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Question 
Ground-truth 

answer 
Z1 Z2 Z3 Z4 Z5 z6 

How old is the 

man? 

I can’t see his 

face, but maybe mid 

or late twenties 

He looks 

thirty 

Twenties I can’t 

tell 

Thirtys I say 

teenager 

Twentys 

What race is 

the man? 

White White White In five-

thirty 

away 

I can’t 

see 

Caucasian He looks 

white 

Is he wearing 

a hat? 

I don’t see his 

head 

No Yes Yes Yes No No 

Is he wearing 

a shirt? 

Yes Yes Yes No No Yes It 

What color? Dark grey Grey Grey 

 

Black White Black Black 

What gender is 

the baby? 

I can’t really 

tell, maybe a girl 

I Boy I Male I I 

What is the 

baby wearing? 

A bib Shirt T-shirt 

has pants 

Shirt and 

shirt 

Shirt and 

shirt 

Looks 

like 

white 

Shirt and 

shirt 

What color is 

the remote? 

White and black White Silver Silver It is 

white and 

black 

White Black 

 

Is the chair 

wood? 

No, it’s leather No 

 

No Yes 

 

No it’s a 

chair 

No Yes 

What color is 

the chair? 

Like a light 

burgundy 

Brown White has 

white 

checkered 

A light 

brown 

Gray Brown 

with 

white 

texture 

Gray  

A man sitting in a chair holding a baby who is chewing on a remote 

 

Figure 1: Diverse answers generated by FLIPDIAL in the one-way visual dialogue (1VD) task. For a given time step (row),

each column shows a generated answer to the current question. Answers are obtained by decoding a latent zi sampled from

the conditional prior – with conditions being the image, caption and dialogue history up until that time step.

Abstract

We present FLIPDIAL, a generative model for Visual

Dialogue that simultaneously plays the role of both partici-

pants in a visually-grounded dialogue. Given context in the

form of an image and an associated caption summarising

the contents of the image, FLIPDIAL learns both to answer

questions and put forward questions, capable of generating

entire sequences of dialogue (question-answer pairs) which

are diverse and relevant to the image. To do this, FLIPDIAL

relies on a simple but surprisingly powerful idea: it uses

convolutional neural networks (CNNs) to encode entire di-

alogues directly, implicitly capturing dialogue context, and

conditional VAEs to learn the generative model. FLIPDIAL

outperforms the state-of-the-art model in the sequential an-

swering task (1VD) on the VisDial dataset by 5 points in

Mean Rank using the generated answers. We are the first to

extend this paradigm to full two-way visual dialogue (2VD),

where our model is capable of generating both questions and

answers in sequence based on a visual input, for which we

propose a set of novel evaluation measures and metrics.

1. Introduction

A fundamental characteristic of a good human-computer

interaction (HCI) system is its ability to effectively acquire

and disseminate knowledge about the tasks and environ-

ments in which it is involved. A particular subclass of such

systems, natural-language-driven conversational agents such

as Alexa and Siri, have seen great success in a number of well-

defined language-driven tasks. Even such widely adopted

systems suffer, however, when exposed to less circumscribed,

more free-form situations. Ultimately, an implicit require-

ment for the wide-scale success of such systems is the effec-

tive understanding of the environments and goals of the user

– an exceedingly difficult problem in the general case as it

involves getting to grips with a variety of sub-problems (se-

mantics, grounding, long-range dependencies) each of which

are extremely difficult problems in themselves. One avenue

to ameliorate such issues is the incorporation of visual con-

text to help explicitly ground the language used – providing

a domain in which knowledge can be anchored and extracted

from. Conversely, this also provides a way in which language

can be used to characterise visual information in richer terms,
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for example with sentences describing salient features in the

image (referred to as “captioning”) [13, 15].

In recent years, there has been considerable interest in

visually-guided language generation in the form of visual

question-answering (VQA) [1] and subsequently visual di-

alogue [6], both involving the task of answering questions

in the context of an image. In the particular case of visual

dialogue, along with the image, previously seen questions

and answers (i.e. the dialogue history) are also accepted, and

a relevant answer at the current time produced. We refer

to this one-sided or answer-only form of visual dialogue as

one-way visual dialogue (1VD). Inspired by these models

and aiming to extend their capabilities, we establish the task

of two-way visual dialogue (2VD) whereby an agent must

be capable of acting as both the questioner and the answerer.

Our motivation for this is simple – AI agents need to

be able to both ask questions and answer them, often inter-

changeably, rather do either one exclusively. For example,

a vision-based home-assistant (e.g. Amazon’s Alexa) may

need to ask questions based on her visual input (“There is

no toilet paper left. Would you like me to order more?”) but

may also need to answer questions asked by humans (“Did

you order the two-ply toilet paper?”). The same question-

answer capability is true for other applications. For example,

with aids for the visually-impaired, a user may need the an-

swer to “Where is the tea and kettle?”, but the system may

equally need to query “Are you looking for an Earl Grey or

Rooibos teabag?” to resolve potential ambiguities.

