
Regularizing Deep Networks by Modeling and Predicting Label Structure

Mohammadreza Mostajabi Michael Maire Gregory Shakhnarovich

Toyota Technological Institute at Chicago

{mostajabi,mmaire,greg}@ttic.edu

Abstract

We construct custom regularization functions for use in

supervised training of deep neural networks. Our technique

is applicable when the ground-truth labels themselves ex-

hibit internal structure; we derive a regularizer by learn-

ing an autoencoder over the set of annotations. Training

thereby becomes a two-phase procedure. The first phase

models labels with an autoencoder. The second phase trains

the actual network of interest by attaching an auxiliary

branch that must predict output via a hidden layer of the au-

toencoder. After training, we discard this auxiliary branch.

We experiment in the context of semantic segmentation,

demonstrating this regularization strategy leads to consis-

tent accuracy boosts over baselines, both when training

from scratch, or in combination with ImageNet pretraining.

Gains are also consistent over different choices of convolu-

tional network architecture. As our regularizer is discarded

after training, our method has zero cost at test time; the per-

formance improvements are essentially free. We are simply

able to learn better network weights by building an abstract

model of the label space, and then training the network to

understand this abstraction alongside the original task.

1. Introduction

The recent successes of supervised deep learning rely on

the availability of large-scale datasets with associated an-

notations for training. In computer vision, annotation is a

sufficiently precious resource that it is commonplace to pre-

train systems on millions of labeled ImageNet [8] examples.

These systems absorb a useful generic visual representation

ability during pretraining, before being fine-tuned to per-

form more specific tasks using fewer labeled examples.

Current state-of-the-art semantic segmentation meth-

ods [25, 7, 46] follow such a strategy. Its necessity is

driven by the high relative cost of annotating ground-truth

for spatially detailed segmentations [12, 24], and the accu-

racy gains achievable by combining different data sources

and label modalities during training. A collection of many

images, coarsely annotated with a single label per image

(e.g. ImageNet [8]), is still quite informative in comparison

to a smaller collection with detailed per-pixel label maps for

each image (e.g. PASCAL [12] or COCO [24]).

We show that detailed ground-truth annotation of this

latter form contains additional information that existing

schemes for training deep convolutional neural networks

(CNNs) fail to exploit. By designing a new training pro-

cedure, we are able to capture some of this information, and

as a result increase accuracy at test time.

Our method is orthogonal to recent efforts, discussed in

Section 2, on learning from images in an unsupervised or

self-supervised manner [34, 31, 43, 22, 23, 44, 11]. It is

not dependent upon the ability to utilize an external pool

of data. Rather, our focus on more efficiently utilizing pro-

vided labels makes our contribution complementary to these

other learning techniques. Experiments show gains both

when training from scratch, and in combination with pre-

training on an external dataset.

Our innovation takes the form of a regularization func-

tion that is itself learned from the training set labels. This

yields two distinct training phases. The first phase mod-

els the structure of the labels themselves by learning an au-

toencoder. The second phase follows the standard network

training regime, but includes an auxiliary task of predicting

the output via the decoder learned in the first phase. We

view this auxiliary branch as a regularizer; it is only present

during training. Figure 1 illustrates this scheme.

Section 3 further details our approach and the intuition

behind it. Our regularizer can be viewed as a requirement

that the system understand context, or equivalently, as a

method for synthesizing context-derived labels at coarser

spatial resolution. The auxiliary branch must predict this

more abstract, context-sensitive representation in order to

successfully interface with the decoder.

Experiments, covered in Section 4, focus on the PAS-

CAL semantic segmentation task. We take baseline CNN

architectures, the established VGG [36] network and the

state-of-the-art DenseNet [16], and report performance

gains of enhancing them with our custom regularizer dur-

ing training. Section 4 also provides ablation studies, ex-

plores an alternative regularizer implementation, and visu-

5629



Labels (Input) Encoder Decoder

Label Autoencoder

Labels (Output)

