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Abstract

Event cameras are bio-inspired vision sensors that nat-

urally capture the dynamics of a scene, filtering out re-

dundant information. This paper presents a deep neural

network approach that unlocks the potential of event cam-

eras on a challenging motion-estimation task: prediction

of a vehicle’s steering angle. To make the best out of this

sensor–algorithm combination, we adapt state-of-the-art

convolutional architectures to the output of event sensors

and extensively evaluate the performance of our approach

on a publicly available large scale event-camera dataset

(≈1000 km). We present qualitative and quantitative expla-

nations of why event cameras allow robust steering predic-

tion even in cases where traditional cameras fail, e.g. chal-

lenging illumination conditions and fast motion. Finally, we

demonstrate the advantages of leveraging transfer learning

from traditional to event-based vision, and show that our

approach outperforms state-of-the-art algorithms based on

standard cameras.

Multimedia Material

A video accompanying this paper can be found at:

https://youtu.be/_r_bsjkJTHA

1. Introduction

Event cameras, such as the Dynamic Vision Sensor

(DVS) [1], are bio-inspired sensors that, in contrast to tradi-

tional cameras, do not acquire full images at a fixed frame-

rate but rather have independent pixels that output only

intensity changes (called “events”) asynchronously at the

time they occur. Hence, the output of an event camera

is not a sequence of images but a stream of asynchronous

events. Event cameras have multiple advantages over tra-

ditional cameras: very high temporal resolution (microsec-

onds), very high dynamic range (HDR) (140 dB) and low

power and bandwidth requirements. Moreover, since events

Standard camera Event camera

Figure 1: Steering angle regression performance on

grayscale frames (first column) and on event camera data

(second column). The first row shows a sunny day where vi-

sual features can be extracted from grayscale frames. How-

ever the camera saturation and the lack of temporal infor-

mation makes the network predict a wrong steering angle.

The second row shows a night scene, from which the net-

work hardly predicts the correct steering angle when using

grayscale frames. Our method accurately predicts a steering

angle by combining event data and deep learning in both

scenarios.

are generated by moving edges in the scene, event cameras

are natural motion detectors and automatically filter out any

temporally-redundant information. Due to their principle of

operation and unconventional output, event cameras repre-

sent a paradigm shift in computer vision, and so, new al-

gorithms are needed to exploit their capabilities. Indeed,

event cameras present many advantages in all tasks related

to motion estimation [2, 3, 4, 5, 6].

Recently, deep learning (DL) algorithms were shown to

perform well on many applications in the field of motion
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estimation [7, 8, 9]. In this work, we propose to unlock the

potential of event cameras through a DL-based solution, and

showcase the power of this combination on the challenging

task of steering angle prediction. As already pointed out by

previous work [9], learning-based approaches will be ulti-

mately needed to handle complex scenarios and, more im-

portantly, corner cases in which self-driving cars will ma-

neuver. However, the goal of this work is not to develop a

framework to actually control an autonomous car or robot,

as already proposed in [10]. On the contrary, we aim at

understanding how learning-based approaches to motion-

estimation tasks could benefit from the natural response of

event cameras to motion, their inherent data redundancy re-

duction, high speed and very high dynamic range. We show

that the ability of event cameras to capture the dynamics of

a scene at low-latency combined with specifically-designed

neural networks outperforms state-of-the-art systems which

are based on standard cameras (Fig. 1).

Overall, this paper makes the following contributions:

• We show the first large-scale (≈ 1 million images cover-

ing over 1000 km) application of deep learning to event-

based vision on a regression task. Additionally, we pro-

vide results and explanations on why an event camera is

better suited to motion-estimation tasks than a traditional

camera.

• We adapt state-of-the-art convolutional architectures [11]

to the output of event cameras. Furthermore, we

show that it is possible to leverage transfer learning

from pre-trained convolutional networks on classification

tasks [12], even if the networks were trained on frames

collected by traditional cameras.

• We prove the validity of our methodology through an

extensive set of qualitative and quantitative experiments

outperforming state-of-the-art systems on a publicly

available dataset.

The rest of the paper is organized as follows. Section 2

reviews related work on the problem. Section 3 describes

the proposed methodology, whose performance is exten-

sively evaluated in Sections 4 and 5. Results are discussed

in Section 6, and conclusions are drawn in Section 7.