We take one step toward this broad research goal with

FLIPDIAL, a generative model capable of both 1VD and

2VD. The generative aspect of our model is served by using

the conditional variational auto-encoder (CVAE), a frame-

work for learning deep conditional generative models while

simultaneously amortising the cost of inference in such mod-

els over the dataset [17, 24]. Furthermore, inspired by the

recent success of convolutional neural networks (CNNs) in

language generation and prediction tasks [11, 14, 21], we

explore the use of CNNs on sequences of sequences (i.e. a

dialogue) to implicitly capture all sequential dependences

through the model. Demonstrating the surprising effective-

ness of this approach, we show sets of sensible and diverse

answer generations for the 1VD task in Fig. 1.

We here provide a brief treatment of works related to

visual dialogue. We reserve a thorough comparison to Das

et.al. [6] for §4.3, noting here that our fully-generative con-

volutional extension of their model outperforms their state-

of-the-art results on the answering of sequential visual-based

questions (1VD). In another work, Das et.al. [7] present a

Reinforcement Learning based model to do 1VD, where they

instantiate two separate agents, one each for questioning and

answering. Crucially, the two agents are given different in-

formation – with one (QBot) given the caption, and the other

(ABot) given the image. While this sets up the interesting

task of performing image retrieval from natural-language

descriptions, it is also fundamentally different from having

a single agent perform both roles. Jain et.al. [12] explore

a complementary task to VQA [1] where the goal is instead

to generate a (diverse) set of relevant questions given an

image. In their case, however, there is no dependence on

a history of questions and answers. Finally, we note that

Zhao et.al. [27] employ a similar model structure to ours,

using a CVAE to model dialogue, but condition their model

on discourse-based constraints for a purely linguistic (rather

than visuo-linguistic) dataset. The tasks we target, our archi-

tectural differences (CNNs), and the dataset and metrics we

employ are distinct.

Our primary contributions in this work are therefore:

• A fully-generative, convolutional framework for visual

dialogue that outperforms state-of-the-art models on se-

quential question answering (1VD) using the generated

answers, and establishes a baseline in the challenging two-

way visual dialogue task (2VD).

• Evaluation using the predicted (not ground-truth) dialogue

– essential for real-world conversational agents.

• Novel evaluation metrics for generative models of two-

way visual dialogue to quantify answer-generation quality,

question relevance, and the models’s generative capacity.

2. Preliminaries

Here we present a brief treatment of the preliminaries for

deep generative models – a conglomerate of deep neural net-

works and generative models. In particular, we discuss the

variational auto-encoder (VAE) [17] which given a dataset X
with elements x ∈ X , simultaneously learns i) a variational

approximation qφ(z | x)1 to the unknown posterior distri-

bution pθ(z | x) for latent variable z, and ii) a generative

model pθ(x, z) over data and latent variables. These are

both highly attractive prospects as the ability to approximate

the posterior distribution helps amortise inference for any

given data point x over the entire dataset X , and learning

a generative model helps effectively capture the underlying

abstractions in the data. Learning in this model is achieved

through a unified objective, involving the marginal likelihood

(or evidence) of the data, namely:

log pθ(x) = DKL(qφ(z | x) ‖ pθ(z | x))

+ Eqφ(z|x)[log pθ(x, z)− log qφ(z | x)]

≥ Eqφ(z|x)[log pθ(x|z)]− DKL(qφ(z|x)‖pθ(z))

(1)

The unknown true posterior pθ(z | x) in the first Kullback-

Leibler (KL) divergence is intractable to compute making the

objective difficult to optimise directly. Rather a lower-bound

1Following the literature, the terms recognition model or inference

network may also be used to refer to the posterior variational approximation.
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of the marginal log-likelihood log pθ(x), referred to as the

evidence lower bound (ELBO), is maximised instead.

By introducing a condition variable y, we capture a con-

ditional posterior approximation qφ(z | x,y) and a con-

ditional generative model pθ(x, z | y), thus deriving the

CVAE [24]. Similar to Eq. (1), the conditional ELBO is:

log pθ(x | y) ≥ Eqφ(z|x,y)[log pθ(x | z,y)]

− DKL(qφ(z | x,y) ‖ pθ(z | y)) (2)

where the first term is referred to as the reconstruction or

negative cross entropy (CE) term, and the second, the reg-

ularisation or KL divergence term. Here too, similar to the

VAE, qφ(z | x,y) and pθ(z | y) are typically taken to be

isotropic multivariate Gaussian distributions, whose param-

eters (µq,σ
2
q ) and (µp,σ

2
p) are provided by deep neural

networks (DNNs) with parameters φ and θ, respectively. The

generative model likelihood pθ(x | z,y), whose form varies

depending on the data type – Gaussian or Laplace for images

and Categorical for language models – is also parametrised

similarly. In this work, we employ the CVAE model for the

task of eliciting dialogue given contextual information from

vision (images) and language (captions).

3. Generative Models for Visual Dialogue

In applying deep generative models to visual dialogue,

we begin by characterising a preliminary step toward it, VQA.

