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Abstract

We introduce new, fine-grained action and emotion

recognition tasks defined on non-staged videos, recorded

during robot-assisted therapy sessions of children with

autism. The tasks present several challenges: a large

dataset with long videos, a large number of highly vari-

able actions, children that are only partially visible, have

different ages and may show unpredictable behaviour, as

well as non-standard camera viewpoints. We investigate

how state-of-the-art 3d human pose reconstruction methods

perform on the newly introduced tasks and propose exten-

sions to adapt them to deal with these challenges. We also

analyze multiple approaches in action and emotion recogni-

tion from 3d human pose data, establish several baselines,

and discuss results and their implications in the context of

child-robot interaction.

1. Introduction

Autism affects the lives of millions of people around the

world. It is estimated that 1 out 100 people in Europe suf-

fers from autism [1], whereas the Centers for Disease Con-

trol and Prevention estimates that 1 in 68 children in the US

has autism, with a prevalence of male cases over female that

amounts to a factor of 4.5 times higher [2]. The challenges

the people with autism face when interacting with others re-

volve around confusion, fear or basic misunderstanding of

emotions and affects. They have difficulties using and un-

derstanding verbal and non-verbal communication, recog-

nizing and properly reacting to other people’s feelings, and

fail to respond, either verbally or non-verbally, to social and

emotional signs coming from others.

In contrast, persons with autism cope well with rule-

based, predictable systems such as computers [12, 29, 24].

Recent developments have shown the advantages of using

humanoid robots for psycho-educational therapy, as chil-

∗Authors contributed equally

dren with autism feel more comfortable around such robots

than in the presence of humans, who may be perceived as

hard to understand and sometimes even frightening. While

humanoid robots capable of facial expressions could help

improve the ability of children with autism to recognize

other people’s emotions, most studies are based on remote

controlled human-robot interaction (HRI). Less work has

been done to automatically track and detect children’ fa-

cial expressions, body pose and gestures, or vocal behav-

ior in order to properly assess and react to the their behav-

ior, as recorded by robot cameras in unconstrained scenes.

Thus, robot-assisted therapy cannot yet be used for emo-

tion recognition and, subsequently, to enable appropriate

responses to such emotions.

In this paper, we introduce fine-grained action classifi-

cation and emotion prediction tasks defined on non-staged

videos, recorded during robot-assisted therapy sessions of

children with autism. The data is designed to support ro-

bust, context-sensitive, multi-modal and naturalistic HRI

solutions for enhancing the social imagination skills of such

children. Our contributions can be summarized as follows:

• We analyze a large scale video dataset containing

child-therapist interactions and subtle behavioral anno-

tations. The dataset is challenging for its long videos,

large number of action and emotion (valence-arousal)

annotations, difficult viewpoints, partial views, and oc-

clusions between child and therapist.

• We adapt state-of-the-art 3d human pose estimation

models to this setting, making it possible to reliably

track and reconstruct both the child and the thera-

pist, from RGB data, at comparable performance levels

with an industrial-grade Kinect system. This is desir-

able as our proposed models offer not just 3d human

pose reconstructions, but additionally detailed human

body part segmentation information which can be ef-

fective, in the long run, in precisely capturing complex

interactions or subtle behavior.
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• We establish several action and emotion recogni-

tion baselines, including systems based on child

representations, and models that jointly capture the

child and the therapist. The data, annotations and

recognition models are made available online at

http://vision.imar.ro/de-enigma.

2. Related Work

Despite their social challenges, people with autism have

rather normal – sometimes above normal – capabilities

of interacting with predictable systems such as computers

[12, 29, 24]. In recent years, the interaction approaches

based on humanoid robots such as Nao [5] or Zeno R25

[4] multiplied significantly. Such robots are sometimes pre-

ferred to humans because they are more comfortable to in-

teract with in terms of predictability, behavior complex-

ity and perceived threat. Not surprisingly, the human-like

look of these robots is a further incentive for their use over

screen-based computing technology [11, 27, 10].

