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Abstract

The world is covered with millions of buildings, and

precisely knowing each instance’s position and extents is

vital to a multitude of applications. Recently, automated

building footprint segmentation models have shown supe-

rior detection accuracy thanks to the usage of Convolu-

tional Neural Networks (CNN). However, even the latest

evolutions struggle to precisely delineating borders, which

often leads to geometric distortions and inadvertent fusion

of adjacent building instances. We propose to overcome

this issue by exploiting the distinct geometric properties

of buildings. To this end, we present Deep Structured Ac-

tive Contours (DSAC), a novel framework that integrates

priors and constraints into the segmentation process, such

as continuous boundaries, smooth edges, and sharp cor-

ners. To do so, DSAC employs Active Contour Models

(ACM), a family of constraint- and prior-based polygonal

models. We learn ACM parameterizations per instance us-

ing a CNN, and show how to incorporate all components

in a structured output model, making DSAC trainable end-

to-end. We evaluate DSAC on three challenging building

instance segmentation datasets, where it compares favor-

ably against state-of-the-art. Code will be made available

on https://github.com/dmarcosg/DSAC.

1. Introduction

Accurate footprints of individual buildings are of

paramount importance for a wide range of applications,

such as census studies [33], disaster response after earth-

quakes [25] and developmental assistances like malaria con-

trol [11]. Automating large-scale building footprint seg-

mentation has thus been an active research field, and the

emergence of high-capacity models like fully convolutional

networks (FCNs) [13], together with vast training data [32],

has led to promising improvements in this field.

Most studies address semantic segmentation of build-

ings, which consists of inferring a class label (e.g. “build-

ing”) densely for each pixel over the overhead image of in-

terest [16, 20, 21, 30]. While this approach may provide

GT Init. Result
Figure 1. DSAC uses a CNN to predict the energy function used

by an Active Contour Model (ACM) to modify an initial instance

polygon using learned geometric priors. Left: image from the

TorontoCity validation dataset with ground truth polygons, center:

initial polygons provided by [2], right: results of DSAC.

global statistics such as building area coverage estimation,

it comes short at yielding estimations at the instance level.

In computer vision, this problem is known as instance seg-

mentation, where models provide a segmentation mask on a

per-object instance basis. Solving this task is far more chal-

lenging than semantic segmentation, since the model has to

understand whether any two building pixels belong to the

same building or not. Precise delineation of object borders,

with sharp corners and straight walls in the case of build-

ings, is a task that CNNs generally perform poorly at [9]:

as a result, building segmentations from CNNs commonly

have a high detection rate, but fail in terms of spatial cover-

age and geometric correctness.

Active Contour Models (ACM [17]), also called snakes,

may be considered to address this issue. ACMs augment

bottom-up boundary detectors with high-level geometric

constraints and priors. They work by constraining the possi-

ble outputs to a family of curves (e.g. closed polygons with

a fixed number of vertices), and optimizing them by means

of energy minimization based on both the image features

and a set of shape priors such as boundary continuity and
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smoothness. Additional terms have been proposed, among

which the balloon term [7] is of particular interest: it mim-

ics the inflation of a balloon by continuously pushing the

snakes’ vertices outwards, thus preventing it to collapse to

a single point. By expressing object detection as a poly-

gon fitting problem with prior knowledge, ACMs have the

potential of approaching object edges precisely and without

the need for additional post-processing. However, the orig-

inal formulation lacked flexibility, since it relied on low-

level image features and a global parameterization of priors,

when a more useful approach would be to penalize strongly

the curvature in the regions of the boundary known to be

straight or smooth and reduce the penalization in the regions

that are more likely to form a corner. Moreover, the balloon

term has so far only been included as a post-energy global

minimization force and does not take part in the energy min-

imization defining the snake.

