step mapping

technique as illustrated in Fig. 2. Instead of directly learn-

ing to decode Gaussian noise to the image space, we first

learn a mapping function Φ that maps a Gaussian space

Z into a continuous feature embedding space E, and then

use the pre-trained decoder to map the feature embedding

space E into the real image space X. The encoder learned

in stage-I encodes the FG, BG and Pose factors x into low-

dimensional real embedding features e. Then, we treat the

features mapped from Gaussian noise z as fake embedding

features ẽ and learn the mapping function Φ adversarially.

In this way, we can sample fake embedding features from

noise and then map them back to images using the decoder

learned in stage-I. The proposed two-step mapping tech-

nique is easy to train in a piecewise style and most impor-

tantly can be useful for other image generation applications.

3.3. Person image sampling

As explained, each image factor can not only be encoded

from the input information, but also be sampled from Gaus-

sian noise. As to the latter, to sample a new foreground,

background or pose, we combine the decoders learned in

stage-I and mapping functions learned in stage-II to con-

struct a z → ẽ → x̃ sampling pipeline (Fig. 4). Note that,

for foreground and background sampling the decoder is a

convolutional “U-net”-based architecture, while for pose

sampling the decoder is a fully-connected one. Our exper-

iments show that our framework performs well when used

in both a conditional and an unconditional way.

3.4. Network architecture

Here, we describe the proposed architecture. For both

stages, we use residual blocks to make the training easier.

All convolution layers consist of 3×3 filters and the num-

ber of filters increases linearly with each block. All fully-

connected layers consist of 512-dim, except for the bottle-

neck layers. We apply rectified linear units (ReLU) to each

layer, except for the bottleneck and the output layers.

For the foreground and background branches in stage-I,

the input image is fed into a convolutional residual block

and the pose mask is used to extract the foreground and

background feature maps. Then, the masked foreground

and background feature maps are passed into an encoder
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Figure 4: Sampling phase: Sample foreground, background and pose from Gaussian noise to compose new person images.

consisting of N convolutional residual blocks, respectively,

where N depends on the size of the input. Similar to [20],

each residual block consists of two convolution layers with

stride=1, followed by one sub-sampling convolution layer

with stride=2, except for the last block. For the decoder,

an “U-Net”-based architecture [28] is used with N convo-

lutional residual blocks before and after the bottlenecks, re-

spectively, following PG2 (G1+D) [20].

For pose reconstruction, we use an auto-encoder archi-

tecture where both encoder and decoder consist of 4 fully-

connected residual blocks with 32-dim bottleneck layers.

As in [9], we use a densely-connected-like architecture, i.e.

each residual block consists of two fully-connected layers.

For each mapping function in stage-II, we use a fully-

connected network consisting of 4 fully-connected residual

blocks to map K-dim Gaussian noise z to K-dim embed-

ding features e. For the discriminator, we adopt a fully-

connected network with 4 fully-connected layers.

3.5. Optimization strategy

The training procedures of stage-I and stage-II are sep-

arated, since the mapping functions Φfg, Φbg and Φpose in

stage-II can be trained in a piecewise style. In stage-I, we

use both L1 and adversarial loss to optimize the image (i.e.

foreground and background) reconstruction network. This

choice is known to result in sharper and more realistic im-

ages. In particular, we use G1 and D1 to denote the image

reconstruction network and the corresponding discriminator

in stage-I. The overall losses for G1 and D1 are as follows,

LD1

R =Ex∼pdata(x)

[

logD1(x)
]

+

Ex∼pdata(x)

[

log (1−D1(G1(x, h)))
]

, (1)

LG1

R =Ex∼pdata(x)

[

log (D1(G1(x, h)))
]

+

λ‖(G1(x, h)− x)‖1, (2)

where x denotes the person image, h denotes the pose

heatmaps, and λ is the weight of L1 loss controlling how

close the reconstruction looks like to the input image at low

frequencies. For pose reconstruction, we use the L2 loss to

reconstruct the input pose information including keypoint

coordinates γ and visibility α mentioned in Sec. 3.1,

LPose
R = E(γ,α)∼pdata(γ,α)‖(G1(γ, α)− (γ, α)‖22, (3)

After training the reconstruction network in stage-I, we

fix it and use the Wasserstein GAN [1] loss to optimize the

fully-connected network of mapping functions in stage-II.