2. Related Work

Developing robust policies for autonomous driving is a

challenging research problem. Highly engineered, modular

systems demonstrated incredible performance in both urban

and off-road scenarios [13]. Another approach to the prob-

lem is to directly map visual observations to control actions,

tightly coupling the perception and control parts of the prob-

lem. The first attempt to learn a visuomotor policy was done

with ALVINN [14], where a shallow network was used to

predict actions directly from images. Even though it only

succeeded in simple scenarios, it suggested the potential of

neural networks for autonomous navigation. More recently,

NVIDIA used a CNN to learn a driving policy from video

frames [15]. In spite of being a very simple approach, the

learned controls were able to drive a car in basic scenar-

ios. Afterwards, several research efforts have been spent to

learn more robust perception-action models [9, 8] to cope

with the diversity of visual appearance and unpredictability

usually encountered in urban environments. Xu et al. [9]

proposed to leverage large-scale driving video datasets and

to do transfer learning to generate more robust policies. The

model showed good performance but was limited to only

a set of discrete actions and was susceptible to failures in

undemonstrated regions of the policy space. In [8] the au-

thors proposed a method to directly regress steering angles

from frames while providing an interpretable policy. How-

ever, regarding performance, very little improvement was

achieved with respect to [15].

All previous methods operate on images acquired by tra-

ditional frame-based cameras. In contrast, we propose to

learn policies based on the data produced by event cameras

(asynchronous, pixel-wise brightness changes with very

low latency and high dynamic range), which naturally re-

spond to motion in the scene.

The capabilities of event cameras to provide rich data

for solving pattern recognition problems has been initially

shown in [16, 17, 18, 19, 10]. In all these problems, ma-

chine learning algorithms were applied on data acquired by

an event camera to solve classification problems, and were

generally trained and tested on datasets of limited size. For

example [16, 17, 18] use neural networks on event data to

recognize cards of a deck (4 classes), faces (7 classes) or

characters (36 classes). A similar case is that of [19], where

a network is trained to recognize three types of gestures

(rocks, papers, scissors) in dynamic scenes. So far, esti-

mation problems in which the unknown variable is continu-

ous were tackled by discretization, i.e., the solution space

was partitioned into a finite number of classes. This is

the case, for example, of the predator-prey robots in [10],

where a network trained on the combined input of events

and grayscale frames from a Dynamic and Active-pixel Vi-

sion Sensor (DAVIS) [20] produced one of four outputs: the

prey is on the left, center, or right of the predator’s field of

view (FOV), or it is not visible in the FOV. Another example

is that of the optical flow estimation method in [21], where

the network produced motion vectors from a set with 8 dif-

ferent directions and 8 different speeds (i.e., 64 classes).

As opposed to the classification approximation of all

previous methods, this paper addresses a continuous estima-

tion problem (steering angle prediction) from a regression

point of view. Hence, we are the first to tackle continuous

estimation problems with event cameras in a principled way

without resorting to partitioning the solution space; the an-
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Figure 2: Block diagram of the proposed approach. The output of the event camera is collected into frames over a specified

time interval T , using a separate channel depending on the event polarity (positive and negative). The resulting synchronous

event frames are processed by a ResNet-inspired network, which produces a prediction of the steering angle of the vehicle.

gles produced by our network can take any value, not just

discrete ones, in the range [−180◦,180◦]. Moreover, in con-

trast to previous event-based vision learning works which

use small datasets, we show results on the largest and most

challenging (due to scene variability) event-based dataset to

date.

3. Methodology

Our approach aims at predicting steering wheel com-

mands from a forward-looking DVS sensor [1] mounted on

a car. As shown in Fig. 2, we propose a learning approach

that takes as input the visual information acquired by an

event camera and outputs the vehicle’s steering angle. The

events are converted into event frames by pixel-wise accu-

mulation over a constant time interval. Then, a deep neural

network maps the event frames to steering angles by solving

a regression task. In the following, we detail the different

steps of the learning process.

3.1. Event­to­Frame Conversion

All recent and successful deep learning algorithms are

designed for traditional video input data (i.e., frame-based

and synchronous) to benefit from conventional processors.

