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Abstract

Most of the existing deep learning-based methods for 3D

hand and human pose estimation from a single depth map

are based on a common framework that takes a 2D depth

map and directly regresses the 3D coordinates of keypoints,

such as hand or human body joints, via 2D convolutional

neural networks (CNNs). The first weakness of this ap-

proach is the presence of perspective distortion in the 2D

depth map. While the depth map is intrinsically 3D data,

many previous methods treat depth maps as 2D images that

can distort the shape of the actual object through projec-

tion from 3D to 2D space. This compels the network to per-

form perspective distortion-invariant estimation. The sec-

ond weakness of the conventional approach is that directly

regressing 3D coordinates from a 2D image is a highly non-

linear mapping, which causes difficulty in the learning pro-

cedure. To overcome these weaknesses, we firstly cast the

3D hand and human pose estimation problem from a sin-

gle depth map into a voxel-to-voxel prediction that uses a

3D voxelized grid and estimates the per-voxel likelihood for

each keypoint. We design our model as a 3D CNN that pro-

vides accurate estimates while running in real-time. Our

system outperforms previous methods in almost all publicly

available 3D hand and human pose estimation datasets and

placed first in the HANDS 2017 frame-based 3D hand pose

estimation challenge. The code is available in 1.

1. Introduction

Accurate 3D hand and human pose estimation is an im-

portant requirement for activity recognition with diverse

applications, such as human-computer interaction or aug-

mented reality [33]. It has been studied for decades in

computer vision community and has attracted considerable

research interest again due to the introduction of low-cost

depth cameras.

Recently, powerful discriminative approaches based on

1https://github.com/mks0601/V2V-PoseNet_RELEASE
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Figure 1: Visualization of perspective distortion in 2D depth

image. The 3D point cloud has one-to-one relation with

a 3D pose, but the 2D depth image has many-to-one rela-

tion because of perspective distortion. Thus, the network

is compelled to perform perspective distortion-invariant es-

timation. The 2D depth maps are generated by translating

the 3D point cloud by ∆X = -300, 0, 300 mm (from left

to right) and ∆Y = -300, 0, 300 mm (from bottom to top).

In all cases, ∆Z is set to 0 mm. Similar values to the real

human hand size and camera projection parameters in the

MSRA dataset were used for our visualization.

convolutional neural networks (CNNs) are outperforming

existing methods in various computer vision tasks includ-

ing 3D hand and human pose estimation from a single depth

map [2,10,13,15,28]. Although these approaches achieved

significant advancement in 3D hand and human pose esti-

mation, they still suffer from inaccurate estimation because

of severe self-occlusions, highly articulated shapes of target

objects, and low quality of depth images. Analyzing previ-

ous deep learning-based methods for 3D hand and human

pose estimation from a single depth image, most of these
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methods [1, 2, 6, 13–15, 23, 28–30, 46] are based on a com-

mon framework that takes a 2D depth image and directly

regresses the 3D coordinates of keypoints, such as hand or

human body joints. However, we argue that this approach

has two serious drawbacks. The first one is perspective dis-

tortion in 2D depth image. As the pixel values of a 2D depth

map represent the physical distances of object points from

the depth camera, the depth map is intrinsically 3D data.

However, most previous methods simply take depth maps

as a 2D image form, which can distort the shape of an ac-

tual object in the 3D space by projecting it to the 2D image

space. Hence, the network sees a distorted object and is

burdened to perform distortion-invariant estimation. We vi-

sualize the perspective distortions of the 2D depth image

in Figure 1. The second weakness is the highly non-linear

mapping between the depth map and 3D coordinates. This

highly non-linear mapping hampers the learning procedure

and prevents the network from precisely estimating the co-

ordinates of keypoints as argued in [45]. This high nonlin-

earity is attributed to the fact that only one 3D coordinate

for each keypoint has to be regressed from the input.