Humanoid robots have been used beyond enhancing

learning methodologies for children with autism. For in-

stance, in order to explore the capacity of such children

to develop the ability to recognize the emotions of other

people, a robot called Milo portrayed various emotions –

e.g. happiness, sadness, anger, fear – through facial expres-

sions, while the child selected the appropriate emotion us-

ing a tablet-based multiple choice interface [3]. Another

study aimed at comparing the emotion expression recog-

nition abilities of children with autism with those of typ-

ically developing children [31] has shown that, by using

gestures to convey emotional expressions by a humanoid

robot (Zeno) in a social skill therapy setting, it can signif-

icantly impact the prediction accuracy of expressing emo-

tion. Other studies [34, 35] evaluated the benefits of using a

humanoid robot (KASPAR) to engage children with autism

into imitative, collaborative game playing.

Although a person’s facial expressions is the main fo-

cus in emotion understanding [25, 17], the body language

expressed through pose offers complementary information.

[18] investigated the role of body movement and posture in

expressing emotion as complementary to facial expressions

and discussed their importance in the context of embodied

conversational agents. Here, we present an automated ap-

proach for continuous emotion recognition in the valence-

arousal space, using only 3d skeleton data. Although con-

siderable steps have been taken in automatically detecting,

classifying and interpreting human action from body pose

features [20, 16, 13, 9, 37], many approaches rely on RGB-

D sensors such as Kinect [33] to estimate 3d human pose,

with datasets recorded in a controlled setup, where actions

are a-priori defined. Recent advances in 2d and 3d pose es-

timation [7, 28, 21, 6, 22, 26, 38] can potentially offer an

alternative to depth sensors by providing reliable pose es-

timates from only RGB data. Still, such methods have not

yet been tested in the context of a highly challenging, real

world, action classification problem.

Many complementary human sensing datasets are avail-

able for both pose and action recognition. Here we focus on

a very different problem domain – autism therapy –, with

unique challenges, from permission to data release to the

therapeutic setup, fine-grained action and emotion annota-

tions, the complexity of viewing angles and interactions, as

well as data large-scale. Rehg et al. [30] also proposed a

dataset of children interacting with parents and therapists,

but focused on understanding the behaviour of infants in or-

der to potentially help with early diagnosis. Their different

approach is to analyze the engagement level by detecting

smile, gaze and a fixed set of objects, relying on finding spe-

cific phrases mentioned by the therapist to help segment a

video into predefined stages. Our approach is complemen-

tary: we deal with older children that have already been

diagnosed and undertake robot assisted therapy in a less

constrained environment, and focus on understanding body

gestures aiming at technological development personalized

for children needs.

3. DE-ENIGMA Action Annotation Setup

The DE-ENIGMA [32] dataset1 contains multi-modal

recordings of therapy sessions of children with autism. The

sessions are either therapist-only or robot-assisted; the for-

mer are captured for control purposes, while the latter are

those of interest for this paper. In robot-assisted sessions a

child and a therapist sit in front of a table on which a robot is

placed. The therapist remotely controls the robot and uses it

to engage the child in the process of learning emotions. The

sessions consist of a ‘free-play’ part (where the child plays

with toys of his choice), and an actual therapy part. The

therapy is based on scenarios in which the therapist shows

cards depicting various emotions (happy, sad, angry, etc.)

which are also reproduced by the robot, and the child must

match the emotions to those performed. The cards are either

in the therapist’s hand or lie on the same table as the robot,

then the child has to pick up the one of his choice.

In this paper, we consider only the RGB + depth modal-

ities recorded using a Kinect v2 camera (at 30 FPS) placed

right above the robot head, towards the child (see fig. 1).

The child is facing the camera frontally, but due to the con-

straints in robot positioning and recording cameras, most of

the time only the upper body is visible. The therapist is also

placed in front of the table, but she usually faces the child

and the camera observes a side view of her. Most of the

time the therapist is severely occluded, with only half of the

upper body and arms visible. An illustration of the setup is

given in fig. 1.

1Available online at : http://de-enigma.eu/resources/the-

de-enigma-database/
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Figure 1. Experimental setup, constraints and recording challenges. The leftmost picture shows the constraints imposed by the table and

robot placement as well as the position and tilt of the camera. First, the camera must be placed behind the robot to avoid interfering with

the therapy. Second, the field of view must avoid the robot, so the camera has to be lifted up to a certain height above the robot, or placed

laterally. Finally, the positions of the stools of the therapist and child, who need to sit close to the table to use the cards (see second picture),

together with the robot height contribute to the final adjustment of the camera’s height and orientation angle. The second picture shows

standard recording conditions, in which, inevitably because of the table, only partial views of the therapist and child are available (their legs

are occluded by the table). The other two pictures show various challenging situations that appeared during the recordings: the therapist

and child interaction results in occlusion (third picture); the child and the therapist get out of the field of view (fourth picture).