In VQA, the goal is to answer a single question in the context

of a visual cue, typically an image. The primary goal for

such a model is to ensure that the elicited answer conforms

to a stronger notion of relevance than simply answering

the given question – it must also relate to the visual cue

provided. This notion can be extended to one-way visual

dialogue (1VD) which we define as the task of answering

a sequence of questions contextualised by an image (and a

short caption describing its contents), similar to [6]. Being

able to exclusively answer questions, however, is not fully

encompassing of true conversational agents. We therefore

extend 1VD to the more general and realistic task of two-way

visual dialogue (2VD). Here the model must elicit not just

answers given questions, but questions given answers as well

– generating both components of a dialogue, contextualised

by the given image and caption. Generative 1VD and 2VD

models introduce stochasticity in the latent representations.

As such, we begin by characterising our generative ap-

proach to 2VD using a CVAE. For a given image i and

associated caption c, we define a dialogue as a sequence

of question-answer pairs d1:T = 〈(qt,at)〉
T

t=1, simply de-

noted d when sequence indexing is unnecessary. Addition-

ally, we denote a dialogue context h. When indexed by step

as ht, it captures the dialogue subsequence d1:t.

With this formalisation, we characterise a generative

model for 2VD under latent variable z as pθ(d, z | i, c,h) =

pθ(d | z, i, c,h) pθ(z | i, c,h), with the corresponding

recognition model defined as qφ(z | d, i, c,h). Note that

with relation to Eq. (2), data x is dialogue d and the condi-

tion variable is y = {i, c,h}, giving:

log pθ(d | i, c,h)

≥ Eqφ(z|d,i,c,h)[log pθ(d | z, i, c,h)]

− DKL(qφ(z | d, i, c,h) ‖ pθ(z | i, c,h)), (3)

with the graphical model structures shown in Fig. 2.

i c h

dz

i c h

z d

Figure 2: Left: Conditional recognition model and Right:

conditional generative model for 2VD.

The formulation in Eq. (3) is general enough to be applied

to single question-answering (VQA) all the way to full two-

way dialogue generation (2VD). Taking a step back from

generative 2VD, we can re-frame the formulation for genera-

tive 1VD (i.e. sequential answer generation) by considering

the generated component to be the answer to a particular

question at step t, given context from the image, caption and

the sequence of previous question-answers. Simply put, this

corresponds to the data x being the answer at, conditioned

on the image, its caption, the dialogue history to t-1, and

the current question, or y = {i, c,ht−1, qt}. For simplic-

ity, we denote a compound context as h+
t = 〈ht−1, qt〉 and

reformulate Eq. (3) for 1VD as:

log pθ(d | i, c,h) =
T
∑

t=1

log pθ(at | i, c,h
+
t ),

log pθ(at | i, c,h
+
t )

≥ Eqφ(z|at,i,c,h
+
t)
[log pθ(at | z, i, c,h

+
t )]

− DKL(qφ(z | at, i, c,h
+
t ) ‖ pθ(z | i, c,h+

t )), (4)

with the graphical model structures shown in Fig. 3.

i

c z

h+
t

at

T

i

catz

h+
t

T

Figure 3: Left: Conditional recognition model and Right:

conditional generative model for 1VD.

Our baseline [6] for the 1VD model can also be repre-

sented in our formulation by taking the variational posterior

and generative prior to be conditional Dirac-Delta distri-

butions. That is, qφ(z | at, i, c,h
+
t ) = pθ(z | i, c,h+

t ) =
δ(z | i, c,h+

t ). This transforms the objective from Eq. (4)
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by a) replacing the expectation of the log-likelihood over the

recognition model by an evaluation of the log-likelihood for

a single encoding (one that satisfies the Dirac-Delta), and

b) ignoring the DKL regulariser, which is trivially 0. This

computes the marginal likelihood directly as just the model

likelihood log pθ(at | z, i, c,h
+
t ), where z ∼ δ(z | i, c,h+

t ).

Note that while such models can “generate” answers to

questions by sampling from the likelihood function, we typi-

cally don’t call them generative since they effectively make

the encoding of the data and conditions fully deterministic.

We explore and demonstrate the benefit of a fully generative

treatment of 1VD in §4.3. It also follows trivially that the

basic VQA model (for single question-answering) itself can

be obtained from this 1VD model by simply assuming there

is no dialogue history (i.e. step length T = 1).

3.1. “Colouring” Visual Dialogue with Convolutions

FLIPDIAL’s convolutional formulation allows us to im-

plicitly capture the sequential nature of sentences and se-

quences of sentences. Here we introduce how we encode

questions, answers, and whole dialogues with CNNs.

We begin by noting the prevalence of recurrent ap-

proaches (e.g. LSTM [10], GRU [5]) in modelling both

visual dialogue and general dialogue to date [6, 7, 8, 12, 27].

Typically recurrence is employed at two levels – at the lower

level to sequentially generate the words of a sentence (a

question or answer in the case of dialogue), and at a higher

level to sequence these sentences together into a dialogue.