To cope with these limitations, we propose the voxel-

to-voxel prediction network for pose estimation (V2V-

PoseNet). In contrast to most of the previous methods, the

V2V-PoseNet takes a voxelized grid as input and estimates

the per-voxel likelihood for each keypoint as in Figure 2.

By converting the 2D depth image into a 3D voxelized

form as input, our network can see the actual appearance of

objects without perspective distortion. Also, estimating the

per-voxel likelihood of each keypoint enables the network

to learn the desired task more easily than the highly non-

linear mapping that estimates 3D coordinates directly from

the input. We perform a thorough experiment to demon-

strate the usefulness of the proposed volumetric represen-

tation of input and output in 3D hand and human pose es-

timation from a single depth map. The performance of the

four combinations of input (i.e., 2D depth map and vox-

elized grid) and output (i.e., 3D coordinates and per-voxel

likelihood) types are compared.

The experimental results show that the proposed voxel-

to-voxel prediction allows our method to achieve the state-

of-the-art performance in almost all of the publicly avail-

able datasets (i.e., three 3D hand [38, 40, 44] and one 3D

human [15] pose estimation datasets) while it runs in real-

time. We also placed first in the HANDS 2017 frame-based

3D hand pose estimation challenge [54]. We hope that the

proposed system to become a milestone of 3D hand and

human pose estimation problems from a single depth map.

Now, we assume that the term “3D pose estimation” refers

to the localization of the hand or human body keypoints in

3D space.

Our contributions can be summarized as follows.

• We firstly cast the problem of estimating 3D pose from

a single depth map into a voxel-to-voxel prediction.

Unlike most of the previous methods that regress 3D

coordinates directly from the 2D depth image, our pro-

posed V2V-PoseNet estimates the per-voxel likelihood

from a voxelized grid input.

• We empirically validate the usefulness of the volumet-

ric input and output representations by comparing the

performance of each input type (i.e., 2D depth map and

voxelized grid) and output type (i.e., 3D coordinates

and per-voxel likelihood).

• We conduct extensive experiments using almost all

of the existing 3D pose estimation datasets including

three 3D hand and one 3D human pose estimation

datasets. We show that the proposed method produces

significantly more accurate results than the state-of-

the-art methods. The proposed method also placed first

in the HANDS 2017 frame-based 3D hand pose esti-

mation challenge.

2. Related works

Depth-based 3D hand pose estimation. Hand pose esti-

mation methods can be categorized into generative, discrim-

inative, and hybrid methods. Generative methods assume a

pre-defined hand model and fit it to the input depth image

by minimizing hand-crafted cost functions [34, 41]. Par-

ticle swam optimization (PSO) [34], iterative closest point

(ICP) [39], and their combination [32] are the common al-

gorithms used to obtain optimal hand pose results.

Discriminative methods directly localize hand joints

from an input depth map. Random forest-based meth-

ods [20, 22, 38, 40–42, 47] provide fast and accurate perfor-

mance. However, they utilize hand-crafted features and are

overcome by recent CNN-based approaches [1–3,5,6,9,10,

13,14,23,28,29,36,44,49,50] that can learn useful features

by themselves. Tompson et al. [44] firstly utilized CNN to

localize hand keypoints by estimating 2D heatmaps for each

hand joint. Ge et al. [9] extended this method by exploiting

multi-view CNN to estimate 2D heatmaps for each view. Ge

et al. [10] transformed the 2D input depth map to the 3D

form and estimated 3D coordinates directly via 3D CNN.

Guo et al. [13, 14] proposed a region ensemble network to

accurately estimate the 3D coordinates of hand keypoints

and Chen et al. [2] improved this network by iteratively re-

fining the estimated pose. Oberweger et al. [28] improved

their preceding work [29] by utilizing recent network archi-

tecture, data augmentation, and better initial localization.

Hybrid methods are proposed to combine the generative

and discriminative approach. Oberweger et al. [30] trained

discriminative and generative CNNs by a feedback loop.