In order to take advantage of such techniques, asynchronous

events need to be converted into synchronous frames. To

do that, we accumulate the events1 ek = (xk,yk, tk, pk) over

a given time interval T in a pixel-wise manner, obtaining

2D histograms of events. Since event cameras naturally

respond to moving edges, these histograms of events are

maps encoding the relative motion between the event cam-

era and the scene. Additionally, due to the sensing principle

of event cameras, they are free from redundancy.

Inspired by [18], we use separate histograms for positive

1An event ek consists of the spatiotemporal coordinates (xk,yk, tk) of a

relative brightness change of predefined magnitude together with its polar-

ity pk ∈ {−1,+1} (i.e., the sign of the brightness change).

and negative events. The histogram for positive events is

h+(x,y)
.
= ∑

tk∈T, pk=+1

δ (x− xk,y− yk), (1)

where δ is the Kronecker delta, and the histogram h− for

the negative events is defined similarly, using pk =−1. The

histograms h+ and h− are stacked to produce a two-channel

event image. Events of different polarity are stored in dif-

ferent channels, as opposed to a single channel with the bal-

ance of polarities (h+− h−), to avoid information loss due

to cancellation in case events of opposite polarity occur in

the same pixel during the integration interval T .

3.2. Learning Approach

3.2.1. Preprocessing. A correct normalization of input

and output data is essential for reliably training any neural

network. Since roads are almost always straight, the steer-

ing angle’s distribution of a driving car is mainly picked in

[−5◦,5 ◦]. This unbalanced distribution results in a biased

regression. In addition, vehicles frequently stand still be-

cause they are exposed, for example, to traffic lights and

pedestrians. In those situations where there is no motion,

only noisy events will be produced. To handle those prob-

lems, we pre-processed the output variable (i.e. steering an-

gles) to allow successful learning. To cope with the first is-

sue, only 30 % of the data corresponding to a steering angle

lower than 5◦ is deployed at training time. For the latter we

filtered out data corresponding to a vehicle’s speed smaller

than 20km h−1. To remove outliers, the filtered steering an-

gles are then trimmed at three times their standard devia-

tion and normalized to the range [−1,1]. At testing time,

all data corresponding to a steering angle lower than 5◦ is

considered, as well as scenarios under 20km h−1. The re-

gressed steering angles are denormalized to output values

in the range [−180◦,180◦]. Finally, we scaled the network

input (i.e., event images) to the range [0,1].

3.2.2. Network Architecture. To unlock the power of

convolutional architectures for our study case, we first have
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Figure 3: Different input data extracted from the DDD17

dataset [22] for the four lighting conditions. The first col-

umn depicts grayscale images collected with a traditional

camera (frames of the DAVIS). The second column shows

images created by difference of two consecutive grayscale

images. The third column corresponds to time-integrated

event images (displayed as single-channel images, h+−h−,

to highlight the similarity with those on the second column).

to adapt them to accommodate the output of the event cam-

era. Initially, we stack event frames of different polarity,

creating a 2D event image. Afterwards, we deploy a series

of ResNet architectures, i.e., ResNet18 and ResNet50, since

they have proved to be easier to optimize as the number

of layers (depth) increases, and to better cope with overfit-

ting [11]. As these networks have been designed for image

classification purposes, we use them as feature extractors

for our regression problem, considering only their convolu-

tional layers. To encode the image features extracted from

the last convolutional layer into a vectorized descriptor, we

use a global average pooling layer [23] that returns the fea-

tures’ channel-wise mean. This choice has proved to im-

prove the performance, compared to directly adding a fully-

connected layer, since it minimizes overfitting by reduc-

ing the total number of parameters and it better propagates

the gradients. After the global average pooling, we add a

fully-connected (FC) layer (256-dimensional for ResNet18

and 1024-dimensional for ResNet50), followed by a ReLU

non-linearity and the final one-dimensional fully-connected

layer to output the predicted steering angle.

4. Experimental Setup

4.1. Dataset

To predict steering angles from event images we use the

publicly available DAVIS Driving Dataset 2017 (DDD17)

[22]. It contains approximately 12 hours of annotated driv-

ing recordings (for a total of 432 GB) collected by a car

under different and challenging weather, road and illumina-

tion conditions. The dataset includes asynchronous events

as well as synchronous, grayscale frames, collected concur-

rently by the DAVIS2 sensor [20]. We divided the record-

ings into four subsets, according to the labels provided by

the dataset’s authors: day, day sun, evening, and night.