Recently however, there has been considerable interest

in convolutional models of language [3, 11, 14, 21], which

have shown to perform at least as well as recurrent models,

if not better, on a number of different tasks. They are also

computationally more efficient, and typically suffer less from

issues relating to exploding or vanishing gradients for which

recurrent networks are known [19].

In modelling sentences with convolutions, the tokens

(words) of the sentence are transformed into a stack of

fixed-dimensional embeddings (e.g. using word2vec [18]

or Glove [20], or those learned for a specific task). For

a given sentence, say question qt, this results in an em-

bedding q̊t ∈ R
E×L for embedding size E and sentence

length L, where L can be bounded by the maximum sen-

tence length in the corpus, with padding tokens employed

where required. This two-dimensional stack is essentially

a single-channel ‘image’ on which convolutions can be ap-

plied in the standard manner in order to encode the entire

sentence. Note this similarly applies to the answer at and

caption c, producing embedded åt and c̊, respectively.

We then extend this idea of viewing sentences as ‘images’

to whole dialogues, producing a multi-channel language em-

bedding. Here, the sequence of sentences itself can be seen

as a stack of (a stack of) word embeddings d̊ ∈ R
E×L×2T ,

where now the number of channels accounts for the num-

ber of questions and answers in the dialogue. We refer to

this process as “colouring” dialogue, by analogy to the most

common meaning given to image channels – colour.

Our primary motivation for adopting a convolutional ap-

proach here is to explore its efficacy in extending from sim-

pler language tasks [11, 14] to full visual dialogue. We hence

instantiate the following models for 1VD and 2VD:

Answer [1VD]: We employ the CVAE formulation from

Eq. (4) and Fig. 3 to iteratively generate answers, condi-

tioned on the image, caption and current dialogue history.

Block [1VD, 2VD]: Using the CVAE formulation from

Eq. (3) and Fig. 2 we generate entire blocks of dialogue

directly (i.e. h = ∅ since dialogue context is implicit

rather than explicit). We allow the convolutional model

to implicitly supply the context instead. We consider this

2VD, although this block architecture can also generate

iteratively, and can be evaluated on 1VD (see §4.2).

Block Auto-Regressive [1VD, 2VD]: We introduce an

auto-regressive component to our generative model in

the same sense as recent auto-regressive generative

models for images [9, 25]. We augment the Block

model by feeding its output through an auto-regressive

(AR) module which explicitly enforces sequentiality in

the generation of the dialogue blocks. This effectively

factorises the likelihood in Eq. (3) as pθ(d | z, i, c,h) =

pθ
(

d1 | z, i, c,h
)
∏N

n=2 pθ
(

dn | d1:n−1
)

where N is the

number of AR layers, and d1 is the (intermediate) output

from the standard Block model. Note, again h = ∅, and

dn refers to an entire dialogue at the n-th AR layer (rather

than the t-th dialogue exchange as is denoted by dt).

4. Experiments

We present an extensive quantitative and qualitative

analysis of our models’ performance in both 1VD, which

requires answering a sequence of image-contextualised

questions, and full 2VD, where both questions and an-

swers must be generated given a specific visual context.

Our proposed generative models are denoted as follows:

A – answer architecture for 1VD

B – block dialogue architecture for 1VD & 2VD

BAR – auto-regressive extension of B for 1VD & 2VD

A is a generative convolutional extension of our baseline [6]

and is used to validate our methods against a standard bench-

mark in the 1VD task. B and BAR, like A, are generative,

but are extensions capable of doing full dialogue genera-

tion, a much more difficult task. Importantly, B and BAR

are flexible in that despite being trained to generate a block

of questions and answers (h = ∅), they can be evaluated

iteratively for both 1VD and 2VD (see §4.2). We summarise

the data and condition variables for all models in Tab. 1. To

evaluate performance on both tasks, we propose novel evalu-

ation metrics which augment those of our baseline [6]. To

the best of our knowledge, we are the first to report models
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Table 1: Data (x) and condition (y) variables for models A

and B/BAR for 1VD and 2VD. Models B/BAR can be evalu-

ated as a block or iteratively (see §4.2), accepting ground-

truth (q/a) or predicted (q̂/â) dialogue history (see Tab. 2).

Task Model Train Evaluate Eval method

x y x y

1VD
A at i, c,h+

t ∅ i, c,h+
t −

B, BAR d i, c {d–qa, d–qâ} i, c iterative

2VD B, BAR d i, c
∅

i, c
block

d–q̂â iterative

that can generate both questions and answers given an image

and caption, a necessary step toward a truly conversational

agent. Our key results are:

• We set state-of-the-art results in the 1VD task on the Vis-

Dial dataset, improving the mean rank of the generated

answers by 5.66 (Tab. 3, Sw2v) compared to Das et al. [6].

• Our block models are able to generate both questions and

answers, a more difficult but more realistic task (2VD).

• Since our models are generative, we are able to show

highly diverse and plausible question and answer genera-

tions based on the provided visual context.