Zhou et al. [57] pre-defined a hand model and estimated the

parameter of the model instead of regressing 3D coordinates
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Figure 2: Various combinations of inputs and outputs for 3D pose estimation from a single depth image. Most of the previous

works take a 2D depth image as input and estimate the 3D coordinates of keypoints as in (a). In contrast, the proposed system

takes a 3D voxelized grid and estimates the per-voxel likelihood of each keypoint as in (d). Note that (b) and (d) are solely

composed of the convolutional layers that become the fully convolutional architecture.

directly. Ye et al. [52] used spatial attention mechanism and

hierarchical PSO. Wan et al. [46] used two deep generative

models with a shared latent space and trained discriminator

to estimate the posterior of the latent pose.

Depth-based 3D human pose estimation. Depth-based

3D human pose estimation methods also rely on genera-

tive and discriminative models. The generative models es-

timate the pose by finding the correspondences between

the pre-defined body model and the input 3D point cloud.

The ICP algorithm is commonly used for 3D body track-

ing [7, 12, 17, 21]. Another method such as template fit-

ting with Gaussian mixture models [51] was also proposed.

By contrast, the discriminative models do not require body

templates and they directly estimate the positions of body

joints. Conventional discriminative methods are mostly

based on random forests. Shotton et al. [35] classified each

pixel into one of the body parts, while Girchick et al. [11]

and Jung et al. [19] directly regressed the coordinates of

body joints. Jung et al. [56] used a random tree walk al-

gorithm (RTW), which reduced the running time signifi-

cantly. Recently, Haque et al. [15] proposed the viewpoint-

invariant pose estimation method using CNN and multiple

rounds of a recurrent neural network. Their model learns

viewpoint-invariant features, which makes the model robust

to viewpoint variations.

Volumetric representation using depth information.

Wu et al. [48] introduced the volumetric representation

of a depth image and surpassed the existing hand-crafted

descriptor-based methods in 3D shape classification and re-

trieval. They represented each voxel as a binary random

variable and used a convolutional deep belief network to

learn the probability distribution for each voxel. Several

recent works [25, 37] also represented 3D input data as a

volumetric form for 3D object classification and detection.

Our work follows the strategy from [25], wherein sev-

eral types of volumetric representation (i.e., occupancy grid

models) were proposed to fully utilize the rich source of

3D information and efficiently deal with large amounts of

point cloud data. Their proposed CNN architecture and oc-

cupancy grids outperform those of Wu et al. [48].

Input and output representation in 3D pose estima-

tion. Most of the existing methods for 3D pose estimation

from a single depth map [1, 2, 6, 13–15, 23, 28–30, 46] are

based on the model in Figure 2(a) that takes a 2D depth

image and directly regresses 3D coordinates. Recently, Ge

et al. [10] and Deng et al. [5] converted a 2D depth image

to a truncated signed distance function-based 3D volumetric

form and directly regressed 3D coordinates as shown in Fig-

ure 2(c). In 3D human pose estimation from a RGB image,

Pavlakos et al. [31] estimated the per-voxel likelihood for

each body keypoint via 2D CNN as in the Figure 2(b). To

estimate the per-voxel likelihood from an RGB image, they

treated the discretized depth value as a channel of the fea-

ture map, which resulted in different kernels for each depth

value. In contrast to all the above approaches, our proposed

system estimates the per-voxel likelihood of each keypoint

via the 3D fully convolutional network from the voxelized

input as in Figure 2(d). To the best of our knowledge, our

network is the first model to generate voxelized output from

voxelized input using 3D CNN for 3D pose estimation.

