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Abstract

Adversarial perturbations can pose a serious threat for

deploying machine learning systems. Recent works have

shown existence of image-agnostic perturbations that can

fool classifiers over most natural images. Existing methods

present optimization approaches that solve for a fooling ob-

jective with an imperceptibility constraint to craft the per-

turbations. However, for a given classifier, they generate

one perturbation at a time, which is a single instance from

the manifold of adversarial perturbations. Also, in order

to build robust models, it is essential to explore the mani-

fold of adversarial perturbations. In this paper, we propose

for the first time, a generative approach to model the dis-

tribution of adversarial perturbations. The architecture of

the proposed model is inspired from that of GANs and is

trained using fooling and diversity objectives. Our trained

generator network attempts to capture the distribution of

adversarial perturbations for a given classifier and readily

generates a wide variety of such perturbations. Our exper-

imental evaluation demonstrates that perturbations crafted

by our model (i) achieve state-of-the-art fooling rates, (ii)

exhibit wide variety and (iii) deliver excellent cross model

generalizability. Our work can be deemed as an important

step in the process of inferring about the complex manifolds

of adversarial perturbations.

1. Introduction

Machine learning systems are shown [5, 4, 11] to be

vulnerable to adversarial noise: small but structured per-

turbation added to the input that affects the model’s pre-

diction drastically. Recently, the most successful Deep

Neural Network based object classifiers have also been ob-

served [29, 9, 19, 16, 22] to be susceptible to adversarial at-

tacks with almost imperceptible perturbations. Researchers

have attempted to explain this intriguing aspect via hypoth-

esizing linear behaviour of the models (e.g. [9, 19]), finite

training data (e.g. [3]), etc. More importantly, the adversar-

* Equal contribution.

ial perturbations exhibit cross model generalizability. That

is, the perturbations learned on one model can fool another

model even if the second model has a different architecture

or has been trained with different dataset [29, 9].

Recent startling findings by Moosavi-Dezfooli et al. [18]

and Mopuri et al. [21, 20] have shown that it is possible to

mislead multiple state-of-the-art deep neural networks over

most of the images by adding a single perturbation. That is,

these perturbations are image-agnostic and can fool multi-

ple diverse networks trained on a target dataset. Such per-

turbations are named “Universal Adversarial Perturbations”

(UAP), because a single adversarial noise can perturb im-

ages from multiple classes. On one side, the adversarial

noise poses a severe threat for deploying machine learning

based systems in the real world. Particularly, for the ap-

plications that involve safety and privacy (e.g., autonomous

driving and access granting), it is essential to develop ro-

bust models against adversarial attacks. On the other side,

it also poses a challenge to our understanding of these mod-

els and the current learning practices. Thus, the adversarial

behaviour of the deep learning models to small and struc-

tured noise demands a rigorous study now more than ever.

All the existing methods, weather image specific [29, 9,

19, 6, 17] or agnostic [18, 21, 20], can craft only a sin-

gle perturbation that makes the target classifier susceptible.

Specifically, these methods typically learn a single pertur-

bation (δ) from a possibly bigger set of perturbations (∆)
that can fool the target classifier. It is observed that for a

given technique (e.g., UAP [18], FFF [21]), the perturba-

tions learned across multiple runs are not very different. In

spite of optimizing with a different data ordering or initial-

ization, their objectives end up learning very close pertur-

bations in the space (refer sec. 3.3). In essence, these ap-

proaches can only prove that the UAPs exist for a given clas-

sifier by crafting one such perturbation (δ). This is very lim-

ited information about the underlying distribution of such

perturbations and in turn about the target classifier itself.