We use Φ and D2 to denote the mapping functions (incl.

Φfg, Φbg and Φpose) and the corresponding discriminators in

stage-II. The overall losses for Φ and D2 are as follows,

LD2

M =Ee∼pemb(e)

[

D2(e)
]

− Ez∼pz(z)

[

D2(Φ(z))
]

, (4)

LΦ
M =Ez∼pz(z)

[

D2(Φ(z))
]

, (5)

where e denotes the embedding features extracted from the

reconstruction network in stage-I, z denotes the Gaussian

noise. Note that, we also tried the vanilla GAN loss but

suffered a model collapse. For adversarial training, we op-

timize the discriminator and generator alternatively.

4. Experiments

The proposed pipeline enables many applications, incl.

image manipulation, pose-guided person image generation,

image interpolation, image sampling and person re-ID.2

4.1. Datasets and metrics

Our main experiments use the challenging re-ID dataset

Market-1501 [40], containing 32,668 images of 1,501 per-

sons captured from six disjoint surveillance cameras. All

images are resized to 128×64 pixels. We use the same

train/test split (12,936/19,732) as in [40], but use all the im-

ages in the train set for training without any identity label.

2More generated results, parameters of our network architecture and

training details are given in the supplementary material.
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For pose-guided person image generation, we randomly se-

lect 12,800 pairs in the test set for testing, following [20].

For re-ID, we follow the same testing protocol as in [40].

We also experiment with a high-resolution dataset,

namely DeepFashion (In-shop Clothes Retrieval Bench-

mark) [19], that consists of 52,712 in-shop clothes images

and 200,000 cross-pose/scale pairs. Following [20], we

use the up-body person images and filter out failure cases

in pose estimation for both training and testing. Thus, we

have 15,079 training images and 7,996 testing images. We

also randomly select 12,800 pairs from the test set for pose-

guided person image generation testing.

Implementation details. For Market-1501, our method is

applied to disentangle the image into three factors: fore-

ground, background and pose. We set the number of con-

volutional residual blocks N = 5 for foreground and back-

ground encoders and decoders. For DeepFashion, since it

contains almost no background, we disentangle the images

into only two factors: appearance and pose. We set the num-

ber of convolution blocks N = 7 for the foreground encoder

and decoder. On both datasets, we do a left-right flip data

augmentation. For the pose keypoints and mask extraction,

we use the same procedure as [20].

4.2. Image manipulation

As explained, a person’s image can be disentangled into

three factors: FG, BG and Pose. Each factor can then be

generated either from a Gaussian signal (sampling) or con-

ditioned on input data, namely image and pose (condition-

ing). The conditional case contains at least one other fac-

tor sampled from Gaussian signals. In Fig. 1, the left-top3

rows show examples with one-factor sampling and two-

factor conditioning for FG, BG and Pose on Market-1501,

respectively. Our framework successfully manipulates each

intended factor while keeping the others unchanged. In the

first row, we sample foreground with zfg → ẽfg and con-

dition background and pose with x → e, so that different

cloth colors, styles and hair styles can be generated while

the pose and background stay mostly the same. Similarly,

we can manipulate the background and pose independently

as shown in the left-second/third row. The left-last row

shows a sampling example without any conditioning. In

this way, we can sample novel person images from noise

and still generate realistic images compared to vanilla VAE

and DCGAN as shown in Sec. 4.5. Finally, on the right rows

we show that our method can also sample 256×256 images

with realistic cloth and hair details on DeepFashion.

4.3. Pose­guided person image generation

We compare our method with PG2 [20] on pose-

conditional person image generation. Unlike PG2, our

method does not need paired training images. As shown

in Fig. 5, our method can generate more realistic details

DeepFashion Market-1501

Model SSIM IS SSIM IS mask-SSIM mask-IS

PG2[20] 0.762 3.090 0.253 3.460 0.792 3.435

Ours 0.614 3.228 0.099 3.483 0.614 3.491

Table 1: Quantitative evaluation. Higher scores are better.

and less artifacts. Especially, the arms and legs are better

shaped on both datasets, and the hair details are more clear

on DeepFashion. This is in agreement with the Inception

Score (IS) and mask Inception Score (mask-IS) in Table 1.