In this paper, we propose to combine the expressiveness

of deep CNNs with the versatility of ACMs in a unified

framework, which we term Deep Structured Active Con-

tours (DSAC). In essence, we employ a CNN to learn the

energy function that would allow an ACM to generate poly-

gons close to a set of ground truth instances. To do so,

DSAC leverages the original ACM formulation by learn-

ing high-level features and prior parameterizations, includ-

ing the balloon term, in one model and on a local basis,

i.e. penalizing each term differently at each image location.

We cast the optimization of the ACM as a structured pre-

diction problem and find optimal features and parameters

using a Structured Support Vector Machine (SSVM [1, 29])

loss. As a consequence, DSAC is trainable end-to-end and

able to learn and adapt to a particular family of object in-

stances. We test DSAC in three building instance segmenta-

tion datasets, where it outperforms state-of-the-art models.

Contributions This work’s contributions are as follows:

• We formulate the learning of the energy function of an

ACM as a structured prediction problem;

• We include the balloon term of the ACM into the en-

ergy formulation;

• We propose an end-to-end framework to learn the

guiding features and local priors with a CNN.

2. Related work

Building footprint extraction Most current automated

approaches make use of 3D information extracted from

ground or aerial LIDAR [31], or employ humans in the

loop [4]. The use of a polygonal shape prior has been shown

to substantially improve the results [27] of systems based

on color imagery and low level features. Recent efforts em-

ploy deep CNNs for semantic segmentation and allowed a

great leap towards full automation of building segmenta-

tion [16]. Works considering building instance segmenta-

tion are scarcer and the task has been recently defined as

far-from-being solved [32], despite the interest shown by

the participation to numerous contests aiming at automatic

vectorization of building footprints from overhead imagery:

SpaceNet1, DSTL2 or OpenAI Challenge3. Our proposed

DSAC aims at making high-level geometric information

available to CNN based methods as a step towards bridg-

ing this gap.

Instance segmentation in Computer Vision Since in-

stance segmentation combines object detection and dense

segmentation, many proposed pipelines attempt at fusing

both tasks in either separate or end-to-end trainable mod-

els. For example, [8] employ a multi-task CNN to detect

candidate objects and infer segmentation masks and class

labels per detection. [10] train a CNN on pairs of locations

and predicts the likelihood for the pair to belong to the same

object. [22] apply an attention-based RNN sequentially on

deep image features to trace object instances in propaga-

tion order. [2] refine an existing semantic segmentation map

by predicting a distance transform to the nearest boundary.

High level relationships are accounted for in [23, 34] by

means of an instance MRF applied to the CNN’s output.

All these methods employ pixel-wise CNNs and are thus

not apt to integrating output shape priors directly, as polyg-

onal output models would be. Only a few works deal with

CNNs that explicitly produce a polygonal output. In [5], a

recursive neural network is used to generate a segmentation

polygon node by node, while in [24] a CNN predicts the

direction of the nearest object boundary for each node in a

polygon and uses it as a data term in an ACM. However,

the first model is tailored towards a different problem (in-

teractive segmentation and correction) and does not allow

the inclusion of strong priors, and the second decouples the

CNN training from ACM inference, thus lacking the end-

to-end training capabilities of the proposed DSAC.

Active contours The first ACMs were introduced by Kass

et al. in 1988 under the name of snakes [17]. Variants of this

original try to overcome some of its limitations, such as the

need for precise initializations, or the dependence on user

interaction. In [12] the authors propose to use two coupled

snakes that better capture the information in the image. The

above mentioned balloon force was introduced by [7].

Although some modifications [18] have been proposed

to improve the data term of the original paper, they rely on

simple assumptions about the appearance of the objects and

on global parameters for weighting the different terms in the

1https://wwwtc.wpengine.com/spacenet
2https://www.kaggle.com/c/dstl-satellite-imagery-feature-detection
3https://werobotics.org/blog/2018/01/10/open-ai-challenge/
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Figure 2. DSAC idea. The CNN predicts the values of the energy

terms to be used by the active contour model (ACM): a global α

for the length penalization and maps for local D, the data term,

β, the curvature penalization and κ, the balloon term. After ACM

inference, a structured loss is computed and given to the CNN,

whose parameters can then be updated using backpropagation.

energy function. The proposed DSAC leverages the original

formulation by including local prior information, i.e. values

weighting the snakes’ energy function terms on a per-pixel

basis, and learns them using a CNN. Although this work

focuses on curvature priors useful for segmenting objects of

polygonal shape, other priors can be enforced with ACMs,

such as convexity for biomedical imaging [23].