Datasets: We use the VisDial [6] dataset (v0.9) which

contains Microsoft COCO images each paired with a caption

and a dialogue of 10 question-answer pairs. The train/test

split is 82, 783/40, 504 images, respectively.

Baseline: Das et al. [6]’s best model, MN-QIH-G, is a

recurrent encoder-decoder architecture which encodes the

image i, the current question qt and the attention-weighted

ground truth dialogue history d1:t−1. The output conditional

likelihood distribution is then used to (token-wise) predict

an answer. Our A model is a generative and convolutional

extension, evaluated using existing ranking-based metrics [6]

on the generated and candidate answers. We also (iteratively)

evaluate our B/BAR for 1VD as detailed in §4.2 (see Tab. 3).

4.1. Network architectures and training

Following the CVAE formulation (§3) and its convolu-

tional interpretation (§3.1), all our models (A, B and BAR)

have three core components: an encoder network, a prior

network and a decoder network. Fig. 4 (top) shows the en-

coder and prior networks, and Fig. 4 (middle, bottom) show

the standard and auto-regressive decoder networks.

Prior network The prior neural network, parametrised

by θ, takes as input the image i, the caption c and the di-

alogue context. Referring to Table 1, for model A, recall

y = {i, c,h+
t } where the context h+

t is the dialogue history

up to t-1 and the current question qt. For models B/BAR,

y = {i, c} (note h = ∅). To obtain the image representation,

we pass i through VGG-16 [23] and extract the penultimate

(4096-d) feature vector. We pass caption c through a pre-

trained word2vec [18] module (we do not learn these word

embeddings). If h 6= ∅, we pass the one-hot encoding of

CNNq


CNNp
CNNy


CNN
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Is this image in color? Yes

How old does the girl appear to be? Four

Does the donut have sprinkles? No

Is this taking place inside of a coffee 
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Figure 4: Convolutional (top) conditional encoder and prior

architecture, (middle) conditional decoder, and (bottom)

auto-regressive conditional decoder architectures, applying

to both one- and two-way visual dialogue (1VD and 2VD).

each word through a learnable word embedding module and

stack these embeddings as described in §3.1. We encode

these condition variables convolutionally to obtain y, and

pass this through a convolutional block to obtain µp and

logσ2
p, the parameters of the conditional prior pθ(z | y).

Encoder network The encoder network, parametrised

by φ, takes x and the encoded condition y (obtained from

the prior network) as input. For model A, x = at while

for B/BAR, x=d= 〈(qt,at)〉
T

t=1. In all models, x is trans-

formed through a word-embedding module into a single-

channel answer ‘image’ for A, or a multi-channel image of

alternating questions and answers for B/BAR. The embedded

output is then combined with y to obtain µq and logσ2
q , the

parameters of the conditional latent posterior qφ(z | x,y).

Decoder network The decoder network takes as input

a latent z and the encoded condition y. The sample is

transpose-convolved, combined with y and further trans-

formed to obtain an intermediate output volume of dimen-

sion E×L×M , where E is the word embedding dimension,

L is the maximum sentence length and M is the number of

dialogue entries in x (M = 1 for A, M = 2T for B vari-

ants). Following this, A and B employ a standard linear

layer, projecting the E dimension to the vocabulary size V
(Fig. 4 (middle)), whereas BAR employs an autoregressive

module followed by this standard linear layer (Fig. 4 (bot-

tom)). At train time, the V -dimensional output is softmaxed

and the CE term of the ELBO computed. At test time, the
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Table 2: Iterative evaluation of B/BAR for 1VD and 2VD.

Under each condition, the input dialogue block is filled with

ground-truth or predicted history (q/a or q̂/â, respectively),

while future entries are filled with the PAD token.

1VD 2VD

d–qa d–qâ d–q̂â

< t (q,a) (q, â) (q̂, â)

= t (q, PAD) (q, PAD) (PAD, PAD)
/

(q̂, PAD)

> t (PAD, PAD) (PAD, PAD) (PAD, PAD)

argmax of the output provides the predicted word index.

The weights of the encoder and prior’s learnable word embed-

ding module and the decoder’s final linear layer are shared.

Autoregressive module Inspired by PixelCNN [26]

which sequentially predicts image pixels, and similar to [9],

we apply N = {8, 10} size-preserving autoregressive layers

to the intermediate output of model B (size E×L×2T ), and

then project E to vocabulary size V . Each layer employs

masked convolutions, considering only ‘past’ embeddings,

sequentially predicting 2T ∗L embeddings of size E, enforc-

ing sequentiality at both the sentence- and dialogue-level.

KL annealing Motivated by [4] in learning continuous

latent embedding spaces for language, we employ KL an-

nealing in the loss objectives of Eq. (3) and Eq. (4). We

weight the KL term by α ∈ [0, 1] linearly interpolated over

100 epochs, and then train for a further 50 epochs (α = 1).