The SSIM score of our method is lower than PG2 mainly

for two reasons. 1) In stage-I, there are no skip-connections

between encoder and decoder, and as such our method has

to generate images from compressed embedding features in-

stead of pixel level transforms like in PG2, which is a harder

task. 2) Our method generates sharper images which might

decrease the SSIM score, as also observed in [20, 10, 30].

4.4. Image interpolation

Interpolation is possible for sampled and real images.

Sampling interpolation. For sampling interpolation, we

directly interpolate in Gaussian space and generate images

in a z → ẽ → x̃ manner. We first interpolate linearly

between two Gaussian codes z1 and z2 to obtain interme-

diate codes zi, which in turn are mapped into embedding

features ẽi using the learned mapping functions. The per-

son’s image is then generated from the embedding features

ẽi. As Fig. 6(a)(b)(c) shows, our method can smoothly in-

terpolate each factor in Gaussian space separately, hence:

1) our method can learn foreground, background and pose

encoders in a disentangled way; 2) these can map real

high-dimensional data distributions into continuous low-

dimensional feature embedding distributions; 3) the map-

pings trained adversarially can map Gaussian to feature em-

bedding distributions; 4) the decoder can map feature em-

bedding distributions back to real data distributions.

Inverse interpolation To interpolate between real data

(incl. image and pose keypoints), we proceed in 3 steps. 1)

x → e: Use the learned encoders to encode real data x into

embedding features e. 2) e → z: Use gradient-based min-

imization [18] to find the corresponding Gaussian codes z.

3) z → ẽ → x̃: Interpolate linearly between two Gaussian

codes, then map intermediate codes into embedding fea-

tures - using the learned mapping functions - to generate the

person images. As shown in Fig. 6, our method interpolates

reasonable frames between the input pair showing a person

with different poses. The result shows realistic intermediate

states and can be used to predict potential behaviors.

4.5. Sampling results comparison

In this experiment, we compare sampling results from

our method and baseline models, i.e. VAE [12] and DC-
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Figure 5: Comparison to PG2. Left: results on Market-1501. Right: results on DeepFashion. Zoom in for details.

(a) Foreground interpolation (b) Background interpolation (c) Pose interpolation

z1 z1+d z1+2d z1+(n-2)d z1+(n-1)d z2... ...x1 x2
(d) Inverse interpolation between two images.

Figure 6: Factor interpolation. (a)(b)(c) We randomly select two Gaussian codes z1 and z2 and interpolate codes between z1
and z2 linearly; we then generate the interpolated images accordingly. (d) We invert an image pair first to embedding features

e1 and e2, then to Gaussian codes z1 and z2. We then follow the same procedure as in (a)(b)(c).

GAN [24]. As illustrated in Fig. 7, VAE generates blurry

images and DCGAN sharp but unrealistic person images.

In contrast, our model generates more realistic images (see

Fig. 7(c)(d)(e)). By comparing (d) and (c), we observe that

our model using body ROI generates more sharp and real-

istic images whose colors on each body part are more natu-

ral. A similar tendency can be observed for re-ID. By com-

paring (e) and (d), we see that when sampling foreground

and background but using the real pose keypoints randomly

selected from the training data, we generate better results.

Therefore, we use this setting in (e) to sample virtual data

for the following re-ID experiment.

4.6. Person re­identification

Person re-ID associates images of the same person

across views or time. Given the query person image, re-ID

is expected to provide matching images of the same iden-

tity. We propose to use the re-ID performance as a quan-

titative metric for our generation approach. We adopt the

re-ID model in [6] and use rank-1 matching rate and mean

Average Precision (mAP) following [40]. We show that

our approach can be evaluated in two ways: (1) use FG

features extracted in stage-I for re-ID; (2) generate virtual

image pairs to train re-ID model. The virtual market data

is denoted as “VM” generated with our BodyROI7 model.

Note that, CUHK03 [16] and Duke [41] datasets are used

with identity labels, while Market-1501 and VM datasets

are used with no labels.

Using embedding features. We use the FG encoder to ex-

tract the features for re-ID and use the re-ID performance to

evaluate the reconstruction network in stage-I. Intuitively,

the re-ID performance will be higher if the encoded features

are more representative. Euclidean distance is used to calcu-

late the extracted features after l2-norm normalization [6].