Image

b b b b b b
b b b b b b

b b b b b b b b b b b b b b b b b b b
b

Convolutional Neural Network

CNN Hypercolumn Feature

bb

Primary Output

predict

Decoder

Auxiliary Output

Figure 1. Exploiting label structure when training semantic segmentation. Top: An initial phase looks only at the ground-truth anno-

tation of training examples, ignoring the actual images. We learn an autoencoder that approximates an identity function over segmentation

label maps. It is constrained to compress and reconstitute labels by passing them through a bottleneck connecting an encoder (red) and

decoder (blue). Bottom: The second phase trains a standard convolutional neural network (CNN) for semantic segmentation using hyper-

column [14, 29] features for per-pixel output. However, we attach an auxiliary branch (and loss) that also predicts segmentation by passing

through the decoder learned in the first phase. After training, we discard this decoder branch, making the architecture appear standard.

alizes representations learned by the label autoencoder.

Results demonstrate performance gains under all settings

in which we applied our regularization scheme: VGG or

DenseNet, with or without data augmentation, and with or

without ImageNet pretraining. Performance of a very deep

DenseNet, with data augmentation and ImageNet pretrain-

ing, is still further improved with use of our regularizer dur-

ing training. Together, these results indicate that we have

discovered a new and generally applicable method for reg-

ularizing supervised training of deep networks. Moreover,

our method has no cost at test time; it produces networks

architecturally identical to baseline designs.

Section 5 discusses implications of our demonstration

that it is possible to squeeze more benefit from detailed la-

bel maps when training deep networks. Our results open

up a new area of inquiry on how best to build datasets and

design training procedures to efficiently utilize annotation.

2. Related Work

The abundance of data, but more limited availability of

ground-truth supervision, has sparked a flurry of recent in-

terest in developing self-supervised methods for training

deep neural networks. Here, the idea is to utilize a large

reserve of unlabeled data in order to prime a deep network

to encode generally useful visual representations. Subse-

quently, that network can be fine-tuned on a novel target

task, using actual ground-truth supervision on a smaller

dataset. Pretraining on ImageNet [8] currently yields such

portable representations [10], but lacks the ability to scale

without requiring additional human annotation effort.

Recent research explores a diverse array of data sources

and tasks for self-supervised learning. In the domain of im-

ages, proposed tasks include inpainting using context [34],

solving jigsaw puzzles [31], colorization [43, 22, 23], cross-

channel prediction [44], and learning a bidirectional vari-

ant [11] of generative adversarial networks (GANs) [13].

In the video domain, recent works harness temporal co-

herence [28, 18], co-occurrence [17], and ordering [27], as

well as tracking [40], sequence modeling [37], and motion

grouping [33]. Owens et al. [32] explore cross-modality

self-supervision, connecting vision and sound. Agrawal et

al. [3] and Nair et al. [30] examine settings in which a robot

learns to predict the visual effects of its own actions.

Training a network to perform ImageNet classification or

a self-supervised task, in addition to the task of interest, can

be viewed as a kind of implicit regularization constraint.

Zhang et al. [45] explore explicit auxiliary reconstruction

tasks to regularize training. However, they focus on encod-

ing and decoding image feature representations. Our ap-

proach differs entirely in the source of regularization.

Specifically, by autoencoding the structure of the target

task labels, we utilize a different reserve of information than

all of the above methods. We design a new task, but whereas

self-supervision formulates the new task on external data,

we derive the new task from the annotation. This separa-

tion of focus allows for possible synergistic combination of

our method with pretraining of either the self-supervised or

supervised (ImageNet) variety. Section 4 tests the latter.

Another important distinction from recent self-

supervised work is that, as detailed in Section 3, we use a

generic mechanism, based on an autoencoder, for deriving

our auxiliary task. In contrast, the vast majority of effort

in self-supervision has relied on using domain-specific

knowledge to formulate appropriate tasks. Inpainting [34],

jigsaw puzzles [31], and colorization [43, 22, 23] exemplify

5630



cat

grass

tail

❄

ear

✁✁☛
head

❅
❅❘

body
��✒

Figure 2. Informative structure in annotation. The shape of la-

beled semantic regions hints at unlabeled parts (black arrows). Ob-

ject co-occurrence provides a prior on scene composition.

this mindset; BiGANs [11] are perhaps an exception, but to

date their results compare less favorably [23].