Structured learning with CNNs Structured predic-

tion [28] allows to model dependencies between multiple

output variables and hence offers an elegant way to incor-

porate prior rule sets on output configurations. End-to-end

trainable structured models exceed traditional two-step so-

lutions by enriching the learning signal with relations at the

output level. Although these models have been applied to a

variety of problems [3, 6, 26], we are not aware of any work

dealing with instance level segmentation.

We use a structured loss as a learning signal to a CNN

such that it learns to coordinate the different ACM energy

terms, which are heavily interdependent.

3. Method

We present the details of a modified ACM inference al-

gorithm with image-dependent and local penalization terms

as well as the structured loss that is used to train a CNN

to generate these penalization maps. A diagram of the pro-

posed method is shown in Fig. 2. The proposed training

algorithm proceeds as exposed in Algorithm 1.

Data: X ,Y: image/polygon pairs in the training set.

Y0: corresponding polygon initializations.

for xi,yi ∈ X ,Y do
CNN inference: D, α, β, κ← CNNω(xi)
ACM inference: ŷi ← ACM(D,α, β, κ,y0

i )
∂L
∂D

, ∂L
∂α

, ∂L
∂β

, ∂L
∂κ
← ŷi,yi and Eqs. 18-21

Compute ∂L
∂ω

using backpropagation

Update CNN: ω ← ω − η ∂L
∂ω

end

Algorithm 1: The DSAC training algorithm. At every it-

eration, the CNN forward pass is followed by ACM infer-

ence, which yields a contour that is used to compute the

structured loss.

Note that i) DSAC does not depend on any particular

ACM inference algorithm, and ii) the chosen ACM algo-

rithm does not need to be differentiable.

3.1. Locally penalized active contours

An active contour [17] can be represented as a poly-

gon y = (u,v) with L nodes ys = (us, vs) ∈ R
2, with

s ∈ 1 . . . L, where each s represents one of the nodes of the

discretized contour. The polygon y is then deformed such

that the following energy function is minimized:

E(y,x) =

L
∑

s=1

[

D
(

x, (ys)
)

+ α
(

x, (ys)
)

∣

∣

∣

∂y

∂s

∣

∣

∣

2

+

β
(

x, (ys)
)

∣

∣

∣

∂2y

∂s2

∣

∣

∣

2
]

+
∑

u,v∈Ω(y)

κ(x, (u, v)), (1)

where D
(

x
)

∈ R
U×V is the data term, depending on

input image, of size U × V , x ∈ R
U×V×d, α

(

x
)

, β
(

x
)

∈
R

U×V are the terms encouraging short and smooth poly-

gons respectively, κ(x) is the balloon term and Ω(y) is the

region enclosed by y. The notation D
(

x, (ys)
)

means the

value in D
(

x
)

indexed by the position ys = (us, vs).
Due to their local nature, D,β and κ are U × V maps in

our experiments while α is treated as a single scalar.

3.1.1 Data term

This term identifies areas of the image where the nodes of

the polygon should lie. In the literature, D
(

x
)

is usually

some predefined function on the image, typically related to

the image gradients. D(x) should learn to provide relatively

low values along the boundary of the object of interest and

high values elsewhere. During ACM inference, the direc-

tion of steepest descent −∇D(x) = −
[

∂D(x)
∂u

,
∂D(x)
∂v

] is

used as the data force term, moving the contour towards re-

gions where D is low.
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3.1.2 Internal terms

In the literature, the values of α and β are generally a single

scalar, meaning that the penalization has the same strength

in all parts of the object. This leads to a trade-off between

over-smoothing corner regions and under-smoothing others.