As shown in the top rows of Table 2, our BodyROI7 model
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(d) Image number: 12800
IS: 3.20381 +- 0.06215
mask-IS: 3.33343 +- 0.04592      

(c) Image number: 12800
IS: 3.15911 +- 0.05271  
mask-IS: 3.32047 +- 0.07383         

(g) Image number: 12800
IS: IS: 3.82968 +- 0.08038   
mask-IS: 3.790187 +- 0.039664

(a) Image number: 12800
IS: 3.35665 +- 0.06024  
mask-IS: 2.58552 +- 0.04934

(b) Image number: 12800 iter 18k
IS: 3.64518 +- 0.05892 
mask-IS: 3.54981 +- 0.07244

(c) Image number: 12800
IS: 3.42419 +- 0.07747   
mask-IS: 3.47919 +- 0.06913   

(a) VAE [12]

(d) Image number: 12800
IS: 3.20381 +- 0.06215
mask-IS: 3.33343 +- 0.04592      

(c) Image number: 12800
IS: 3.15911 +- 0.05271  
mask-IS: 3.32047 +- 0.07383         

(g) Image number: 12800
IS: IS: 3.82968 +- 0.08038   
mask-IS: 3.790187 +- 0.039664

(a) Image number: 12800
IS: 3.35665 +- 0.06024  
mask-IS: 2.58552 +- 0.04934

(b) Image number: 12800 iter 18k
IS: 3.64518 +- 0.05892 
mask-IS: 3.54981 +- 0.07244

(c) Image number: 12800
IS: 3.42419 +- 0.07747   
mask-IS: 3.47919 +- 0.06913   

(b) DCGAN [24]

(d) Image number: 12800
IS: 3.20381 +- 0.06215
mask-IS: 3.33343 +- 0.04592      

(c) Image number: 12800
IS: 3.15911 +- 0.05271  
mask-IS: 3.32047 +- 0.07383         

(g) Image number: 12800
IS: IS: 3.82968 +- 0.08038   
mask-IS: 3.790187 +- 0.039664

(a) Image number: 12800
IS: 3.35665 +- 0.06024  
mask-IS: 2.58552 +- 0.04934

(b) Image number: 12800 iter 18k
IS: 3.64518 +- 0.05892 
mask-IS: 3.54981 +- 0.07244

(c) Image number: 12800
IS: 3.42419 +- 0.07747   
mask-IS: 3.47919 +- 0.06913   

(c) Ours - Whole Body

(d) Image number: 12800
IS: 3.20381 +- 0.06215
mask-IS: 3.33343 +- 0.04592      

(c) Image number: 12800
IS: 3.15911 +- 0.05271  
mask-IS: 3.32047 +- 0.07383         

(g) Image number: 12800
IS: IS: 3.82968 +- 0.08038   
mask-IS: 3.790187 +- 0.039664

(a) Image number: 12800
IS: 3.35665 +- 0.06024  
mask-IS: 2.58552 +- 0.04934

(b) Image number: 12800 iter 18k
IS: 3.64518 +- 0.05892 
mask-IS: 3.54981 +- 0.07244

(c) Image number: 12800
IS: 3.42419 +- 0.07747   
mask-IS: 3.47919 +- 0.06913   

(d) Ours - BodyROI7

(d) Image number: 12800
IS: 3.20381 +- 0.06215
mask-IS: 3.33343 +- 0.04592      

(c) Image number: 12800
IS: 3.15911 +- 0.05271  
mask-IS: 3.32047 +- 0.07383         

(g) Image number: 12800
IS: IS: 3.82968 +- 0.08038   
mask-IS: 3.790187 +- 0.039664

(a) Image number: 12800
IS: 3.35665 +- 0.06024  
mask-IS: 2.58552 +- 0.04934

(b) Image number: 12800 iter 18k
IS: 3.64518 +- 0.05892 
mask-IS: 3.54981 +- 0.07244