3. Overview of the proposed model

The goal of our model is to estimate the 3D coordinates

of all keypoints. First, we convert 2D depth images to 3D

volumetric forms by reprojecting the points in the 3D space

and discretizing the continuous space. After voxelizing the
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Figure 3: Overall architecture of the V2V-PoseNet. V2V-PoseNet takes voxelized input and estimates the per-voxel likelihood

for each keypoint through encoder and decoder. To simplify the figure, we plotted each feature map without Z-axis and

combined the 3D heatmaps of all keypoints in a single volume. Each color in the 3D heatmap indicates keypoints in the same

finger.
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Figure 4: Reference point refining network. This network

takes cropped depth image and outputs the 3D offset from

the current reference point to the center of ground-truth joint

locations.

2D depth image, the V2V-PoseNet takes the 3D voxelized

data as an input and estimates the per-voxel likelihood for

each keypoint. The position of the highest likelihood re-

sponse for each keypoint is identified and warped to the

real world coordinate, which becomes the final result of our

model. Figure 3 shows the overall architecture of the pro-

posed V2V-PoseNet. We now describe the target object lo-

calization refinement strategy, the process of generating the

input of the proposed model, V2V-PoseNet, and some re-

lated issues of the proposed approach in the following sec-

tions.

4. Refining target object localization

To localize keypoints, such as hand or human body

joints, a cubic box that contains the hand or human body in

3D space is a prerequisite. This cubic box is usually placed

around the reference point, which is obtained using ground-

truth joint position [29, 30, 57] or the center-of-mass after

simple depth thresholding around the hand region [2,13,14].

However, utilizing the ground-truth joint position is infea-

sible in real-world applications. Also, in general, using

the center-of-mass calculated by simple depth thresholding

does not guarantee that the object is correctly contained in

the acquired cubic box due to the error in the center-of-mass

calculations in cluttered scenes. For example, if other ob-

jects are near the target object, then the simple depth thresh-

olding method cannot properly filter the other objects be-

cause it applies the same threshold value to all input data.

Hence, the computed center-of-mass becomes erroneous,

which results in a cubic box that contains only some part

of the target object. To overcome these limitations, we train

a simple 2D CNN following Oberweger et al. [28] to ob-

tain an accurate reference point as shown in Figure 4. This

network takes a depth image, whose reference point is cal-

culated by the simple depth thresholding around the hand

region, and outputs 3D offset from the calculated reference

point to the center of ground-truth joint locations. The re-

fined reference point can be obtained by adding the out-

put offset value of the network to the calculated reference

point.

5. Generating input of the proposed system

To create the input of the proposed system, the 2D depth

map should be converted to voxelized form. To voxelize

the 2D depth map, we first reproject each pixel of the depth

map to the 3D space. After reprojecting all depth pixels, the

3D space is discretized based on the pre-defined voxel size.

Then, the target object is extracted by drawing the cubic

box around the reference point obtained in Section 4. We

set the voxel value of the network’s input V (i, j, k) as 1 if

the voxel is occupied by any depth point and 0 otherwise.

6. V2V-PoseNet

6.1. Building block design

We use four kinds of building blocks in designing the

V2V-PoseNet. The first one is the volumetric basic block

that consists of a volumetric convolution, volumetric batch

normalization [18], and the activation function (i.e., ReLU).

This block is located in the first and last parts of the net-

work. The second one is the volumetric residual block ex-

tended from the 2D residual block of option B in [16]. The

third one is the volumetric downsampling block that is iden-
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Figure 5: Encoder of the V2V-PoseNet. The numbers below

each block indicate the spatial size and number of channels

of each feature map. We plotted each feature map without

Z-axis to simplify the figure.

tical to a volumetric max pooling layer. The last one is

the volumetric upsampling block, which consists of a volu-

metric deconvolution layer, volumetric batch normalization

layer, and the activation function (i.e., ReLU). Adding the

batch normalization layer and the activation function to the

deconvolution layer helps to ease the learning procedure.

The kernel size of the residual blocks is 3×3×3 and that

of the downsampling and upsampling layers is 2×2×2 with

stride 2.