Therefore, a more relevant task at hand is to model the dis-

tribution of adversarial perturbations. Doing so can help us

better analyze the susceptibility of the models against ad-
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Figure 1. Overview of the proposed approach that models the distribution of universal adversarial perturbations for a given classifier. The

illustration shows a batch of B random vectors {z}B transforming into perturbations {δ}B by G which get added to the batch of data

samples {x}B . The top portion shows adversarial batch (XA), bottom portion shows shuffled adversarial batch (XS) and middle portion

shows the benign batch (XB). The Fooling objective Lf (eq. 2) and Diversity objective Ld (eq. 3) constitute the loss. Note that the target

CNN (f) is a trained classifier and its parameters are not updated during the proposed training. On the other hand, the parameters of

generator (G) are randomly initialized and learned through backpropagating the loss. (Best viewed in color).

versarial perturbations. Furthermore, modelling the distri-

butions would provide insights regarding the transferabil-

ity of adversarial examples and help to prevent black-box

attacks [23, 17]. It also helps to efficiently generate large

number of adversarial examples for learning robust models

via adversarial training [30].

Empirical evidence [9, 31] has shown that the pertur-

bations exist in large contiguous regions rather than being

scattered in multiple small discontinuous pockets. In this

paper, we attempt to model such regions for a given classi-

fier via generative modelling. We introduce a GAN [8] like

generative model to capture the distribution of the unknown

adversarial perturbations. The freedom from parametric as-

sumptions on the distribution and the target distribution be-

ing unknown (no known samples from the target distribu-

tion of adversarial perturbations) make the GAN framework

a suitable choice for our task.

The major contributions of this work are:

• A novel objective (eq. 2) to craft universal adversar-

ial perturbations for a given classifier that achieves the

state-of-the art fooling performance on multiple CNN

architectures trained for object recognition.

• For the first time, we show that it is possible to model

the distribution (∆) of such perturbations for a given

classifier via a generative model. For this, we present

an easily trainable framework for modelling the un-

known distribution of perturbations.

• We demonstrate empirically that the learned model can

capture the distribution of perturbations and generates

perturbations that exhibit diversity, high fooling capac-

ity and excellent cross model generalizability.

The rest of the paper is organized as follows: section 2

details the proposed method, section 3 presents compre-

hensive experimentation to validate the utility of the pro-

posed method, section 4 briefly discusses the existing re-

lated works, and finally section 5 concludes the paper.

2. Proposed Approach

This section presents a detailed account of the proposed

method. For ease of reference, we first briefly introduce the

GAN [8] framework.

2.1. GANs

Generative models for images have seen renaissance

lately, especially because of the availability of large

datasets [25, 32] and the emergence of deep neural net-

works. Particularly, Generative Adversarial Networks
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(GAN) [8] and Variational Auto-Encoders (VAE) [15] have

shown significant promise in this direction. In this work, we

utilize a GAN like framework to model the distribution of

the adversarial perturbations.

A typical GAN framework consists of two parts: a Gen-

erator (G) and a Discriminator (D). The generator G trans-

forms a random vector z into a meaningful image I; i.e.,

G(z) = I , where z is usually sampled from a simple dis-

tribution (e.g., N (0, 1), U(−1, 1)). G is trained to produce

images (I) that are indistinguishable from real images from

the true data distribution pdata. The discriminator D ac-

cepts an image and outputs the probability for it to be a

real image, a sample from pdata. Typically, D is trained

to output low probability pD when a fake (generated) im-

age is presented. Both G and D are trained adversarially to

compete with and improve each other. A properly trained

generator G at the end of training is expected to produce

images that are indistinguishable from real images.

2.2. Modelling the adversaries

A broad overview of our method is illustrated in Fig. 1.

We first formalize the notations used in the subsequent sec-

tions of the paper. Note that in this paper, we have con-

sidered CNNs that are trained for object recognition [10,

28, 27, 13]. The data distribution over which the classifiers

are trained is denoted as X and a particular sample from

X is represented as x. The target CNN is denoted as f ,

therefore the output of a given layer i is denoted as f i(x).
The predicted label for a given data sample x is denoted as

k̂(x). Output of the softmax layer is denoted as q, which is

a vector of predicted probabilities qj for each of the target

categories j. The image-agnostic additive perturbation that

fools the target CNN is denoted as δ. ξ denotes the limit on

the perturbation (δ) in terms of its l 8 norm. Our objective

is to model the distribution of such perturbations (∆) for a

given classifier. Formally, we seek to model

∆ = {δ : k̂(x+ δ) 6= k̂(x) for x ∼ X and

|| δ || 8 < ξ}
(1)

Since our objective is to model the unknown distribution

of image-agnostic perturbations for a given trained classi-

fier (target CNN), we make suitable changes in the GAN

framework. The modifications we make are: (i) Discrim-

inator (D) is replaced by the target CNN (f) which is al-

ready trained and whose weights are frozen, and (ii) a novel

loss (fooling and diversity objectives) instead of the adver-

sarial loss to train the Generator (G). Thus, the objective

of our work is to train a model (G) that can fool the tar-

get CNN. The architecture for G is also similar to that of

typical GAN which transforms a random sample to an im-

age through a dense layer and a series of deconv layers.