Recordings. A selection of recordings from multiple ther-

apy sessions of 7 children was annotated with 37 action

classes. 19 classes describing the therapist’s actions were

also annotated, but have not been used in the analysis of

this paper. The children selection covers a variety of ges-

tures and interactions for typical therapy sessions.

Annotation procedure. The therapy scenarios cover a wide

variety of body gestures and actions performed by children

(see table 1). We have annotated a total of 3757 sequences,

with an average duration of 2.1 seconds. The annotation

of therapy videos relies on an extensive web-based tool de-

veloped by us that can (i) select temporal extents and (ii)

assign them a class label. Features that improve the an-

notation experience such as shortcuts for precise temporal

adjustments, current selection replays, previous annotations

filtering and visualization, or user session management, are

also included.

Details All annotations Working subset

No. of sequences 3757 2031

No. of classes (child) 37 24

No. of classes (therapist) 19 0

No. of subjects 7 7

No. of therapy sessions 24 24

Coverage 38% 23%

Total length of annotations 132.1min 74.4 min

Average sequence length 2.1s 2.1s

No. of interacting sequences 1861 749

Table 1. Details of the annotated dataset. The experiments use

2,031 annotated videos describing children body movements and

behaviour. A large part of these sequences (749) describes actions

performed by children in response/collaboration to the therapist.

The annotated sequences in our working subset cover, on average,

23% of the therapy sessions.

The dataset was annotated by 4 people, each receiving

videos from the therapy sessions of at least 3 children. To

eliminate possible mistakes, each annotator’s work was ver-

ified by the other annotators. An initial set of originally

proposed actions has been extended by the annotators with

repetitive actions of a particular child, e.g., one of the chil-

dren repetitively touched his chest with his hands. The ex-

periments presented in this paper use a subset of 2031 an-

notated sequences spanning over 24 classes common to all

children. Even if the selected classes refer to children be-

havior, some of them relate to the therapist, e.g., Pointing

to therapist, Turning towards therapist. We refer to those

as interacting sequences. Among the annotated sequences,

around a third (749 out of 2, 031) are interacting sequences.

Table 1 contains statistics of the annotations, while exam-

ples of the annotated classes are shown in fig. 2.

The annotated action classes are heavily imbalanced, as

shown in fig. 3. The children behave quite differently in the

number of annotated sequences, some being considerably

less active than others, see fig. 4. Significant differences are

observed between the sequences with the same class label,

as shown in fig. 5. These variations arise naturally in non

staged videos and are part of the dataset challenge.

4. Skeleton Reconstruction from RGB data

Our long term goal is to automatically interpret and re-

act to a child’s actions in the challenging setting of a therapy

session. In order to understand the child, we rely on high-

level features associated to her/his 3d pose and shape. In

this section we review several state-of-the-art 3d pose esti-

mation methods, discuss their shortcomings and show how

to adapt them to our particular setup.

The task of 3d pose estimation is defined as a func-

tion from an input image, I ∈ R
W×H×3, to body joint

coordinates J ∈ R
N×3. Different systems may consider

slightly different kinematic tree configurations, but a com-

mon set includes the head, neck, shoulders, elbow, wrists,

hips, knees and ankles.

DMHS [28] is a multitask deep neural network that esti-

mates both the 2d and 3d joint positions and the semantic
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Figure 2. Examples of annotations we provide. Some of the actions are defined in relation to the therapist (High-five, Grab card from

therapist) or the robot (Point to Robot), while other describe the child independently (Clap hands, Wave, etc).

Figure 3. Action distribution in the dataset. Each bar-color corre-

sponds to one child. For brevity, on the x axis R stands for robot

and T for therapist, e.g. the label Point R refers to the action Point

to the Robot. Note highly imbalanced distributions of annotated

sequences per class and uneven action distribution across children.