Network and training hyper-parameters In embed-

ding sentences, we pad to a maximum sequence length of

L = 64 and use a word-embedding dimension of E = 256
(for word2vec, E = 300). After pre-processing and filtering

the vocabulary size is V = 9710 (see supplement for further

details). We use the Adam optimiser [16] with default pa-

rameters, a latent dimensionality of 512 and employ batch

normalisation with momentum= 0.001 and learnable param-

eters. For model A we use a batch size of 200, and 40 for

B/BAR. We implement our pipeline using PYTORCH [22].

4.2. Evaluation methods for block models

Although B/BAR generate whole blocks of dialogue di-

rectly (h = ∅), they can be evaluated iteratively, lending

them to both 1VD and 2VD (see supplement for descriptions

of generation/reconstruction pipelines).

• Block evaluation [2VD]. The generation pipeline gener-

ates whole blocks of dialogue directly, conditioned on the

image and caption (i.e. x = ∅ and y = {i, c} for B/BAR

evaluation in Tab. 1). This is 2VD since the model must

generate a coherent block of both questions and answers.

• Iterative evaluation. The reconstruction pipeline can

generate dialogue items iteratively. At time t, the input

dialogue block is filled with zeros (PAD token) and the

ground-truth/predicted dialogue history to < t is slotted in

(see below and Tab. 2). This future-padded block is then

Table 3: 1VD evaluation of A and B/BAR on VisDial (v0.9)

test set. Results show ranking of answer candidates based

on the score functions SM and Sw2v.

Score
function

Method MR MRR R@1 R@5 R@10

SM

RL-QAbot [7] 21.13 0.4370 - 53.67 60.48

MN-QIH-G [6] 17.06 0.5259 42.29 62.85 68.88

A (LW) 23.87 0.4220 30.48 53.78 57.52

A (ELBO) 20.38 0.4549 34.08 56.18 61.11

Sw2v

MN-QIH-G [6] 31.31 0.2215 16.01 22.42 34.76

A (RECON) 15.36 0.4952 41.77 54.67 66.90

A (GEN) 25.65 0.3227 25.88 33.43 47.75

B 28.45 0.2927 23.50 29.11 42.29

d–qa BAR8 25.87 0.3553 29.40 36.79 51.19

BAR10 26.30 0.3422 28.00 35.34 50.54

B 30.57 0.2188 16.06 20.88 35.37

d–qâ BAR8 29.10 0.2864 22.52 29.01 48.43

BAR10 29.15 0.2869 22.68 28.97 46.98

encoded with the condition inputs, and then reconstructed.

The t-th dialogue item is extracted (whether an answer if

1VD or a question/answer if 2VD), and this is repeated T
(for 1VD) or 2T (for 2VD) times. Variations are:

– d–qa [1VD]. At time t, the input dialogue block is

filled with the history of ground-truth questions and

answers up to t-1, along with the current ground-truth

question. All future entries are padded – equivalent

to [6] using the ground-truth dialogue history.

– d–qâ [1VD]. Similar to d–qa, except that the input

block is filled with the history of ground-truth questions

and previously predicted answers along with the current

ground-truth question. This is a more realistic 1VD.

– d–q̂â [2VD]. The most challenging and realistic condi-

tion in which the input block is filled with the history of

previously predicted questions and answers.

4.3. Evaluation and Analysis

We evaluate our A, B, and BAR models on the 1VD and

2VD tasks. Under 1VD, we predict an answer with each

time step, given an image, caption and the current dialogue

history (§4.3.1 and Tab. 3), while under 2VD, we predict

both questions and answers (§4.3.2 and Tab. 4). All three

models are able to perform the first task , while only B and

BAR are capable of the second task.

4.3.1 One-Way Visual Dialogue (1VD) task

We evaluate the performance of A and B/BAR on 1VD using

the candidate ranking metric of [6] as well as an extension

of this which assesses the generated answer quality (Tab. 3).

Fig. 1 and Fig. 5 show our qualitative results for 1VD.

Candidate ranking by model log-likelihood [SM]

The VisDial dataset [6] provides a set of 100 candidate an-

swers {ac
t}

100
c=1 for each question-answer pair at time t per

image. The set includes the ground-truth answer at as well

as similar, popular, and random answers. Das et al. [6] rank

these candidates using the log-likelihood value of each under
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Question 

Ground-

truth 

answer 

Z1 Z2 Z3 

How old is the 

girl? 

Maybe three Looks 

about six 

I can’t 

tell 

Yes 

What race is 

the girl? 

White Yes White Caucasian 

Is she outside? Yes No Yes Yes 

Is her hair 

long or short? 

Short Short Short Short 

What color is 

her hair? 

Blonde Blonde 

 

 

Brown Brown 

Is her hair 

curly or 

straight? 

It’s 

straight 

Straight Straight Straight 

What is she 

wearing? 

Pink shirt, 

white pants 

T-shirt 

and jacket 

and pants 

Shirt and 

pants 

Jeans like 

a pajamas 

Is the teddy 

bear in her 

lap? 

Yes No Yes Yes 

What color is 

the teddy bear? 

White Brown Tan Tan and 

white 

Is it nice 

outside? 