More details about the exact architecture are discussed in

section 3. We now proceed to discuss the fooling objective

that enables us to model the adversarial perturbations for a

given classifier.

2.3. Fooling Objective

In order to fool the target CNN, the generator G should

be driven by a suitable objective. Typical GANs use adver-

sarial loss to train their G. However, in this work we attempt

to model a distribution whose samples are unavailable. We

know only a single attribute of those samples which is to

be able to fool the target classifier. We incorporate this at-

tribute via a fooling objective to train our G that models the

unknown distribution (∆) of perturbations.

We denote the label predicted by the target CNN on a

clean sample x as benign prediction (c) and that predicted

on the corresponding perturbed sample (x + δ) as adver-

sarial prediction. Similarly, we denote the output vector

of the softmax layer without δ and after adding δ as q and

q′ respectively. Ideally a perturbation δ should confuse the

classifier so as to flip the benign prediction into a different

adversarial prediction. For this to happen, after adding δ,

the confidence of the benign prediction (q′c) should be re-

duced and that of another category should be made higher.

Thus, we formulate a fooling loss to minimize the confi-

dence of benign prediction on the perturbed sample (x+ δ)

Lf = −log(1− q′c) (2)

Fig. 1 shows a graphical explanation of the objective, where

the fooling objective is shown by the blue colored block.

Note that the fooling loss essentially encourages G to gen-

erate perturbations that decrease confidence of benign pre-

dictions and thus eventually flip the label.

2.4. Diversity Objective

The fooling loss only encourages to learn a G that can

guarantee high fooling capability for the generated pertur-

bations (δ). This objective might lead to some local minima

where the G learns only a limited set of effective perturba-

tions as in [18, 21]. However, our objective is to model

the distribution ∆ such that it covers all varieties of those

perturbations. Therefore, we introduce an additional com-

ponent to the loss that encourages G to explore the space

of perturbations and generate a diverse set of perturbations.

We term this objective the Diversity objective. Within a

mini-batch of generated perturbations, this objective indi-

rectly encourages them to be different by separating their

feature embeddings projected by the target classifier. In

other words, for a given pair of generated perturbations

δn and δ′n, our objective increases the distance between

f i(x + δn) and f i(x + δ′n) at a given layer i in the clas-

sifier.

Ld = −
B
∑

n=1

d(f i(xn + δn), f
i(xn + δn′)) (3)
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where n′ is a random index in [1, B] and n′ 6= n, B is the

batch size, xn, δn are nth data sample and perturbation in

the mini-batch respectively. Note that a batch contains B

perturbations (δ) generated by G (via transforming random

vectors (z)) and B data samples (x). f i is the output of

the CNN at ith layer and d(., .) is a distance metric (e.g.,

Euclidean) between a pair of features. The orange colored

block in Fig. 1 illustrates the diversity objective.

Thus, our final loss becomes the summation of both fool-

ing and diversity objectives and is given by

Loss = Lf + λLd (4)

Since it is important to learn diverse perturbations that ex-

hibit maximum fooling, we give equal importance to both

Lf and Ld in the final loss to learn the G (i.e., λ = 1).

2.5. Architecture and Implementation details

Before we present the experimental details, we describe

the implementation and working details of the proposed ar-

chitecture. The generator part (G) of the network maps the

latent space Z to the distribution of perturbations (∆) for a

given target classifier. The architecture of the generator con-

sists of 5 deconv layers. The final deconv layer is followed

by a tanh non-linearity and scaling by ξ. Doing so restricts

the perturbations’ range to
[

−ξ, ξ
]

. Following [18, 21, 20],

the value of ξ is chosen to be 10 in order to add a quasi-

imperceptible adversarial noise. The generator network is

adapted from [26]. We performed all our experiments on

a variety of CNN architectures trained to perform object

recognition task on the ILSVRC-2014 [25] dataset. We kept

the architecture of our generator (G) unchanged for differ-

ent target CNN architectures and separately learned the cor-

responding adversarial distributions.