We avoid this trade-off by assigning different β penaliza-

tions to each pixel, depending on which part of the object

lies underneath.

The internal energy Eint = α
(

x, (ys)
)

|y′|2 +

β
(

x, (ys)
)

|y′′|2 penalizes the length (membrane term) and

curvature (thin plate term) of the polygon. In order to obtain

the direction of steepest descent, we can express the internal

energy as a function of finite differences:

Eint =

L∑

s=0

α(ys)
∣

∣

ys+1 − ys

∆s

∣

∣

2
+β(ys)

∣

∣

ys+1 − 2ys + ys−1

∆s2

∣

∣

2
,

(2)

and compute the derivative of Eint w.r.t. the coordinates of

node s, ys, expressed as a sum of scalar products:

∂Eint

∂ys

=
2

∆s
[−αs−1, αs−1+αs,−αs]·[ys−1,ys,ys+1]

⊤

+
2

∆s2
[βs−1,−2βs − 2βs−1, βs−1 + 4βs + βs+1,

− 2βs+1 − 2βs, βs+1] · [ys−2,ys−1,ys,ys+1,ys+2]
⊤.

(3)

The Jacobian matrix (in this case with two column vectors)

can then be expressed as a matrix multiplication:

∂Eint

∂y
= (A+B)y (4)

where A(α) is a tri-diagonal matrix and B(β) is a penta-

diagonal matrix.

3.1.3 Balloon term

The original balloon term [7] consists of adding an outwards

force of constant magnitude in the normal direction of each

node, thus inflating the contour. As with the β term, we

propose to increase its flexibility by allowing it to take a

different value at each image location.

In [7], the balloon term is only considered as a force

added after the direction of steepest descent for the other

energy terms has been computed. In DSAC, the SSVM for-

mulation requires to express it in the form an energy.

The normal direction to the contour at ys follows the

vector:

ns =
[

ys+1−ys−1

]

+90o
=

[

vn+1− vn−1, un−1−un+1

]

.

(5)

This can be rewritten such that the whole set of L normal

vectors is expressed as:

n =
[

Cv,u⊤C
]

(6)

where C is a tri-diagonal matrix with 0 in the main diagonal,

1 in the upper diagonal and −1 in the lower diagonal.

Integrating this expression with respect to u and v, we

obtain the scalar Eb, corresponding to the polygon’s area

(by the shoelace formula to compute the area of a polygon):

Eb = u
⊤Cv =

∫ ∫

u,v∈Ω(y)

dudv (7)

Instead of maximizing the area of the polygon, which

would be the result of pushing nodes in the normal direc-

tion, we propose to use a more flexible term that maximizes

the integral of the values of a map κ(x) ∈ R
M×N over the

area enclosed by the contour, Ω(y). If we discretize the

integral to the pixel values that conform κ, we obtain:

Ek =
∑

u,v∈Ω(y)

κ(u, v) (8)

After this modification we need to recompute the force

form of this term by finding the L × 2 Jacobian matrix

[∂Ek

∂us

, ∂Ek

∂vs

], s ∈ [1, L].

This corresponds to how a perturbation in us and vs
would affect Ek. Since the perturbations are considered to

be very small, we assume that the distribution of the κ(u, v)
values along the segments [ys,ys+1] and [ys−1,ys] will be

identical to the one in [ys+∆y,ys+1] and [ys−1,ys+∆y],
respectively. As shown in Fig. 3, this boils down to sum-

ming a series of trapezoid areas, forming the two depicted

triangles, each one weighted by its assigned κ value.

ys+1

ys

ys

ys-1

+Δus
ys+1

ys

ys-1

ys+Δvs

a) b)
Figure 3. A perturbation of ys in either the u or v direction would

result in a change in area highlighted as two shaded triangles shar-

ing the same base.