Some classes, e.g. Touch therapist, Point to Robot, exhibit consid-

erably different number of annotations across children.

human body part labeling of the person. DMHS is trained

on fully visible humans from Human80K [14], a subset of

[15], which contains data for 11 adult actors performing 15
different actions in a laboratory setup. This makes it non-

straightforward to use for partially visible children.

DMHS Adaptation to Partially Visible People. To im-

prove the DMHS-based 3d pose estimation of partially vis-

ible people, we collect statistics of those human keypoint

configurations that are frequently visible in natural images.

We use images from the COCO Training [19] (Keypoints

Challenge) that are annotated with 2d joints and select the

50 most frequent configurations to create a new dataset

Figure 4. Annotation distribution per child (classes are color-

coded). Both the total number of annotations and the class dis-

tributions are heavily imbalanced (e.g. children 3 and 7 have

considerably more annotations than 5 and 6). This indicates how

much they gesticulate and how responsive/engaged they were dur-

ing therapy.

(H80KPartial) based on Human80k with a similar distribu-

tion of partial configurations as collected from COCO. For

each image in Human80K, we sample a configuration fol-

lowing the COCO distribution and crop the image to show

only the joints visible in the selected configuration.

Next, we fine-tune the semantic segmentation on

H80KPartial and use it as an initialization in refining the

3d pose estimation task of the network. We adapt the se-

mantic segmentation to partially visible people as we fol-

low the original training procedure, in which the 3d task

uses feedback from the semantic task. We test the origi-

nal DMHS method and our fine-tuned adaptation for par-

tial views (DMHSPV) on both Human80k and H80KPartial

datasets. Table 2 shows results for the semantic human

body part labeling task. For Human80K, the accuracy

of both DMHS and DMHSPV methods is similar (with

slightly better results for DMHSPV). However, the tests on

H80KPartial reveal considerably improved accuracy of our

fined-tuned variant of DMHS over the original (from 59.6%
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Figure 5. Gesture variations between children. In the first row we show different children doing a high-five: they can use either hand and

their posture varies significantly. The same can be observed in the second row, where we show different children pointing to the robot.

They vary in how they perform the gesture (with one or two hands), how close they get to the robot, and in how their body is oriented.

to 78.0%). This shows success in extending the network’s

capabilities for partially visible humans, while preserving

its accuracy for fully visible ones. The same increase in ac-

curacy is perceptually visible when testing the two networks

on images from the DE-ENIGMA dataset, as illustrated in

fig. 6. Note that even for severely occluded children, DMH-

SPV provides plausible 3d pose estimates.

Method H80KPartial Human80K

DMHS 59.6% 79.0%
DMHSPV 78.0% 79.9%

Table 2. Accuracy of semantic human body part labeling for the

original DMHS and our fine tuned version, DMHSPV, for both

full and partially visible human poses from Human80K.

Method H80KPartial Human80K

DMHS 79.6 mm 63.3 mm

DMHSPV 57.6 mm 63.9 mm

Table 3. Mean per joint position error (mm) for the original DMHS

and the fine tuned version, DMHSPV, for both fully and partially

visible human poses from Human80K. The H80KPartial error is

computed over visible joints only.

Parametric Human Model Inference. We rely on a

feedforward-feedback model presented in our accompany-

ing paper [36] to combine human detection, 2d and 3d pose

prediction from DMHSPV with a shape-based volumetric

refinement based on a SMPL body representation [21].

Following [36], we first transfer the pose appearance

from DMHSPV to SMPL, then use this configuration as ini-

tialization for semantic image fitting. We experiment with

both single and multiple frame inference where additional

temporal smoothing constraints (constant velocity assump-

tions for 3d joints in camera space) are considered, as in

[36]. The temporal inference runs in windows of 15 frames

for both the therapist and the child – see fig. 7 for results.

5. Skeleton-based Action Classification

We experiment with several skeleton-based action recog-

nition models and perform ablation studies with different

types of 2d and 3d human body reconstructions. We use a

cross-validation setting on children where we consider only

the upper-body joints of the human skeleton.

2d Pose Features. Recent methods for 2d pose estima-

tion [7, 28] have both good accuracy and speed. However,

using just the 2d body joints locations for interpreting a

child’s actions might be insufficient, as the depth informa-

tion could be crucial in the disambiguation of different ac-

tions. Nonetheless, we also test the output of a state-of-the-

art 2d pose estimator in the context of action recognition.