During training, we sample a batch of random vectors

z ∈ Rd from the uniform distribution U
[

−1, 1
]

which

in turn get transformed by G into a batch of perturba-

tions {δ}B = {δ1, δ2, δ3, . . . , δB} each of size equal to

that of the image (e.g., 224 × 224 × 3). We also sample

B images {x}B = {x1, x2, x3, . . . , xB} from the avail-

able training data to form the mini-batch training data, de-

noted as benign batch (XB). We now add the pertur-

bations to the training data in a one-to-one manner i.e.

one perturbation gets added to the corresponding image of

the batch, which gives us the adversarial batch, XA =
{x1 + δ1, x2 + δ2, x3 + δ3, . . . , xB + δB}. This is shown

in the top portion of Fig. 1. We also randomly shuffle the

perturbations ensuring no perturbation remains in its origi-

nal index in the batch, i.e., {δ1
′, δ2

′, δ3
′, . . . , δB

′} such that

δi 6= δi
′, ∀i. With this, we form a shuffled adversarial batch

as XS = {x1+δ1
′, x2+δ2

′, x3+δ3
′, . . . , xB+δB

′}, which

is shown in the bottom portion of Fig. 1. Note that in order

to prepare XS , only the perturbations ({δ}B) are shuffled

but not the data samples ({x}B).

Thus, each of our training iterations consists of three

quasi-batches, namely, (i) Benign images batch XB , (ii)

Adversarial batch XA, and (iii) Shuffled adversarial batch

XS . These are the three portions shown in Fig. 1. We

now feed these through the target CNN (f) and compute

the loss. We obtain the benign predictions (c) over the

clean batch samples {x}B . These labels are used to com-

pute the confidences (q′c) for the corresponding adversarial

batch samples. This forms the fooling objective as shown

in eq. 2. Similarly, we obtain the feature representations at

the softmax layer (probability vectors) for both adversarial

and shuffled adversarial batches (top and bottom portions

of Fig. 1) to compute the diversity component of the loss as

shown in eq. 3. Essentially, our diversity objective pushes

apart the final layer representations corresponding to two

different perturbations (δi and δi
′) via maximizing the co-

sine distance between them.

Note that we update only the G part of the network and

the target CNN, which is a pretrained classifier under at-

tack, remains unchanged. We iteratively perform the loss

computation and parameter updation for all the samples in

the training data. During training, we use a small held-out

set of 1000 random images as validation set and stop our

training upon reaching best performance on this set. In our

experiments, the maximum number of epochs is set to 100
and we observe that training of generators for all the target

CNNs gets saturated at around 60− 70 epochs.

3. Experiments

For all our experiments, we worked with 10000 (10 per

category, similar to [18]) training images randomly chosen

from ILSVRC 2014 train set and 50000 images of ILSVRC

2014 validation set as our testing images. The latent space

dimension d is set to 10. We have experimented with spaces

of different dimensions (e.g., 50, 100) and observed that the

fooling rates obtained are very close. However, we observe

the generated perturbations for d = 10 demonstrate larger

visual variety than other cases. Thus, we keep d = 10 for all

our experiments. We use a batch size (B) of 64 for shallow

networks such as VGG-F [7] and GoogLeNet [28], and 32
for the rest. The models are implemented in TensorFlow [1]

with Adam optimizer [14] on a TITAN-X GPU card. Codes

for the project are available at https://github.com/

val-iisc/nag.