Subsets differ not only in the illumination and weather con-

ditions, but also in the route travelled. Fig. 3 depicts some

data samples.

Since, while driving, subsequent frames are usually very

similar and have almost identical steering angles, randomly

dividing the dataset into training and test subsets would re-

sult in over-optimistic estimates. Therefore, to properly test

generalization of the learned models, we divide the dataset

as follows. We split the recordings into consecutive and

non-overlapping short sequences of a few seconds each, and

use alternate subsets of these sequences for training and

testing. In particular, training sequences correspond to 40

seconds of recording, while test sequences to 20 seconds.

As shown in Fig. 4, training subsets alternate with test sub-

sets, resulting in different samples.

4.2. Performance Comparison on Different Types
of Images

We predicted steering angles using three different types

of visual inputs:

1. grayscale images,

2. difference of grayscale images,

3. images created by event accumulation.

The grayscale images correspond to absolute intensity

frames from a traditional camera (first column of Fig. 3)

and they correspond to the typical input of state-of-the-art

steering angle prediction systems (Section 2). As already

pointed out above, the grayscale frames coming from a

DAVIS sensor allow a fair comparison with events, since,

being produced by the same photodiodes, they observe ex-

actly the same scene. We also compared our methodol-

ogy against temporal difference of intensity images (sec-

ond column of Fig. 3). As shown in the figure, they are

similar to the event images (third column of Fig. 3). Inten-

sity differences incorporate temporal information, and, as it

2The DAVIS camera consists of a traditional grayscale camera and an

event sensor (DVS) on the same pixel array, with 346×260 pixel resolution

(DDD17 dataset). Event data is produced simultaneously from the same

photodiodes which give the frame-based intensity read-out.
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(a)

(b) (c) Zoom of (b)

Figure 4: Maps of dataset showing (a) the whole recorded

route, covering 1000 km of different roads in Switzerland

and Germany; (b) and (c) training and testing frames, in

red and blue respectively, for the day sun subset (3 hours of

driving). The training sections are different from the testing

sections, corresponding to 40 and 20 seconds of recording

respectively.

will be shown in the experiments (Section 5), they provide

a stronger baseline than the absolute intensity images for

comparing the results of the event-data architecture. More

specifically, event cameras report pixel-wise log-brightness

changes of predefined size C:

L(t)−L(t −∆t) =±C, (2)

with L(t) = log I(t), and I(t) being the intensity on the im-

age plane. When these changes (2) are aggregated over

some time interval, they quantify the amount of brightness

change (increase or decrease) that happened at each pixel,

∆L ≈ (h+−h−)C. (3)

For a small time interval, the difference of two consecutive

grayscale frames is a first order (Taylor) approximation to

such an intensity change (3) since

L(t)−L(t −∆t)
.
= ∆L ≈

∂L

∂ t
∆t. (4)

This is why images in the second and third columns of

Fig. 3, which basically encode the temporal brightness

changes over a specified time interval, look similar.

As in [9], we select as ground truth steering wheel angle

the one at 1/3 s in the future with respect to the current frame

(either event or grayscale frame).

4.3. Performance Metrics

Our network addresses the prediction of the steering an-

gle as a regression problem. To evaluate its performance,

we use the root-mean-squared error (RMSE) and the ex-

plained variance (EVA). The RMSE (5) measures the aver-

age magnitude of the prediction error, indicating how close

the observed values α are to those predicted by the net-

work α̂ ,

RMSE
.
=

√

√

√

√

1

N

N

∑
j=1

(α̂ j −α j)2. (5)

The EVA (6) measures the proportion of variation in the

predicted values with respect to that of the observed values.

Such variations are given by the variance of the residuals

Var(α̂ −α) and the variance of the observed values Var(α).

EVA
.
= 1−

Var(α̂ −α)

Var(α)
. (6)

If predicted values approximate the observed values well,

the residual variance will be less than the total variance, re-

sulting in EVA/ 1. Otherwise, the residual variance will be

equal or greater than the total variance, producing EVA = 0

or EVA < 0, respectively.