In Fig. 3a, both triangles have bases of length ∆us and

heights vs−1 − vs and vs+1 − vs, while in Fig. 3b the bases

are ∆vs and the heights us−1 − us and us+1 − us.

To obtain the κ weighted areas in Fig. 3a, we compute:

∆Ek =
∆us

vs−1 − vs

∫ vs−1−vs

h=0

hκ(h)dh+

∆us

vs+1 − vs

∫ vs+1−vs

h=0

hκ(h)dh, (9)
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and therefore the force term we need for inference is:

∂Ek

∂us

=
1

vs−1 − vs

∫ vs−1−vs

h=0

hκ(h)dh+

1

vs+1 − vs

∫ vs+1−vs

h=0

hκ(h)dh (10)

The same for Fig. 3b can be obtained by swapping u and v.

These derivatives point in the normal direction when the

values of κ are equal in all locations.

3.2. Active contour inference and implementation

When solving the active contour inference, Eq. (1), the

four energy terms can be split into external terms Eext:

the data (D) and balloon energies (Ek); and internal terms

Eint: the energies penalizing length (α) and curvature (β).

Since Eint depends only on the contour y, we can find an

update rule that minimizes it on the new time time step:

y
t+1 = y

t −
dEext

dyt
− (A+B)yt+1. (11)

If we solve this expression for yt+1, we obtain:

y
t+1 = (I +A+B)−1

(

y
t −

dEext

dyt

)

. (12)

With I being the identity matrix. An efficient implemen-

tation of the ACM inference is critical for the usability of

the method, since thousands of iterations are typically re-

quired by CNNs to be trained, and the ACM inference has

to be performed at each iteration. We have implemented the

described locally penalized ACM using a Tensorflow graph.

The typical inference time is under 50 ms on a single CPU

for the settings used in this paper.

3.3. Structured SVM loss

Since no ground truth is available for the penalization

terms, we frame the problem as structured prediction, in

which loss augmented inference is used to generate neg-

ative examples to complement the positive examples of the

ground truth polygons. The weights of the energy terms can

then be modified such that the energy corresponding to the

ground truth is lowered, while the one of the loss augmented

results, which are presumed to be wrong, is increased.

Given a collection of ground truth pairs (yi,xi) ∈ Y ×
X , i = 1 . . . N , and a task loss function ∆(y, ŷ), we would

like to find the CNN parameters ω such that, by optimizing

Eq. (1) and thus obtaining the inference result:

ŷ
i = argmin

y∈Y
E(y,x, ω) (13)

one could expect a small ∆(yi, ŷi). The problem becomes:

ω̂ = argmin
ω

∑

i

∆(yi, argmin
y∈Y

E(y,x, ω)) (14)

Since ∆(yi, ŷi) could be a discontinuous function, we

can substitute it by a continuous and convex upper bound,

such as the hinge loss. By adding an ℓ2 regularization and

summing for all training samples, this becomes the max-

margin formulation:

L(Y,X , ω) =
1

2
‖ω‖2+ (15)

C
∑

i

(

max
y∈Y

[

0,∆(y,yi)− E(y,xi;ω) + E(yi,xi;ω)
]

)

.

Since L(Y,X , ω) is convex but not differentiable, we

compute the subgradient, which requires to find the most

penalized constraint with the current ω:

ŷ
i = argmax

y∈Y

[

∆(y,yi)− E(y,xi;ω)
]

(16)

This means to first run the ACM using the current ω and

an extra term corresponding to the loss ∆(y,yi). Once we

obtain ŷi, we can then compute the subgradient as:

∂L(Y,X , ω)

∂ω
= ω+C

∑

i

(∂E(yi,xi;ω)

∂ω
−
∂E(ŷi,xi;ω)

∂ω

)

(17)

We compute the subgradients of the loss with respect to

each of the four outputs as

∂L(yi,xi, ω)

∂Dω(xi)
= [(u, v) ∈ y

i]− [(u, v) ∈ ŷ
i] (18)

∂L(yi,xi, ω)

∂αω(xi)
= (19)