3.1. Perturbations and the fooling rates

The fooling rates achieved by the perturbations crafted

by the learned generative model (G) are presented in Ta-

ble 1. Results are shown for seven different network ar-

chitectures trained on ILSVRC-2014 dataset computed for

over 50000 test images. We also investigate the transfer

rates of the perturbations by attacking other unknown mod-

els along with the target CNN. Rows denote a particular
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Table 1. Average fooling rates of the perturbations modelled by our generative network vs. UAP [18]. Rows indicate the target net for

which perturbations are modelled and columns indicate the net under attack. Note that, in each row, entry where the target CNN matches

with the network under attack represents white-box attack and the rest represent the black-box attacks. For our method, along with average

fooling rates, the corresponding standard deviations are also mentioned. The best result for each case is shown in bold and UAP best cases

are shown in blue. Mean avg. fooling rate achieved by the Generator (G) for each of the target CNNs is shown in the rightmost column.
VGG-F CaffeNet GoogLeNet VGG-16 VGG-19 ResNet-50 ResNet-152 Mean FR

VGG-F
Our 94.10 +

−
1.84 81.28+

−
3.50 64.15+

−
3.41 52.93+

−
8.50 55.39+

−
2.68 50.56+

−
4.50 47.67+

−
4.12 63.73

UAP 93.7 71.8 48.4 42.1 42.1 - 47.4 57.58

CaffeNet
Our 79.25+

−
1.44 96.44+

−
1.56 66.66+

−
1.84 50.40+

−
5.61 55.13+

−
4.15 52.38+

−
3.96 48.58+

−
4.25 64.12

UAP 74.0 93.3 47.7 39.9 39.9 - 48.0 56.71

GoogLeNet
Our 64.83+

−
0.86 70.46+

−
2.12 90.37+

−
1.55 56.40+

−
4.13 59.14+

−
3.17 63.21+

−
4.40 59.22+

−
1.64 66.23

UAP 46.2 43.8 78.9 39.2 39.8 - 45.5 48.9

VGG-16
Our 60.56+

−
2.24 65.55+

−
6.95 67.38+

−
4.84 77.57+

−
2.77 73.25+

−
1.63 61.28+

−
3.47 54.38+

−
2.63 65.71

UAP 63.4 55.8 56.5 78.3 73.1 - 63.4 65.08

VGG-19
Our 67.80+

−
2.49 67.58+

−
5.59 74.48+

−
0.94 80.56+

−
3.26 83.78+

−
2.45 68.75+

−
3.38 65.43+

−
1.90 72.62

UAP 64.0 57.2 53.6 73.5 77.8 - 58.0 64.01

ResNet-50
Our 47.06+

−
2.60 63.35+

−
1.70 65.30+

−
1.14 55.16+

−
2.61 52.67+

−
2.58 86.64+

−
2.73 66.40+

−
1.89 62.37

UAP - - - - - - - -

ResNet-152
Our 57.66+

−
4.37 64.86+

−
2.95 62.33+

−
1.39 52.17+

−
3.41 53.18+

−
4.16 73.32+

−
2.75 87.24+

−
2.72 64.39

UAP 46.3 46.3 50.5 47.0 45.5 - 84.0 53.27

target CNN for which we have modelled the distribution of

perturbations and the columns represent the classifiers we

attack. Note that in each row, when the target CNN (row)

matches with the system under attack (column), the fooling

indicates the white-box attack scenario and all other entries

represent the black-box attack scenario.

Since our G network models the perturbation space, we

can now easily generate a perturbation by sampling a z and

feeding it through the G. In Table 1, we report the mean

fooling rates after generating multiple perturbations for a

given CNN classifier. Particularly, the white-box fooling

rates are computed by averaging over 100 perturbations and

black-box rates are averaged over 10. The standard devia-

tions are mentioned next to the fooling rates. Also, the mean

average fooling rate achieved by the learned model (G) for

each of the target CNNs is shown in the rightmost column.

Clearly, the proposed generative model captures the pertur-

bations with higher fooling rates than UAP [18]. Note that

of all the 36 entries for which UAP [18] provided their fool-

ing rates, in only 3 cases (indicated in bold faced blue in

Table 1) they perform better than us. The mean fooling rate

(of all the entries in the table, except the rightmost column)

obtained by the UAP [18] is 57.66 and that achieved by our

model is 65.68, which is a significant 8% improvement.