6.2. Network design

The V2V-PoseNet performs voxel-to-voxel prediction.

Thus, it is based on the 3D CNN architecture that treats the

Z-axis as an additional spatial axis so that the kernel shape

is w×h×d. Our network architecture is based on the hour-

glass model [27], which was slightly modified for more ac-

curate estimation. As the Figure 3 shows, the network starts

from the 7×7×7 volumetric basic block and the volumet-

ric downsampling block. After downsampling the feature

map, three consecutive residual blocks extract useful local

features. The output of the residual blocks goes through the

encoder and decoder described in Figures 5 and 6, respec-

tively.

In the encoder, the volumetric downsampling block re-

duces the spatial size of the feature map while the volu-

metric residual bock increases the number of channels. It

is empirically confirmed that this increase in the number

of channels helps improve the performance in our exper-

iments. On the other hand, in the decoder, the volumet-

ric upsampling block enlarges the spatial size of the feature

map. When upsampling, the network decreases the number

of channels to compress the extracted features. The enlarge-

ment of the volumetric size in the decoder helps the network

to densely localize keypoints because it reduces the stride

between voxels in the feature map. The encoder and de-

coder are connected with the voxel-wise addition for each

Volumetric 
Upsampling 
Block

11x11x11@128,
11x11x11@128

11x11x11@128,
22x22x22@64

22x22x22@64,
22x22x22@64
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Volumetric 
Residual 
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Figure 6: Decoder of the V2V-PoseNet. The numbers be-

low each block indicate the spatial size and number of chan-

nels of each feature map. We plotted feature map without

Z-axis to simplify the figure.

scale so that the decoder can upsample the feature map more

stably. After passing the input through the encoder and de-

coder, the network predicts the per-voxel likelihood for each

keypoint through two 1×1×1 volumetric basic blocks and

one 1×1×1 volumetric convolutional layer.

6.3. Network training

To supervise the per-voxel likelihood for each keypoint,

we generate 3D heatmap, wherein the mean of Gaussian

peak is positioned at the ground-truth joint location as fol-

lows:

H∗

n
(i, j, k) = exp

(

−
(i− in)

2 + (j − jn)
2 + (k − kn)

2

2σ2

)

,

(1)

where H∗

n is the ground-truth 3D heatmap of nth keypoint,

(in,jn,kn) is the ground-truth voxel coordinate of nth key-

point, and σ = 1.7 is the standard deviation of the Gaussian

peak.

Also, we adopt the mean square error as a loss function

L as follows:

L =

N
∑

n=1

∑

i,j,k

‖H∗

n
(i, j, k)−Hn(i, j, k)‖

2, (2)

where H∗

n and Hn are the ground-truth and estimated

heatmaps for nth keypoint, respectively, and N denotes the

number of keypoints.

7. Implementation details

The proposed V2V-PoseNet is trained in an end-to-end

manner from scratch. All weights are initialized from the

zero-mean Gaussian distribution with σ = 0.001. Gradient

vectors are calculated from the loss function and the weights

are updated by the RMSProp [43] with a mini-batch size of

8. The learning rate is set to 2.5×10−4. The size of the
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input to the proposed system is 88×88×88. We perform

data augmentation including rotation ([-40, 40] degrees in

XY space), scaling ([0.8, 1.2] in 3D space), and translation

([-8, 8] voxels in 3D space). Our model is implemented

by Torch7 [4] and the NVIDIA Titan X GPU is used for

training and testing. We trained our model for 10 epochs.

8. Experiment

8.1. Datasets

ICVL Hand Posture Dataset. The ICVL dataset [40]

consists of 330K training and 1.6K testing depth images.

The frames are collected from 10 different subjects using

Intel’s Creative Interactive Gesture Camera [26]. The anno-

tation of hand pose contains 16 joints, which include three

joints for each finger and one joint for the palm.