3d Pose Features. We consider the 3d human skeletons

obtained from DMHSPV, the single frame SMPL model in-

ference, DMHS-SMPL-F, and the temporally smoothed in-

ference, DMHS-SMPL-T.

Interaction Modeling. Since almost a third of the anno-

tations involve forms of child-therapist interaction, either

the child’s response to a therapist initiated action (High-

five, Point to card) or defined in relation to the therapist

(Turn away from therapist, Point to therapist, etc.), consid-

ering the therapist representation could help discriminating

between different labels. Each proposed pose feature and

model pair has its own integration method of the therapist

pose reconstruction.

Moving Pose. One of our baselines is based on the frame-

work [37] which uses a KNN classifier on frame-level 3d

pose descriptors. The descriptors are built by concatenating

the 3d skeleton positions with the velocity and acceleration

of the joints computed over a 5-frame window. In our work,

we consider only the static pose and the velocity compo-

nent, as in our tests the use of acceleration components did

not improve action classification significantly. For 3d pose
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Figure 6. Importance of fine tuning for partially visible poses. First column shows the child’s bounding box. With red, we show the 3d pose

obtained with the original DMHS method, and with green the one obtained with our method adapted to partially visible persons, DMHSPV.

features, we follow the procedure described in [37]. The 3d

human skeleton is transformed to a fixed body size and the

pose is centered in the root joint (i.e. the hip center joint) to

ensure translation invariance. We also adapt the procedure

to 2d pose features. In this case, since the 2d joint locations

are defined in image space, we unit-normalize and center

the pose at the root defined as the center of mass of all vis-

ible 2d joints in a frame. The final per-frame descriptor is

Xc = [Pc, αδPc], where Pc is the pose of the child and δPc

is the velocity computed over a 3-frame window.

Including the pose features of the therapist in this model

is straightforward. We first apply the same body normaliza-

tion to the therapist and center at the root joint of the child.

One extension to represent both the child and the therapist

can be: Xct = [Pc, αδPc, α
′Pt, α

′′δPt], where Pt is the

therapist pose and α, α′, α′′ are cross-validated weights.

Table 4 shows detailed results for different 2d and 3d hu-

man pose estimations methods. Comparing the action clas-

sification accuracy, when using only the child’s pose versus

when we also consider the therapist, shows in all tests, that

modeling interactions increases accuracy. Also note that re-

sults for 3d pose features (i.e. DMHSPV, DMHS-SMPL-F

and DMHS-SMPL-T), estimated using only RGB data, are

at par to those obtained using depth (i.e. Kinect).

Convolutional Neural Networks. Our convolutional

neural network baseline for action classification [8, 16]

uses a lightweight network architecture Conv(3x3)-

ReLU-Conv(3x3)-ReLU-Pool(2x2)-Conv(3x3)-ReLU-

Conv(3x3)-Pool(2x2)-Dropout-FC-FC, that takes as input a

time sequence of raw 3d skeleton configurations resized to

Pose Feature MP - Child MP - Child + Therapist

Kinect [33] 46.96% 47.49%
DMHSPV 32.92% 34.95%

2D [7] 40.83% 44.14
DMHS-SMPL-F 43.53% 45.07%
DMHS-SMPL-T 44.20% 45.68%

Table 4. Comparative results for different pose estimation methods

for action classification when using the Moving Pose framework.

We also investigate the impact of modeling the therapist in the

classification accuracy.

a fixed temporal length. For this study, we consider the 3d

pose features of both the child and the therapist. To avoid

overfitting, we add random rotations (±15◦ around the Y

axis) to each training sequence.

We feed the CNN with the 3d skeleton features obtained

with Kinect, as well as DMHS-SMPL-T, which was the best

performing RGB model in the Moving Pose framework.

We obtain improved performance compared to the Moving

Pose, 53.1% accuracy using 3d pose features from Kinect

and 47.9% accuracy using similar estimates from DMHS-

SMPL-T.