∣

∣

∣

∂yi(u, v)

∂s

∣

∣

∣

2

[(u, v) ∈ y
i]−

∣

∣

∣

∂ŷi(u, v)

∂s

∣

∣

∣

2

[(u, v) ∈ ŷ
i]

∂L(yi,xi, ω)

∂βω(xi)
= (20)

∣

∣

∣

∂2yi(u, v)

∂s2

∣

∣

∣

2

[(u, v) ∈ y
i]−

∣

∣

∣

∂2ŷi(u, v)

∂s2

∣

∣

∣

2

[(u, v) ∈ ŷ
i]

∂L(yi,xi, ω)

∂κω(xi)
= [(u, v) ∈ Ω(yi)]− [(u, v) ∈ Ω(ŷi)].

(21)
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In the above equations, [·] represents the Iverson bracket.

Finally, we can get
∂L(Y,X ,ω)

∂ω
using the chain rule and mod-

ifying each CNN parameter ω applying:

ωt+1 = ωt − η
∂L(Y,X , ω)

∂ω
, (22)

which will simultaneously decrease E(yi,xi;ω) and in-

crease E(ŷi,xi;ω), thus making a better solution more

likely when performing inference anew.

Task loss The task loss ∆(y,yi) defines the actual objec-

tive we want to solve with the SSVM loss. Since it’s the

most common metric in instance segmentation, we employ

the Intersection-over-Union (IoU) between the prediction y

and the ground truth yi. Note that optimizing for IoU can

be split into maximizing the intersection while minimizing

the union. During training, this allows us to simply add a

negative value during training to the κ map at the locations

within the ground truth and a positive outside to obtain a

loss-augmented inference (see Fig. 4).

yi

y

Figure 4. When training we encourage a high task loss (IoU) by

modifying the balloon term Eκ, adding a negative constant to κ

at the nodes of the prediction y inside the ground truth y
i (light

gray), and a positive constant to those outside (dark gray).

4. Experiments

We test the proposed DSAC method for building foot-

print extraction from overhead images. We consider two

settings: manual initialization, where the user provides a

single click near the center of the building and automatic

initialization, where an instance segmentation algorithm is

used to generate the initial polygons. The first setting is

tested in two datasets, Vaihingen and Bing Huts, while the

second is tested in the TorontoCity dataset [32]. The three

datasets are detailed in the respective sections.

4.1. CNN architecture and general setup

To learn the ACM energy terms, we use a CNN architec-

ture similar to the Hypercolumn model in [14]. The input

consists of a patch cropped around each initialization poly-

gon and resized an image of fixed size for each dataset. The

first layer consists of 7×7 convolutions, the second of 5×5
and all subsequent layers are of size 3 × 3. All the convo-

lutional layers are followed by ReLu, batch normalization

and 2 × 2 max-pooling. The number of filters is increased

with the depth: 32, 64, 128 ,128, 256 and 256 for the six

blocks. The output tensors of all the layers are then upsam-

pled to the output size and concatenated. After this, a two-

layer MLP with 256 and 64 hidden units is used to predict

the four output maps: D(x), α(x), β(x) and κ(x). We use

this architecture for all datasets, with the exception of the

Bing huts dataset, for which we skip the last two convolu-

tional layers. In all cases, we use the Adam optimizer with

a learning rate of 10−4. We augment the data with random

rotations. The number of ACM iterations is set to 50 in all

the experiments, and the number of nodes is set to L = 60
in Vaihingen and TorontoCity and L = 20 in Bing huts.

4.2. Manual initialization

In this setting, the detection step is done manually by

visual inspection. The only input required from the user

is a single click to indicate the approximate center of the

building. Two datasets are considered:

Vaihingen buildings The dataset consists of 168 build-

ings extracted from the training set of the ISPRS “2D se-

mantic labeling contest”4. The images have three bands,

corresponding to near infrared, red and green wavelengths,

and a resolution of 9 cm. We used 100 buildings to train the

models and the remaining 68 as a test set.