NYU Hand Pose Dataset. The NYU dataset [44] con-

sists of 72K training and 8.2K testing depth images. The

training set is collected from subject A, whereas the testing

set is collected from subjects A and B by three Kinects from

different views. The annotations of hand pose contain 36

joints. Most of the previous works only used frames from

the frontal view and 14 out of 36 joints in the evaluation,

and we also followed them.

MSRA Hand Pose Dataset. The MSRA dataset [38]

contains 9 subjects with 17 gestures for each subject. In-

tel’s Creative Interactive Gesture Camera [26] captured 76K

depth images with 21 annotated joints. For evaluation, the

leave-one-subject-out cross-validation strategy is utilized.

HANDS 2017 Frame-based 3D Hand Pose Estima-

tion Challenge Dataset. The HANDS 2017 frame-based

3D hand pose estimation challenge dataset [54] consists of

957K training and 295K testing depth images that are sam-

pled from BigHand2.2M [55] and First-Person Hand Ac-

tion [8] datasets. There are five subjects in the training set

and ten subjects in the testing stage, including five unseen

subjects. The ground-truth of this dataset is the 3D coordi-

nates of 21 hand joints.

ITOP Human Pose Dataset. The ITOP dataset [15]

consists of 40K training and 10K testing depth images for

each of the front-view and top-view tracks. This dataset

contains depth images with 20 actors who perform 15 se-

quences each and is recorded by two Asus Xtion Pro cam-

eras. The ground-truth of this dataset is the 3D coordinates

of 15 body joints.

8.2. Evaluation metrics

We used 3D distance error and percentage of success

frame metrics for 3D hand pose estimation following [38,

40]. For 3D human pose estimation, we used mean average

precision (mAP) that is defined as the detected ratio of all

human body joints based on 10 cm rule following [15, 56].

Input \Output 3D Coordinates Per-voxel likelihood

2D depth map 18.85 (21.1 M) 13.01 (4.6 M)

3D voxelized grid 16.78 (457.5 M) 10.37 (3.4 M)

Table 1: Average 3D distance error (mm) and number of

parameter comparison of the input and output types in the

NYU dataset. The number in the parenthesis denotes the

number of parameters. The visualized model for each input

and output type is shown in Figure 2.

Methods Average 3D distance error

Baseline 11.14 mm

+ Localization refinement 9.22 mm

+ Epoch ensemble 8.42 mm

Table 2: Effect of localization refinement and epoch ensem-

ble. The average 3D distance error is calculated in the NYU

dataset.

8.3. Ablation study

We used NYU hand pose dataset [44] to analyze each

component of our model because this dataset is challenging

and far from saturated.

3D representation and per-voxel likelihood estima-

tion. To demonstrate the validity of the 3D representation

of the input and per-voxel likelihood estimation, we com-

pared the performances of the four different combinations

of the input and output forms in Table 1. As the table shows,

converting the input representation type from the 2D depth

map to 3D voxelized form (also converting the model from

2D CNN to 3D CNN) substantially improves performance,

regardless of output representation. This justifies the effec-

tiveness of the proposed 3D input representation that is free

from perspective distortion. The results also show that con-

verting the output representation from the 3D coordinates to

the per-voxel likelihood increases the performance signifi-

cantly, regardless of the input type. Among the four com-

binations, voxel-to-voxel gives the best performance even

with the smallest number of parameters. Hence, the su-

periority of the voxel-to-voxel prediction scheme compared

with other input and output combinations is clearly justified.