Figure 2 shows the perturbations generated by the pro-

posed generative model for different target CNNs. Note that

each of them is one random sample from the corresponding

distributions of perturbations. Fig. 4 shows a benign sample

and the corresponding perturbed samples after adding per-

turbations for multiple CNNs. Note that the perturbations

are sampled from the corresponding distributions learned

by our method.

Table 2. Effect of training data on the modelling.

1000 2000 4000 10000 50000
White-box 61.54 73.19 78.18 87.24 91.16

Mean BBFR 39.46 45.12 51.87 62.94 67.45

3.2. Effect of training data on the modelling

In this subsection, we examine the effect of available

training data on the learning. We have considered ResNet-

152 model and various training data sizes (equal population

from each category). Table 2 presents the fooling rates ob-

tained by the crafted perturbations in both white-box and

black-box setup. Note that the black-box fooling rates are

obtained by averaging the fooling rates obtained on three

(GoogLeNet, VGG-19 and ResNet-50) CNN models. As

one expects, owing to better modelling induced by avail-

ability of more training data, the fooling rates increase with

available training data.

3.3. Diversity of perturbations
We examine the diversity of the generated perturbations

by our model. It can be interesting to examine the pre-

dicted label distribution after adding the perturbations. Do-

ing so can reveal if there exist any dominant labels that

most of the images get confused to or whether the con-

fusions are diverse. In this subsection, we analyze the

labels predicted by the target CNN after adding pertur-

bations modelled by the corresponding generative mod-

els (G). We have considered VGG-F architecture and the

50000 images from the validation set of ILSVRC-2014.

We compute the mean histogram of the predicted labels

for 10 perturbations generated by our G. The top-5 cat-

egories are: {jigsaw puzzle, maypole, otter,

dome, electric fan}. Though there exists a slight

domination from some of the categories, the extent of dom-

ination is far less compared to [18]. While in our case, 257
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VGG-F CaffeNet GoogLeNet VGG-16 VGG-19 ResNet-50 ResNet-152

Figure 2. Sample universal adversarial perturbations for different networks. The target CNN is mentioned below the perturbations. Note

that these are one sample from each of the corresponding distributions and across different samplings of the same generative model the

perturbations vary visually.

Figure 3. Sample perturbations generated by proposed approach (top) and UAP [18] (bottom) for GoogLeNet [28]. Note that the perturba-

tions generated by [18] look very similar to each other, whereas generated by our approach showcase diversity. These results show that the

proposed method faithfully models the distribution of perturbations that can effectively fool the target CNN.

categories account for the 95% of the predicted labels, for

UAP [18], it is 173 categories. The 48.6% relative higher

diversity compared to [18] is attributed to the effectiveness

of the proposed diversity loss (eq. 3) which encourages the

model to explore various regions in the adversarial mani-

fold.

3.4. Traversing the manifold of perturbations

In this subsection, we perform experiments to under-

stand the landscape of the latent space (Z). In case of

GANs, traversing on the learned manifold generally tells

about the signs of memorization [24]. While walking on

the latent space, if the image generations result in semantic

changes, it is considered that the model has learned rele-

vant and interesting representations. However, our gener-

ative model attempts to learn the unknown distribution of

adversarial perturbations with no samples from the target

distribution. Therefore, it is not relevant to investigate for

the smooth semantic changes in the generations but only to

look for smooth visual changes, while retaining the ability

to fool the target classifier.

Figure 5 shows the results of interpolation experiments

on the ResNet-152 [10] classifier. We have randomly taken

a pair of points (z1 and z2) in the latent (Z) space and con-

sidered 10 intermediate points on the line joining z1 and z2.

We have generated the perturbations corresponding to these

intermediate points by feeding them through the learned

generative model (G). Figure 5 shows the generated per-

turbations at the intermediate points along with their fool-

ing rates. We clearly observe that the perturbations change

smoothly between any pair of consecutive points and the

sequence gives a morphing like effect with large number of

intermediate points. For each of the intermediate perturba-

tions, fooling rate is computed over the 50000 images from

the ILSVRC-2014 validation set. In Fig. 5, below each of

these perturbations, corresponding fooling rates are men-

tioned. The high and consistent fooling rates along the path

demonstrate that the modelling of the adversarial distribu-

tion has been faithful. The proposed approach generates

perturbations smoothly from the underlying manifold. We

attribute this ability of our learned generative model to the

effectiveness of the proposed objectives in the loss.