Recurrent Neural Networks. We also establish a hier-

archical bidirectional recurrent network baseline, HBRNN

[9], previously shown to perform well in standard skeleton-

based action-classification datasets. This model consists of

a hierarchy of 5 bidirectional recurrent networks, each re-

ceiving as input the joints of 5 skeleton sub-components:

torso, left arm, right arm, left leg and right leg. In subse-

quent layers, the representations learned by sub-component
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Figure 7. Examples of 2d and 3d pose reconstructions on the annotated dataset. From left to right: 2d joint position estimates, 3d pose

estimation obtained using DMHSPV, projection of the inferred shape model overlaid on the original image and inferred 3d shape model.

Note that the 3d estimates from DMHPV are centered in the hip joint and we only show them with a different translation for visualization

purposes. On the other hand, the models inferred in the fourth column are shown with their inferred translation.
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Figure 8. Examples of continuous emotion annotations made by one of the five specialized therapists. We show one frame (left) and the

associated distribution over a 40 frames window (right). The children in our database exhibit a wide range of body poses and emotions.

nets are hierarchically fused and fed as inputs to upper lay-

ers. Since in our case the legs of the therapist and child are

occluded, we do not use them, and use only the joint sub-

set corresponding to the torso, left and right arm. We also

add the joints from the left and right arms of the therapist as

the 4th and 5th components, respectively. We test the net-

work using Kinect 3d pose estimates and the ones inferred

by DMHS-SMPL-T. The action classification accuracy is

37.8% for Kinect and 36.2% for DMHS-SMPL-T.

6. Continuous Emotion Prediction

A video selection from [32], including those 7 chil-

dren used for action classification experiments, was also

annotated with continuous emotions in a valence-arousal

space by 5 specialized therapists. The valence axis specifies

whether the emotion is positive or negative, whereas arousal

controls its intensity. Fig. 8 shows examples of emotions in

the valence-arousal space for our children. Representing

emotions in a continuous space allows to capture more sub-

tle affect states than using a few categorical emotion classes.

Previous work [17, 23] on automatic valence-arousal pre-

diction focused on using facial features to capture emotions.

Here we propose a complementary approach centered on 3d

body features to automatically predict continuous emotional

states. We pre-process the data as in [25] to obtain per frame

values for each annotator and align them to obtain a reliable

ground-truth valence/arousal signal.

We use a personalized evaluation protocol for the 7 chil-

dren. Each child’s individual sessions are split into train/test

in a a leave-one-session-out procedure and we report mean

results for all children. The evaluation metrics are the stan-

dard ones in the literature [25, 17]: root-mean-square er-

ror (RMSE), Pearson product-moment correlation coeffi-

cient (PCC) and sign-agreement score (SAGR). Results

for our CNN model, jointly trained to regress both valence

and arousal, are shown in table 5. Notice the similar perfor-

mance of models based on Kinect and DMHS-SMPL-T 3d

pose features.

Emotion Axis Pose Feature RMSE ↓ PCC ↑ SAGR ↑

Valence
Kinect 0.116 0.184 0.787

DMHS-SMPL-T 0.099 0.169 0.844

Arousal
Kinect 0.111 0.345 0.973

DMHS-SMPL-T 0.107 0.388 0.977

Table 5. Continuous emotion prediction. Using 3d skeleton esti-

mates of DMHS-SMPL-T, we obtain better or similar results com-

pared to the 3d skeleton produced by Kinect.

7. Conclusions

We have introduced large-scale fine-grained action and

emotion recognition tasks defined on non-staged videos

recorded during robot-assisted therapy sessions of children

with autism. The tasks are challenging due to the large num-

bers of sequences (over 3,700), long videos (10-15 minutes

each), large number of highly variable actions (37 child ac-

tion classes, 19 therapist actions), and because children are

only partially visible and observed under non-standard cam-

era viewpoints. Age variance and unpredictable behavior

add to the challenges. We investigated how state-of-the-

art RGB 3d human pose reconstruction methods combin-

ing feedforward and feedback components can be adapted

to the problem, and evaluated multiple action and emotion

recognition baselines based on 2d and 3d representations

of the child and therapist. Our results indicate that prop-

erly adapted, the current 2d and 3d reconstruction meth-

ods from RGB data are competitive with industrial grade

RGB-D Kinect systems. With action recognition baselines

in the 40-50% performance range, the large-scale data we

introduce represents a challenge in modeling behavior, with

impact in both computer vision, and child-robot interaction

with applications to autism.
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