To fairly compare four combinations, we used the same

network building blocks and design, which were introduced

in Section 6. The only difference is that the model for

the per-voxel likelihood estimation is fully convolutional,

whereas for the coordinate regression, we used fully con-

nected layers at the end of the network. Simply converting

voxel-to-voxel to pixel-to-voxel decreases the number of pa-

rameters because the model is changed from the 3D CNN

to the 2D CNN. To compensate for this change, we doubled

the number of channels of each feature map in the pixel-

to-voxel model. If the number of channels is not doubled,

then the performance was degraded. For all four models,
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Figure 7: Comparison of the proposed method (V2V-PoseNet) with state-of-the-art methods. Top row: the percentage of

success frames over different error thresholds. Bottom row: 3D distance errors per hand keypoints. Left: ICVL dataset,

middle: NYU dataset, right: MSRA dataset.
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Figure 8: Comparison of average 3D distance error over

different yaw (left) and pitch (right) angles on the MSRA

dataset.

we used 48×48 depth map or 48×48×48 voxelized grid as

input because the original size (88×88×88) does not fit into

GPU memory in the case of voxel-to-coordinates.

Refining localization of the target object. To demon-

strate the importance of the localization refining procedure

in Section 4, we compared the performance of two with

and without the localization refinement step. As shown

in Table 2, the refined reference points significantly boost

the accuracy of our model, which shows that the reference

point refining procedure has a crucial influence on the per-

formance.

Epoch ensemble. To obtain more accurate and robust

estimation, we applied a simple ensemble technique that we

call epoch ensemble. The epoch ensemble averages the es-

timations from several epochs. Specifically, we save the

trained model for each epoch in the training stage and then

in the testing stage, we average all the estimated 3D coordi-

nates from the trained models. As we trained our model by

10 epochs, we used 10 models to obtain the final estimation.

Epoch ensemble has no influence in running time when each

model is running in different GPUs. However, in a single-

GPU environment, epoch ensemble linearly increases run-

ning time. The effect of epoch ensemble is shown in Ta-

ble 2.

8.4. Comparison with stateoftheart methods

We compared the performance of the V2V-PoseNet on

the three 3D hand pose estimation datasets (ICVL [40],

NYU [44], and MSRA [38]) with most of the state-

of-the-art methods, which include latent random forest

(LRF) [40], cascaded hand pose regression (Cascade) [38],

DeepPrior with refinement (DeepPrior) [29], feedback

loop training method (Feedback) [30], hand model based

method (DeepModel) [57], hierarchical sampling optimiza-

tion (HSO) [41], local surface normals (LSN) [47], multi-

view CNN (MultiView) [9], DISCO [1], Hand3D [5],

DeepHand [36], lie-x group based method (Lie-X) [49],

improved DeepPrior (DeepPrior++) [28], region ensem-

ble network (REN-4×6×6 [14], REN-9×6×6 [13]),

CrossingNets [46], pose-guided REN (Pose-REN) [2],

global-to-local prediction method (Global-to-Local) [23],

classification-guided approach (Cls-Guide) [50], 3DCNN

5085



Team name Average 3D distance error

V2V-PoseNet (Ours) 9.95 mm

NVResearch and UMontreal 10.18 mm

NTU 11.30 mm

THU VCLab 11.70 mm

NAIST RVLab 11.90 mm

Table 3: The top-5 results of the HANDS 2017 frame-based

3D hand pose estimation challenge.

based method (3DCNN) [10], occlusion aware based

method (Occlusion) [24], and hallucinating heat distribu-

tion method (HeatDist) [3]. Some reported results of pre-

vious works [2, 13, 14, 28–30, 40, 49, 57] are calculated by

prediction labels available online. Other results [1,3,5,9,10,

23, 24, 36, 38, 41, 46, 47, 50] are calculated from the figures

and tables of their papers.

As shown in Figure 7, our method outperforms all exist-

ing methods on the three 3D hand pose estimation datasets

in standard evaluation metrics. This shows the superior-

ity of voxel-to-voxel prediction, which is firstly used in 3D

hand pose estimation. The performance gap between ours

and the previous works is largest on the NYU dataset that is

very challenging and far from saturated. We additionally

measured the average 3D distance error distribution over

various yaw and pitch angles on the MSRA dataset follow-

ing the protocol of previous works [38] as in Figure 8. As

it demonstrates, our method provides superior results in al-

most all of yaw and pitch angles.