3.5. Modelling adversaries for multiple targets

Transferability of the adversarial perturbations (both im-

age specific and agnostic) has been an intriguing revelation
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Clean : Horned viper CaffeNet : N. Terrier GoogLeNet : Hamper VGG-19 : Hyena ResNet-152 : Chiton

Figure 4. A clean image (left most) and corresponding adversarial images crafted for multiple networks along with predictions.

0.0 ∗ z1 + 1.0 ∗ z2 :
87.53

0.1 ∗ z1 + 0.9 ∗ z2 :
87.71

0.2 ∗ z1 + 0.8 ∗ z2 :
87.73

0.3 ∗ z1 + 0.7 ∗ z2 :
87.25

0.4 ∗ z1 + 0.6 ∗ z2 :
87.48

0.5 ∗ z1 + 0.5 ∗ z2 :
88.17

0.6 ∗ z1 + 0.4 ∗ z2 :
87.94

0.7 ∗ z1 + 0.3 ∗ z2 :
87.84

0.8 ∗ z1 + 0.2 ∗ z2 :
88.16

0.9 ∗ z1 + 0.1 ∗ z2 :
87.34

Figure 5. Interpolation between a pair of points in Z space shows that the distribution learned by our generator has smooth transitions. The

figure shows the perturbations corresponding to 10 points on the line joining a pair of points (z1 and z2) in the latent space. Note that these

perturbations are learned to fool the ResNet-152 [10] architecture. Below each perturbation, the corresponding fooling rate obtained over

50000 images from ILSVRC 2014 validation images is mentioned. This shows the fooling capability of these intermediate perturbations

is also high and remains same at different locations in the learned distribution of perturbations.

by many of the recent adversarial perturbations works [29,

9, 22, 18, 21, 20]. Moosavi-Dezfooli et al. [18] attempted

to explain the cross-model generalizability with the correla-

tion among different regions in the classification boundaries

learned by them. In this subsection, we investigate if we can

learn to model a single distribution of adversaries that fool

multiple target CNNs simultaneously.

We consider all the 7 target CNNs presented in Table 1

to model a single adversarial manifold that can fool all of

them simultaneously. We keep the G part of the proposed

architecture unchanged while we replace single target clas-

sifier with all the target networks. Because of the memory

constraint to fit all the models, we train with a smaller batch

size. The loss to train the generator is the summation of

the individual losses (eq. 4) computed for each of the target

CNNs separately. Thus, the objective driving the optimiza-

tion aims to craft the perturbations that fool all the target

CNNs simultaneously. Similar to the single target case, the

diversity objective (eq. 3) encourages to explore multiple

regions covering the manifold of perturbations and model a

distribution with a lot of variety.

Table 3 presents the mean fooling rates obtained by 10
samples from the distribution of perturbations learned to

fool all the 7 target CNNs. The fooling rates are slightly

lesser than those obtained for the dedicated optimization

(white-box attacks in Tab. 1). However, given the complex-

ity of the modelling, the learned perturbations achieve a re-

markable average fooling rate of 80.07%. Note that this is

around 8% higher than the best mean fooling rate obtained

by an individual network (computed for each row in Tab. 1),

which is 72.62% by VGG-19. This again emphasizes the

effectiveness of the proposed framework and objectives to

simultaneously model perturbations for classifiers with sig-

nificant architectural differences.
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Table 3. Mean fooling rates for 10 perturbations sampled from the distribution of adversaries modelled for multiple target CNNs. The

perturbations result an average fooling rate of 80.02% across the 7 target CNNs which is higher than the best mean fooling rate of 72.62%
achieved by the generator learned for VGG-19.