5. Experiments

We designed our experiments in order to investigate the

following questions:

1. What is the influence of the event integration time, used

to produce event frames, on the system performance?

2. What are the advantages of using event images over

grayscale or grayscale-difference as input to a network?

3. Does our method scale to very large input spaces? And

how does it compare to state-of-the-art methods based

on traditional cameras?

To answer the first question, we analyze the perfor-

mance of our system over a range of integration times (Sec-

tion 5.1). With regard to the second question, we conduct

an extensive study on the four dataset’s subsets detailed in

Section 4.1 and highlight the advantages of event images

over grayscale ones (Section 5.2). Finally, we answer the

last questions by learning a single network over the entire

dataset (Section 5.3). We show that, despite the large va-

riety of illumination, weather, and road conditions, we can

learn a robust and accurate regressor that outperforms state-

of-the-art methods based on traditional frames.

5.1. Sensitivity Analysis with Respect to the Event
Integration Time

In this section, we analyze the performance of the net-

work as a function of the integration time used to generate

5423



(a) 10 ms (b) 25 ms (c) 50 ms (d) 100 ms (e) 200 ms

Figure 5: Events collected for different durations of the interval T (cf. Fig. 2). The scene corresponds to a day sun sequence,

with the car turning left in an urban environment.

Figure 6: Distribution of the relative error in steering angle pre-

diction as a function of the ground truth steering angle and the

event integration time. The performance of the network trained on

large integration time (200 ms) degrades for large steering angles.

In contrast, the network trained on small integration time (10 ms)

predicts well large steering angles, but its performance degrades

for smaller angles. The network with an intermediate integration

time (50 ms) performs best for large and moderate steering angles.

For small angles (<5◦), small absolute errors in the angle produce

large relative errors regardless of the integration time.

the input event images from the event stream (Section 3.1).

A visual comparison between the input event images for 10,

25, 50, 100, and 200 ms, is shown in Fig. 5. These integra-

tion times were chosen to be approximately equispaced in

logarithmic scale. It can be observed that the larger the inte-

gration time, the larger is the trace of events appearing at the

contours of objects. This is due to the fact that they moved

a longer distance on the image plane during that time. We

hypothesize that the network exploits such motion cues to

provide a reliable steering prediction.

When the integration time is small, event images are gen-

erally created out of few events only. Therefore, images as-

sociated to relatively small motion are not very discrimina-

tive and easy to learn from (Fig. 5a). Conversely, in images

created with a long integration time (Fig. 5e) large motion

blur washes out the contours of objects, in particular when

the car motion is relatively high. Consequently, the pro-

duced images lose the discriminability necessary for a re-

liable estimation. This correlation between the integration

Integration time T EVA RMSE

10 ms 0.790 11.53◦

25 ms 0.792 10.42◦

50 ms 0.805 9.47◦

100 ms 0.634 13.43◦

200 ms 0.457 15.87◦

Table 1: Comparison of the ResNet50 performance for the

different integration times on day sun subset.

Figure 7: Variation of the RMSE of ResNet50 with respect

to the event accumulation time (3rd column of Table 1).

time and quality of prediction can be observed in Fig. 6.

Table 1 and Fig. 7 report quantitative results of our

ResNet50 network using the five different integration times.

As can be observed, the network performs best when it is

trained on event images corresponding to 50 ms, and the

performance gracefully degrades for smaller and larger in-

tegration times. Therefore, in the following experiments we

set the integration time to the best value, 50 ms, and further

analyze the performance of our method.

5.2. Results on Different Illumination Scenarios

Now fixing the integration time to 50 ms, we perform an

extensive study to evaluate the advantages of event frames

over grayscale-based ones for different parts of the day. To

do so, we provide a cross evaluation between architectures

and types of input frames in Tables 2 to 5. For fair compar-

ison, we deploy the same convolutional network architec-

tures as feature encoders for all considered inputs, but we

train each network independently.
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It is interesting to notice that the average RMSE is

slightly diverse among different sets. This is to be expected,

since RMSE, being dependent on the absolute value of the

steering ground truth, is not a good metric for cross com-

parison between sequences. On the other hand, our second

metric, EVA, gives a better way to compare the quality of

the learned estimator across different sequences.