The work of Xie et al. [41] shares similarities to our

approach along the aspect of modeling label space. How-

ever, they focus on learning a shallow corrective model

that essentially denoises a predicted label map using center-

surround filtering. In contrast, we build a deep model of la-

bel space. Also, unlike [41], our approach has no test-time

cost, as we impose it only as a regularizer during training,

rather than as an ever-present denoising layer.

Inspiration for our method traces back to the era of vi-

sion prior to the pervasive use of deep learning. It was once

common to consider context as important [39], reason about

object parts, co-occurrence, and interactions [9], and design

graphical models to capture such relationships [38]. We re-

fer to only a few sample papers as fully accounting for a

decade of computer vision research is not possible here. In

the following section, we open a pathway to pull such think-

ing about compositional scene priors into the modern era:

simply learn, and employ, a deep model of label space.

3. Method

Figure 2 is a useful aid in explaining the intuition behind

the regularization scheme outlined in Figure 1. Suppose we

want to train a CNN to recognize and segment cats, but our

limited training set consists only of tigers. It is conceiv-

able that the CNN will learn an equivalence between black

and orange striped texture and the cat category, as such as-

sociation suffices to classify every pixel on a tiger. It thus

overfits to the tiger subclass and fails when tested on images

of house cats. This behavior could arise even if trained with

detailed supervision of the form shown in Figure 2.

Yet, the semantic segmentation ground-truth suggests to

any human that texture should not be the primary crite-

ria. There are no stripes in the annotation. Over the entire

training set, regions labeled as cat share a distinctive shape

that deforms in a manner suggestive of unlabeled parts (e.g.

head, body, tail, ear). The presence or absence of other ob-

jects in the scene may also provide contextual cues as to

the chance of finding a cat. How can we force the CNN to

notice this wealth of information during training?

We could consider treating the ground-truth label map

as an image, and clustering local patches. The patch con-

Layers DenseNet-67 DenseNet-121

Convolution





3 × 3 conv, stride 2

3 × 3 conv

3 × 3 conv



 × 1
7 × 7 conv,

stride 2

Pooling 3 × 3 max pool, stride 2

Dense Block (1)

[

1 × 1 conv

3 × 3 conv

]

× 6

[

1 × 1 conv

3 × 3 conv

]

× 6

Transition Layer (1)
1 × 1 conv

2 × 2 average pool, stride 2

Dense Block (2)

[

1 × 1 conv

3 × 3 conv

]

× 8

[

1 × 1 conv

3 × 3 conv

]

× 12

Transition Layer (2)
1 × 1 conv

2 × 2 average pool, stride 2

Dense Block (3)

[

1 × 1 conv

3 × 3 conv

]

× 8

[

1 × 1 conv

3 × 3 conv

]

× 24

Transition Layer (3)
1 × 1 conv

2 × 2 average pool, stride 2

Dense Block (4)

[

1 × 1 conv

3 × 3 conv

]

× 8

[

1 × 1 conv

3 × 3 conv

]

× 16

Figure 3. DenseNet architectural specifications.

taining the skinny tail would fall in a different cluster than

that containing the pointy ear. Adding the cluster identities

as another semantic label, and requiring the CNN to predict

them, would force the CNN to differentiate between the tail

and ear by developing a representation of shape. This clus-

tering approach is reminiscent of Poselets [6, 5].

Following this strategy, we would need to hand-craft an-

other scheme for capturing object co-occurrence relations,

perhaps by clustering descriptors spanning a larger spatial

extent. We would prefer a general means of capturing fea-

tures of the ground-truth annotations, and one not limited to

a few hand-selected characteristics. Fortunately, deep net-

works are a suitable general tool for building the kind of

abstract feature hierarchy we desire.

3.1. Modeling Labels

Specifically, as shown in Figure 1, we train an autoen-

coder on the ground-truth label maps. This autoencoder

consumes a semantic segmentation label map as input and

attempts to replicate it as output. By virtue of being required

to pass through a small bottleneck representation, the job of

the autoencoder is nontrivial. It must compress the label

map into the bottleneck representation. This compression

constraint will (ideally) force the autoencoder to discover

and implicitly encode parts and contextual relationships.