(c) Image number: 12800
IS: 3.42419 +- 0.07747   
mask-IS: 3.47919 +- 0.06913   

(e) Ours - BodyROI7 with real pose from training set

(d) Image number: 12800
IS: 3.20381 +- 0.06215
mask-IS: 3.33343 +- 0.04592      

(c) Image number: 12800
IS: 3.15911 +- 0.05271  
mask-IS: 3.32047 +- 0.07383         

(g) Image number: 12800
IS: IS: 3.82968 +- 0.08038   
mask-IS: 3.790187 +- 0.039664

(a) Image number: 12800
IS: 3.35665 +- 0.06024  
mask-IS: 2.58552 +- 0.04934

(b) Image number: 12800 iter 18k
IS: 3.64518 +- 0.05892 
mask-IS: 3.54981 +- 0.07244

(c) Image number: 12800
IS: 3.42419 +- 0.07747   
mask-IS: 3.47919 +- 0.06913   

(f) Real data

Figure 7: Sampling results comparison. From left to right and from top to bottom: (a) VAE [12] (b) DCGAN [24] (c) Ours -

Whole Body (d) Ours - BodyROI7 (e) Ours - BodyROI7 with real pose from training set (f) Real data.

Figure 8: Virtual identities for re-ID model training. Each

column contains a pair of images of one identity (one FG).

BG and Pose are randomly selected from training data.

Model Training data Rank-1 mAP

Bow [40] Market 0.344 0.141

Bow* [40] Market 0.358 0.148

LOMO* [17] / 0.272 0.08

WholeBody feature (Ours) Market 0.307 0.100

BodyROI7 feature (Ours) Market 0.338 0.107

BodyROI7 feature PCA (Ours) Market 0.355 0.114

Res50* [6] CUHK03 (labeled) 0.300 0.115

Res50* [6] Duke (labeled) 0.361 0.142

Res50 VM 0.338 0.134

Res50+PUL VM+Market 0.369 0.156

Res50+PUL+KISSME VM+Market 0.375 0.154

Table 2: Re-ID results on Market-1501. Top: using embed-

ding features. Bottom: using VM and Market-1501 dataset

without labels. Higher scores are better. *Results are re-

ported in [6]. / means that hand-crafted feature extractor

LOMO does not require training data.

achieves 0.338 and 0.355 (with PCA) rank-1 performance,

higher than our WholeBody model, which is in accordance

with the sampling results in Sec. 4.5. Besides, our method

can achieve comparable performance with the unsupervised

baseline methods, which indicates that our encoder can ex-

tract not only generative but also discriminative features.

Using generated virtual image pairs. We use the gener-

ated image pairs to train the re-ID model and use the re-

ID performance to evaluate our generation framework in an

indirect manner. We first generate the VM re-ID dataset

consisting of 500 identities with 24 images for each ID as

illustrated in Fig. 8. For each identity, we randomly sample

one foreground feature and 24 background features and ran-

domly select 24 pose keypoint heatmaps from the Market-

1501 training data. Then, we use the same re-ID model and

training procedure as in [6], but with different training data.

As shown in the bottom rows of Table 2, using our VM data

the model can achieve the rank-1 performance 0.338 which

is comparable to the model trained using another Duke re-

ID dataset. When using the post-processing progressive un-

supervised learning (PUL) proposed in [6], the rank-1 per-

formance is improved to 0.369. Additionally, using our VM

data, we can train a metric model, e.g. KISSME [13], and

further improve the rank-1 performance to 0.375. Com-

pared to the model trained using CUHK03 (rank-1 0.300)

or Duke (rank-1 0.361) re-ID dataset with expensive human

annotations, our method achieves better performance using

only Market dataset without identity labels. These results

show that our disentangled generated images are similar to

the real data and can be further beneficial to re-ID tasks.

5. Conclusion

We propose a novel two-stage pipeline for addressing the

person image generation task. Stage-I disentangles and en-

codes three modes of variation in the input image, namely

foreground, background and pose, into embedding features

then decodes them back to an image using a multi-branched

reconstruction network. Stage-II learns mapping functions

in an adversarial manner for mapping noise distributions

to feature embedding distributions guided by the decoders

learned in stage-I. Experiments show that our method can

manipulate the input foreground, background and pose, and

sample new embedding features to generate intended ma-

nipulations of these factors, thus providing more control. In

the future, we plan to apply our method to faces and rigid

object images with different types of structure.
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