Network VGG-F CaffeNet GoogLeNet VGG-16 VGG-19 ResNet-50 ResNet-152

Fooling rate 83.74 86.94 84.79 73.73 75.24 80.21 75.84

3.6. Black­box attacks for ensemble generator

In this subsection we present the black-box fooling per-

formance of the learned generator for an ensemble of tar-

get CNNs. We have learned the ensemble generator GE

with an ensemble of 4 (VGG-F, GoogLeNet, VGG-16, and

ResNet-50) target CNNs leaving CaffeNet, VGG-19, and

ResNet-152. In Table 4 we report the mean black-box fool-

ing rate (Mean BBFR) obtained by the learned perturbations

computed over the three left out models. For comparison,

we also present the Mean BBFR achieved by the generators

learned for those individual target CNNs computed over the

left out 3 models. Owing to the ensemble of targets, gen-

erator GE learns more general perturbations compared to

the individual generators and achieves higher fooling rate

compared to the individual targets.

Table 4. Generalizability of the perturbations learned by the en-

semble generator (GE).

GV F GG GV 16 GR50 GE

Mean BBFR 60.63 60.15 71.26 61.87 76.40

4. Related Works

Adversarial perturbations [29] have been a tantaliz-

ing revelation about machine learning systems. Specifi-

cally, the deep neural network based learning systems (e.g.,

[9, 19, 23]) are also shown to be vulnerable to these struc-

tured perturbations. Their ability to generalize to unknown

models enables simple ways (e.g., [9]) to launch black-box

attacks that fool the deployed systems. Further, existence of

image-agnostic perturbations [18, 21, 20] along with their

cross model generalizability exposes the weakness of the

current day deep learning models. Differing from previ-

ous works [18, 21], our work proposes a novel, yet simple

and effective objective that enables to learn image-agnostic

perturbations. Although the existing objectives successfully

craft these perturbations, they do not attempt to capture the

space of such perturbations. Unlike the existing works, the

proposed method learns a generative model that can capture

the space of the image-agnostic perturbations for a given

classifier. To the best of our knowledge, the only work

which aims to learn a neural network for generating adver-

sarial perturbations via simple feed-forwarding is presented

by Baluja et al. [2]. They present a neural network which

transforms an image into its corresponding adversarial sam-

ple. Note that it generates image specific perturbations and

doesn’t aim to model the distribution like us.

Generative Adversarial Network (GAN): Goodfellow et

al. [8] and Radford et al. [24] have shown that GANs can be

trained to learn a data distribution and to generate samples

from it. Further image-to-image conditional GANs have

led to improved generation quality [12, 33]. Inspired from

GAN framework, we have proposed a neural network ar-

chitecture to model the distribution of universal adversar-

ial perturbations for a given classifier. The discriminator

(D) part of the typical GAN is replaced with the trained

classifier to be fooled (f). Only the generator (G) part is

learned to generate perturbations to fool the discriminator.

Also, as we don’t have to train D, samples of the target

data (i.e., perturbations) are not presented during the train-

ing. Through a pair of effective loss functions Lf and Ld,

the proposed framework models the perturbations that fool

a given classifier.

5. Conclusion

In this paper, we have presented the first ever genera-

tive approach to model the distribution of adversarial per-

turbations for a given CNN classifier. We propose a GAN

inspired framework, wherein we successfully train a gener-

ator network that captures the unknown target distribution

without any training samples from it. The proposed objec-

tives naturally exploit the attributes of the samples (e.g., to

be able to fool the target CNN) in order to model their dis-

tribution. However, unlike the typical GAN training that

deals with a pair of conflicting objectives, our approach has

a single well behaved optimization (only G is trained).

The ability of our method to generate perturbations with

state-of-the-art fooling rates and surprising cross-model

generalizability highlights severe susceptibilities of the cur-

rent deep learning models. However, the proposed frame-

work to model the distribution of perturbations also enables

to conduct formal studies towards building robust systems.

For example, Goodfellow et al. [9] introduced adversarial

training as a means to learn robust models and Tramer et

al. [30] extended it to ensemble adversarial training, which

require a large number of adversarial samples. In addition,

the defence becomes more robust if those samples exhibit

diversity and allow the model to fully explore the space of

adversarial examples. While the existing methods are lim-

ited by both generation speed and instance diversity, our

method, after modelling, almost instantly produces adver-

sarial perturbations with lots of variety. We have also shown

that our approach can efficiently model the perturbations

that simultaneously fool multiple deep models.
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