The day subset, whose results are shown in Table 2, is

the most difficult one of the considered partitions. It in-

cludes five hours of driving in both urban (including park-

ing lots) and countryside scenarios. The very large vari-

ance in the input data (a.k.a. state space) made conver-

gence difficult for the grayscale baseline. In fact, the shal-

lower model, ResNet18, learned on it only a quasi-constant

solution (EVA ≈ 0), therefore converging to the data av-

erage. In contrast, our method, based on event images,

always converged to a solution outperforming the base-

lines (grayscale and grayscale difference) with both archi-

tectures. Interestingly, we observe a very large performance

gap between the grayscale difference and the event images

for the ResNet18 architecture. The main reasons behind this

behavior that we identified are: (i) abrupt changes in light-

ing conditions occasionally produced artifacts in grayscale

images (and therefore also in their differences), and (ii) at

high velocities, grayscale images get blurred and their dif-

ference becomes also very noisy (see, e.g., the first column

in Fig. 3). Note, however, that the ResNet50 architecture

produced a significant performance improvement for both

baselines (grayscale images and difference of grayscale im-

ages). This is to be expected, since deeper architectures

have more training parameters, and can therefore cope bet-

ter with larger and more complicated state spaces.

A very similar pattern can be observed in the other con-

sidered scenarios. Contrary to what we expected, we did

not notice a very large degradation of the baselines’ per-

formance when considering more challenging illumination

conditions as in the evening and night sequences. How-

ever, those latter subsets are much smaller than the other

two. Therefore, given the smaller state spaces, the networks

have an easier job to model the statistics of the datasets.

As it can be observed in Tables 2 to 5, the event cam-

era solution largely outperforms the baselines on all the

analyzed scenarios (best results per row are highlighted

in bold). In fact, our proposed methodology consistently

achieves very competitive results, even with the simpler

ResNet18 architecture.

5.3. Results on the Entire Dataset

To evaluate the ability of our proposed methodology

to cope with large variations in illumination, driving and

weather conditions, we trained a single regressor over the

entire dataset. We compare our approach to state-of-the-art

architectures that use traditional frames as input: (i) Bo-

Grayscale Grayscale diff. Events

Architecture EVA RMSE EVA RMSE EVA RMSE

ResNet18 0.047 4.57◦ 0.329 3.65◦ 0.551 2.99◦

ResNet50 0.449 3.31◦ 0.653 2.62◦ 0.728 2.33◦

Table 2: Results for day subset.

Grayscale Grayscale diff. Events

Architecture EVA RMSE EVA RMSE EVA RMSE

ResNet18 0.125 20.07◦ 0.729 11.53◦ 0.742 10.87◦

ResNet50 0.383 16.85◦ 0.802 9.62◦ 0.805 9.47◦

Table 3: Results for day sun subset.

Grayscale Grayscale diff. Events

Architecture EVA RMSE EVA RMSE EVA RMSE

ResNet18 0.172 7.23◦ 0.183 7.19◦ 0.518 5.45◦

ResNet50 0.360 6.37◦ 0.418 6.07◦ 0.602 5.01◦

Table 4: Results for evening subset.

Grayscale Grayscale diff. Events

Architecture EVA RMSE EVA RMSE EVA RMSE

ResNet18 0.181 6.96◦ 0.449 5.73◦ 0.654 4.51◦

ResNet50 0.418 5.88◦ 0.621 4.73◦ 0.753 3.82◦

Table 5: Results for night subset.

Figure 8: Comparison of training losses for ResNet50 with

and without ImageNet initialization.

jarski et al. [15] and (ii) the CNN-LSTM architecture, ad-

vocated in Xu et al. [9], but without the additional segmen-

tation loss that is not available in our dataset. In our eval-

uation we do not consider [8], since, in spite of offering an

interpretable solution, it gives almost no improvements over

the simpler architecture in [15].