Bing huts The dataset consists of 605 individual huts vis-

ible on Bing maps aerial imagery at a resolution of 30 cm,

over a rural area in Tanzania. See Fig. 5 for an overview of

the study area and Fig. 7 for a full resolution subset. The

ground truth building footprints have been obtained from

OpenStreetMap5. A total of 335 images of size 80 × 80
pixels are used to train the models and the remaining 270 to

test. The lower spatial resolution, low contrast between the

buildings and the surrounding soil, as well as the high level

of label noise make Bing huts a very challenging dataset.

We compare DSAC against a baseline where we train

a CNN with the same architecture used by DSAC, but with

a 3-class cross entropy loss with classes: building, building

boundary, background. The boundary class is added to help

the model focus on learning the shapes of the buildings. In

this case, the click from the user is used to select the nearest

connected region that has been labeled as building and treat

it as the instance prediction.

4.3. Automatic initialization

Although the manual initialization only requires a single

click from the user, it can still be a tedious task for large

scale datasets. Existing instance segmentation algorithms,

4http://www2.isprs.org/commissions/comm3/wg4/

semantic-labeling.html
5http://www.openstreetmap.org
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Figure 5. Left: Overview of the 4 km2 area covered by the Bing

huts dataset. The training instances are higlighted in red and the

test ones in yellow. Right: detail of the test set.

such as the recently proposed Deep Watershed Transform

(DWT) [2], can be used instead to initialize the active con-

tours. These methods have a good recall, but tend to un-

dersegment the objects and to lose detail near to the bound-

aries. To compensate for this effect, the authors of [2] ap-

ply a morphology-based post-processing step. We test the

possibility of initializing the ACM within DSAC with the

results obtained by [2] on the TorontoCity building instance

segmentation dataset [32], with around 28000 instances for

training and 12000 for testing. The ACM contours are ini-

tialized with the output of the Deep Watershed Transform

(DWT) [2], the current state-of-the-art in terms of IoU. Two

initialization polygon types are considered: the raw DWT

output and the post-processed versions used in [32]. We

also consider a third variant, where the raw DWT is used at

train time and the post-processed one for inference at test

time: this variant is based on the intuition that making the

problem harder at train time, in addition to using the loss

augmentation, helps learning a better energy function.

5. Results and discussion

Manual initialization Table 1 reports the average Inter-

section over Union (IoU) for the two datasets. Since the

ground truth shift noise in the Bing huts dataset makes the

IoU assessment untrustworthy, the root mean square error

(RMSE in m2) committed when estimating the area of the

building footprints is also reported. DSAC significantly im-

proves the baseline in terms of IoU for both datasets. This

ablation study confirms the need to allow κ and β to vary

locally (as opposed to having a single value for the whole

image), while α can be treated as a single value without loss

of performance. It also highlights the importance of the bal-

loon term for the convergence of the contour.

Examples of segmentation results for the Vaihingen

dataset (Fig. 7, top row) show that the learned priors do in-

deed promote smooth, straight edges while often allowing

for sharp corners. By looking at the predicted energy terms

in Fig. 6 we observe that the model focuses on the corners

by producing very low D values close to them, while pre-

dicting high κ inside the building next to the corners and a

Average IoU RMSE

Vaihingen Bing huts Bing huts

CNN Baseline 0.78 0.56 23.9

DSAC (ours) 0.84 0.65 13.4

DSAC (scalar κ, β) 0.64 0.60 19.1

DSAC (no κ) 0.63 0.42 31.2

DSAC (local α) 0.83 0.65 13.4
Table 1. Results on the test set for the manual initialization exper-

iments, reported as average intersection over union (IoU, left) and

area estimation (Bing huts only), with RMSE in m2 (right).

sharp drop to 0 on the outside. Moreover, the smoothness

term β is close to 0 at the corners and high along the edges.