Yes sunny Yes It looks 

lovely 

Yes 
A young girl swinging with her 

teddy bear

Question 

Ground-

truth 

answer 

Z1 Z2 Z3 

How old does 

she look? 

Around 

seven or 

eight 

I cannot 

tell about 

her 

Looks 

about six 

She is 

about 

teenager 

around 

Any other 

people? 

No No Yes Yes 

Any buildings? No Yes No No 

Is it day or 

night? 

Day It looks 

like it in 

image is 

in so 

Daytime Day 

Is it raining? No Yes Yes No 

What color 

umbrella? 

Pink and 

clear 

Dark 

colored 

color 

White White 

Is it open or 

closed? 

Open Yes Open Open 

Is it sunny? I can’t 

tell 

Yes No Yes 

What color is 

her hair? 

Dark brown Brown 

 

Brown 

 

Brown 

Is it long or 

short? 

Long Short Short I’d say 

long 

A young girl holding an 

umbrella on the sidewalk

Figure 5: Example generated answers from A’s conditional

prior – conditioned on an image, caption, question and dia-

logue history. See supplement for further examples.

their model (conditioned on the image, caption and dialogue

history, including the current question), and then observe the

position of the ground-truth answer (closer to 1 is better).

This position is averaged over the dataset to obtain the Mean

Rank (MR). In addition, the Mean Reciprocal Rank (MRR;

1/MR) and recall rates at k = {1, 5, 10} are computed.

To compare against their baseline, we rank the 100 candi-

dates answers by estimates of their marginal likelihood from

A. This can be done with i) the conditional ELBO (Eq. (4)),

and by ii) likelihood weighting (LW) in the conditional gener-

ative model pθ(at | i, c,h
+
t ) =

∫

pθ(at, z | i, c,h+
t )dz =

∫

pθ(z | i, c,h+
t )pθ(a | z, i, c,h+

t ) dz. Ranking by both

these approaches is shown in the SM section of Tab. 3, in-

dicating that we are comparable to the state of the art in

discriminative models of sequential VQA [6, 7].

Candidate ranking by word2vec cosine distance [Sw2v]

The evaluation protocol of [6] scores and ranks a given set of

candidate answers, without being a function of the actual an-

swer predicted by the model, ât. This results in the rank of

the ground-truth answer candidate reflecting its score under

the model relative to the rest of the candidates’ scores, rather

than capturing the quality of the answer output by the model,

which is left unobserved. To remedy this, we instead score

each candidate by the cosine distance between the word2vec

embedding of the predicted answer ât and that candidate’s

word2vec embedding. We take the embedding of a sentence

to be the average embedding over word tokens following

Arora et al. [2]. In addition to accounting for the predicted

answer, this method also allows semantic similarities to be

captured such that if the predicted answer is similar (in mean-

ing and/or words generated) to the ground-truth candidate

answer, then the cosine distance will be small, and hence the

ground-truth candidate’s rank closer to 1.

We report these numbers for A, iteratively-evaluated

B/BAR, and also our baseline model MN-QIH-G [6], which

we re-evaluate using the word2vec cosine distance ranking

(see Sw2v in Tab. 3). In the case of A (GEN), we evaluate an-

swer generations from A whereby we condition on i, c and

h+
t via the prior network, sample z ∼ N (z;µp,σ

2
p) and

generate an answer via the decoder network. Here we show

an improvement of 5.66 points in MR over the baseline. On

the other hand, A (RECON) evaluates answer reconstructions

in which z is sampled from N (z;µq,σ
2
q ) (where ground-

truth answer at is provided). We include A (RECON) merely

as an “oracle” autoencoder, observing its good ranking per-

formance, but do not explicitly compare against it.

We also note that the ranking scores of the block models

are worse (by 3-4 MR points) than those of A. This is ex-

pected since A is explicitly trained for 1VD which is not the

case for B/BAR. Despite this, the performance gap between

A (GEN) and B/BAR (with d–qa) is not large, bolstering our

iterative evaluation method for the block architectures. Note

finally that the B/BAR models perform better under d–qa

than under d–qâ (by 2-3 MR points). This is also expected

as answering is easier with access to the ground-truth dia-

logue history rather than when only the previously predicted

answers (and ground-truth questions) are provided.

4.3.2 Two-way Visual Dialogue (2VD) task

Our flexible CVAE formulation for visual dialogue allows

us to move from 1VD to the generation of both questions

and answers (2VD). Despite this being inherently more chal-

lenging, B/BAR are able to generate diverse sets of questions

and answers contextualised by the given image and caption.

Fig. 6 shows snippets of our two-way dialogue generations.