Our method also placed first in the HANDS 2017 frame-

based 3D hand pose estimation challenge [54]. The top-5

results comparisons are shown in Table 3. As shown in the

table, the proposed V2V-PoseNet outperforms other partic-

ipants. A more detailed analysis of the challenge results is

covered in [53].

We also evaluated the performance of the proposed sys-

tem on the ITOP 3D human pose estimation dataset [15].

We compared the system with state-of-the-art works,

which include RTW [56], viewpoint-invariant feature-based

method [15], and REN-9x6x6 [13]. The score of each

method is obtained from [13, 15]. As shown in Table 4,

the proposed system outperforms all the existing methods

by a large margin in both of views, which indicates that our

model can be applied to not only 3D hand pose estimation,

but also other challenging problems such as 3D human pose

estimation from the front- and top-views.

8.5. Computational complexity

We investigated the computational complexity of the

proposed method. The training time of the V2V-PoseNet is

two days for ICVL dataset, 12 hours for NYU and MSRA

datasets, six days for HANDS 2017 challenge dataset, and

three hours for ITOP dataset. The testing time is 3.5 fps

when using 10 models for epoch ensemble, but can acceler-

mAP (front-view) mAP (top-view)

Body part [56] [15] [13]
V2V-

PoseNet

(Ours)

[56] [15] [13]
V2V-

PoseNet

(Ours)

Head 97.8 98.1 98.7 98.29 98.4 98.1 98.2 98.4

Neck 95.8 97.5 99.4 99.07 82.2 97.6 98.9 98.91

Shoulders 94.1 96.5 96.1 97.18 91.8 96.1 96.6 96.87

Elbows 77.9 73.3 74.7 80.42 80.1 86.2 74.4 79.16

Hands 70.5 68.7 55.2 67.26 76.9 85.5 50.7 62.44

Torso 93.8 85.6 98.7 98.73 68.2 72.9 98.1 97.78

Hip 80.3 72 91.8 93.23 55.7 61.2 85.5 86.91

Knees 68.8 69 89 91.80 53.9 51.6 70 83.28

Feet 68.4 60.8 81.1 87.6 28.7 51.5 41.6 69.62

Mean 80.5 77.4 84.9 88.74 68.2 75.5 75.5 83.44

Table 4: mAP comparison of state-of-the-art methods on

front and top views of the ITOP dataset.

ate to 35 fps in a multi-GPU environment, which shows the

applicability of the proposed method to real-time applica-

tions. The most time-consuming step is the input generation

that includes reference point refinement and voxelizing the

depth map. This step takes 23 ms and most of the time is

spent on voxelizing. The next step is network forwarding,

which takes 5 ms and takes 0.5 ms to extract 3D coordinates

from the 3D heatmap. Note that our model outperforms pre-

vious works by a large margin without epoch ensemble on

the ICVL, NYU, MSRA, and ITOP datasets while running

in real-time using a single GPU.

9. Conclusion

We proposed a novel and powerful network, V2V-

PoseNet, for 3D hand and human pose estimation from a

single depth map. To overcome the drawbacks of previ-

ous works, we converted 2D depth map into the 3D voxel

representation and processed it using our 3D CNN model.

Also, instead of directly regressing 3D coordinates of key-

points, we estimated the per-voxel likelihood for each key-

point. Those two conversions boost the performance sig-

nificantly and make the proposed V2V-PoseNet outperform

previous works on the three 3D hand and one 3D human

pose estimation datasets by a large margin. It also allows

us to achieve the highest accuracy on the 3D hand pose es-

timation challenge dataset. As voxel-to-voxel prediction is

firstly tried in 3D hand and human pose estimation from a

single depth map, we hope this work to provide a new way

of accurate 3D pose estimation.
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