In the Bing huts dataset results (Fig. 7, bottom row), the

biggest jump in performance can be seen in the area estima-

tion metric. DSAC still tends to oversmooth the shapes,

probably since it is unable to learn the location of cor-

ners due to the ground truth shift noise inherent to Open-

StreetMap data, but manages to converge to polygons of the

correct size, most probably because it learns to balance the

balloon (κ, promoting large areas) and the membrane (α,

promoting short contours) terms.

Automatic initialization Table 2 reports the results ob-

tained on the TorontoCity dataset using two metrics: the

IoU-based weighted coverage (“WeighCov”) and the shape

similarity PolySim [32]. Besides DWT, we also compare

DSAC against the results of building footprint segmenta-

tion with FCN and ResNet, as reported in [32]. We ob-

serve an improvement with respect to DWT of both metrics.

DSAC obtains the best weighted coverage scores irrespec-

tively of the initialization strategy. Interestingly, the best

results are obtained by the hybrid initialization using raw

DWT at training time and post-processed DWT polygons

at test time. This suggests that our intuition about making

the model work harder at train time is correct and seems to

complement the use of a task loss in the SSVM loss. Fi-

nally, segmentation examples are shown in the last row of

Fig. 7: DSAC (in yellow) consistently returns a more de-

sirable segmentation with respect to DWT (in blue), closer

to the ground truth polygon (in green). Although we can

still see oversmoothing in our results, note how an impor-

tant amount of shift noise is also present in some instances,

making the DSAC result more plausible than the ground

truth in a few cases (red arrows).

6. Conclusion

We have shown the potential of embedding high-level

geometric processes into a deep learning framework for the

segmentation of object instances with strong shape priors,

such as buildings in overhead images. The proposed Deep

Structured Active Contours (DSAC) uses a CNN to pre-
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Figure 6. a) Image from the Vaihingen test set. The initial contour is in blue and the result in yellow, with the ground truth in green. b) Data

term D(x), where we can observe regions of lower energy along the boundary of the building. c) The balloon term κ(x) has learned to

produce positive values only inside the building, especially next to corners. d) In the thin plate term β(x), we see that the curvature tends

to be less penalized close to the building’s corners. The membrane term provided by the model in this example was α(x) = 0.74

Figure 7. Examples of test set buildings in the Vaihingen (top row), Bing huts (middle row) and TorontoCity (bottom row) datasets. Ground

truth in solid green line, baseline result in dash-dot blue and our active contour result in dashed yellow. Note that some of the ground truth

polygons in the TorontoCity dataset are shifted (red arrows).

WeighCov PolySim

FCN [19] 0.46 0.32

ResNet [15] 0.40 0.29

DWT, raw [2] (RW) 0.42 0.20

DWT, postproc. (PP) 0.52 0.24

DSAC (init.: train RW / test RW) 0.55 0.26

DSAC (init.: train PP / test PP) 0.57 0.26

DSAC (init.: train RW / test PP) 0.58 0.27
Table 2. Results of the proposed DSAC and the methods reported

in [32] on the validation set of the TorontoCity dataset, containing

over 12000 detected building instances. Two ACM initializations,

RW ([2]) and PP ([2] post-processed), are compared.

dict the energy function parameters for an Active Contour

Model (ACM) such as to make its output close to a ground

truth set of polygonal footprints. The model is trained end-

to-end by bringing the ACM inference into the CNN train-

ing schedule and using the ACM’s output and the ground

truth polygon to assess a structured loss that can be used

to update the CNN’s parameters using back-propagation.

DSAC opens up the possibility of using a large collection

of energy terms encoding for different priors, since an ade-

quate balance between them is learned automatically. The

main limitation of our model is that the initialization is as-

sumed to be given by some external method and is therefore

not included in the learning process.

Results in three different datasets, which include a 10%
relative improvement over the state-of-the-art on the Toron-

toCity dataset, show that combining the bottom-up feature

extraction capabilities of CNNs with the high-level con-

straints provided by ACMs is a promising path for instance

segmentation when strong geometric priors exist.
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