In evaluating our models for 2VD, the candidate ranking

protocol of [6] which relies on a given question to rank the

answer candidates, is no longer usable when the questions

themselves are being generated. This is the case for B/BAR

block evaluation, which has no access to the ground-truth

dialogue history, and the d–q̂â iterative evaluation, when the

full predicted history of questions and answers is provided

(Tab. 2). We therefore look directly to the CE and KL terms

of the ELBO as well as propose two new metrics, simc,q and

sim	, to compare our methods in the 2VD task:

• Question relevance (simc,q). We expect a generated

question to query an aspect of the image, and we use the

presence of semantically similar words in both the ques-

tion and image caption as a proxy of this. We compute the

cosine distance between the (average) word2vec embed-

ding of each predicted question qt and that of the caption
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Are it sunny? Yes 

Can you see the sky? No 

Any birds? No 

Can you see any people? No 

Is this a sunny photo? Yes 

Is the sheep in? Yes 

What color is the sheep? 
Its is 

brown 

Any people? No 

Is it sunny? Yes 

What is the the doing? It is 

Is the sheep made? Yes, is 

Sheep standing near orange netting in grassy field 

Are there people? Yes 

Is it a professional photo? Yes 

Color color is the uniform? White 

Can you see the team? No 

Are there any people? No 

Can there? No 

Can you see the bases? No 

How many people are you see Two 

Can you see the sky? Yes 

Is the sky visible? Yes 

Is the people visible? Yes 

Does he have a? Yes is is 

Is it a? Yes is is 

A baseball player for the Chicago Cubs stands at home plate 

What color is the cabinets? White 

Are there any people in the table? No 

Does the window have curtains Yes 

Is the fridge on? Yes 

Are there any people in the? No 

Is the magnets on? No 

What color is the walls? White 

How many chairs are there? Two 

Is there any people? No 

Is it daytime? Yes 

Is there? No 

How pics the? No 

An image of a kitchen loft style setting 

What color are the uniforms? One is white 

Can you see any sky? No 

Is it people visible? Yes 

Is this a game? Yes 

Is the photo in color? No 

Is the photo close? Yes, it 

Can you see the bases? No 

Can you see the ball? No 

Is the person wearing a hat? Yes 

Can you see the the No 

Can you see the people? No 

Two guys playing baseball, with trees in 

the back 

Figure 6: Examples of two-way dialogue generation from

the B/BAR models. Different colours indicate different gen-

erations – coherent sets with a single colour, and failures in

white. See supplement for further examples.

c, and average over all T questions in the dialogue (closer

to 1 indicates higher semantic similarity).

• Latent dialogue dispersion (sim	). For a generated

dialogue block dg, sim	 computes the KL divergence

DKL(qφ(z|d
g, i, c) ‖ qφ(z|d, i, c)), measuring how close

the generated dialogue is to the true dialogue d in the

latent space, given the same image i and caption c.

From Tab. 4, we observe a decrease in the loss terms as the

auto-regressive capacity of the model increases (none →
8 → 10), suggesting that explicitly enforcing sequentiality

in the dialogue generations is useful. For sim	 within a

particular model, the dispersion values are typically larger

Table 4: 2VD evaluation on VisDial (v0.9) test set for B/BAR

models. For d, ‘∅’ indicates block evaluation, and ‘d–q̂â’

indicates iterative evaluation (see §4.2).

Method d CE KLD simc,q sim	

B
∅ 31.18 4.34 0.4931 14.20

d–q̂â 25.40 4.01 0.4091 1.86

BAR8
∅ 28.81 2.54 0.4878 31.50

d–q̂â 26.60 2.29 0.3884 2.39

BAR10
∅ 28.49 1.89 0.4927 44.34

d–q̂â 24.93 1.80 0.4101 2.35

for the harder task (without dialogue context). We also

observe that dispersion increases with number of AR layers,

suggesting AR improves the diversity of the model outputs,

and avoids simply recovering data observed at train time.

While the proposed metrics provide a novel means to eval-

uate dialogue in a generative framework, like all language-

based metrics, they are not complete. The question-relevance

metric, simc,q, can stagnate, and neither metric precludes

redundant or nonsensical questions. We intend for these

metrics to augment the bank of metrics available to evaluate

dialogue and language models. Further evaluation, including

i) using auxiliary tasks, as in the image-retrieval task of [7],

to drive and evaluate the dialogues, and ii) turning to human

evaluators to rate the generated dialogues, can be instructive

in painting a more complete picture of our models.

5. Conclusion
In this work we propose FLIPDIAL, a generative convo-

lutional model for visual dialogue which is able to generate

answers (1VD) as well as generate both questions and an-

swers (2VD) based on a visual context. In the 1VD task, we

set new state-of-the-art results with the answers generated

by our model, and in the 2VD task, we are the first to estab-

lish a baseline, proposing two novel metrics to assess the

quality of the generated dialogues. In addition, we propose

and evaluate our models under a much more realistic setting

for both visual dialogue tasks in which the predicted rather

than ground-truth dialogue history is provided at test time.

This challenging setting is more akin to real-world situations

in which dialogue agents must be able to evolve with their

predicted exchanges. We emphasize that research focus must

be directed here in the future. Finally, under all cases, the

sets of questions and answers generated by our models are

qualitatively good: diverse and plausible given the visual

context. Looking forward, we are interested in exploring

additional methods for enforcing diversity in the generated

questions and answers, as well as extending this work to

explore recursive models of reasoning for visual dialogue.
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