Table 6 summarizes the findings of our experiments. In

terms of EVA and RMSE, the first baseline obtains a poor

performance on the regression task. Indeed, the EVA is
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Architecture EVA RMSE Input

Bojarski et al. [15] 0.161 9.02◦ Grayscale

CNN-LSTM [9] 0.300 8.19◦ Grayscale

(Ours) ResNet18 0.783 4.58◦ Events

(Ours) ResNet50 (ImageNet init) 0.826 4.10◦ Events

(Ours) ResNet50 (Random init) 0.800 4.40◦ Events

Table 6: Comparison between two state-of-the-art learn-

ing approaches using grayscale frames [9, 15] and the pro-

posed networks that process event frames, for the whole

dataset [22]. For ResNet50, both random and ImageNet ini-

tializations have been evaluated.

very small (0.161) and the RMSE is very close to the dom-

inant steering deviation in the dataset (±10◦). To provide

a stronger baseline, we incorporated temporal information

to the grayscale frames by using a CNN-LSTM architecture

(resulting EVA ≈ 0.3). We chose this architecture because it

has been reported to provide very competitive results in the

evaluation of [9]. This is a more fair comparison because

event images inherently contain temporal information.

All our proposed architectures based on event images

largely outperform the considered baselines based on tra-

ditional frames. As it could be reasonably expected, the

best results are obtained with the deepest architectures

(ResNet50). More interestingly, we noticed some benefits

when initializing the ResNet50 weights with those learned

on the ImageNet challenge3 [12]. Even though it is well

known that feature learning is generally transferable for

different tasks [24], it is still remarkable that parameters

learned on traditional RGB images have a positive trans-

fer on time-integrated event images. As pointed out in [24],

the main reason behind this is that the first convolutional

weights of a network trained on ImageNet are sensitive to

low-level features present in the image (e.g., edges), which

are present on both traditional and event frames. Leveraging

transfer learning from the immense ImageNet classification

dataset not only makes training easier and faster (Fig. 8),

but also produces a better estimator (Table 6).

6. Discussion

A great deal of why a network produces better results

on event images than on grayscale frames (or their differ-

ence) is their ability to capture scene dynamics. At high

velocities, grayscale frames suffer from motion blur (e.g.,

side-road trees on the first row of Fig. 3), whereas event

images preserve edge details due to the very high temporal

resolution (microsecond) of event cameras and the fact that

we acquire positive and negative events in separate channels

that are fed to the network, thus avoiding loss of information

3To reuse the weights, we averaged the filters of the first convolutional

layer along the channel dimension and duplicated them to convert from

3-channel to 2-channel inputs.

(Section 3.1). The temporal aggregation needed to feed the

network does, however, affect latency. Additionally, event

cameras have a very high dynamic range (HDR) (140 dB

compared to the 55 dB range of the grayscale frames in the

dataset [22]). Hence, event data represent HDR content of

the scene, which is not possible in traditional cameras since

that would require long exposure times. This is beneficial

in order to be robust to different illumination conditions

(bright day, dark night, abrupt transitions in tunnels, etc.).

Additionally, since event cameras respond to moving edges

and therefore filter out temporally-redundant data, they are

more informative about the vehicle motion than individual

grayscale frames. As shown qualitatively in Fig 1 and more

quantitatively in Fig 6, focusing on moving edges facilitate

solving the learning problem. Selecting a good integration

time for creating event images additionally improves per-

formance (Fig. 7). Interesting future work concerning this

problem is to use reinforcement learning techniques [25] to

produce an adaptive integration time policy that depends on

the car’s speed and the observed scene.

State-of-the-art convolutional networks need lots of data

to pick up on important motion features. To simplify the

task, we showed that it is possible to transfer knowledge

from networks trained with traditional images on classifica-

tion tasks. As a result, we were able to unlock the capabili-

ties of event cameras to solve the task at hand.

7. Conclusion

In this work, we showed how a DL-based approach can

benefit from the natural response of event cameras to mo-

tion and accurately predict a car steering angle under a wide

range of conditions. Our DL approach, specifically de-

signed to work with the output of event sensors, learns to

predict steering angles by picking them up from the mo-

tion cues contained in event-frames. Experimental results

showed the robustness of the proposed method, especially

under those conditions where grayscale frames fail, e.g.,

large input spaces, challenging illumination conditions, and

fast motion. In conclusion, we showed that it outperforms

other state-of-the-art systems based on traditional cameras.

We encourage the reader to watch the accompanying video,

available at https://youtu.be/_r_bsjkJTHA.
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