Ground-truth semantic segmentation label maps are sim-

pler than real images, so this autoencoder need not have as

high of a capacity as a network operating on natural im-

ages. We use a relatively simply autoencoder architecture,

consisting of a mirrored encoder and decoder, with no skip

connections. The encoder is a sequence of five 3×3 convo-

lutional layers, with 2× 2 max-pooling between them. The

decoder uses 2x upsampling followed by 3×3 convolution.

As a default, we set each layer to have 32-channels. We also

experiment with some higher-capacity variants:

• conv1: 32-channels; conv2-5: 128 channels each

• conv1: 32; conv2-4: 128; conv5: 256 channels

5631



Labels (Input)

b b b b b b b b b b

Encoder

Encoder Hypercolumn Predicted HypercolumnLoss( , )

Image

b b b b b b
b b b b b b

b b b b b b b b b b b b b b b b b b b
b

CNN Hypercolumn Feature

bb

Output

Figure 4. Alternative regularization scheme. Instead of predicting a representation to pass through the decoder, as in Figure 1, we can

train with an auxiliary regression problem. We place a loss on directly predicting activations produced by the hidden layers of the encoder.

These channel progressions are for the encoder; the decoder

uses the same in reverse order. We refer to these three au-

toencoder variants by the number of channels in their re-

spective bottleneck layers (32, 128, or 256).

3.2. Baseline CNN Architectures

Convolutional neural networks for image classification

gradually reduce spatial resolution with depth through a

series of pooling layers [21, 36, 15, 16]. As the seman-

tic segmentation task requires output at fine spatial res-

olution, some method of preserving or recovering spatial

resolution must be introduced into the architecture. One

option is to gradually re-expand spatial resolution via up-

sampling [35, 4]. Other approaches utilize some form of

skip-connection to forward spatially resolved features from

lower layers of the network to the final layer [26, 14, 29].

Dilated [42] or atrous convolutions [7] can also be mixed

in. Alternatively, the basic CNN architecture can be refor-

mulated in a multigrid setting [19].

Our goal is to examine the effects of a regulariza-

tion scheme in isolation from major architectural design

changes. Hence, we choose hypercolumn [14, 29] CNN ar-

chitectures as a primary basis for experimentation, as they

are are minimally separated from the established classifica-

tion networks in design space. They also offer the added

advantage of having readily available ImageNet pretrained

models, easing experimentation in this setting.

We consider hypercolumn variants of VGG-16 [36] and

DenseNet [16]. These variants simply upsample and con-

catenate features from intermediate network layers for use

in predicting semantic segmentation. As shown in Figure 1,

this can equivalently be viewed as associating with each

spatial location a feature formed by concatenating a local

slice of every CNN layer. The label of the corresponding

pixel in the output is predicted from that feature.

VGG-16 is widely used, while DenseNet [16] represents

the latest high-performance evolution of ResNet [15]-like

designs. We use 67-layer and 121-layer DenseNets with

the architectural details specified in Figure 3. The 67-layer

net uses a channel growth rate of 48, while the 121-layer

network, the same as in [16], uses a growth rate of 32. We

work with 256× 256 input and output spatial resolutions in

both CNNs and our label autoencoder.

3.3. Regularization via Label Model

As shown by the large gray arrow in Figure 1, we im-

pose our regularizer by connecting a CNN (e.g. VGG or

DenseNet) to the decoder portion of our learned label au-

toencoder. Importantly, the decoder parameters are frozen

during this training phase. The CNN now has two tasks,

each with an associated loss, to perform during training. As

usual, it must predict semantic segmentation using hyper-

columns. It must also predict the same semantic segmenta-

tion via an auxiliary path through the decoder. Backpropa-

gation from losses along both paths influences CNN param-

eter updates. Though they participate in one of these paths,

parameters internal to the decoder are never updated.

We connect VGG-16 or DenseNet to the decoder by pre-

dicting input for the decoder from the output of the penulti-

mate CNN layer prior to global pooling. This is the second-

to-last convolutional layer, and is selected because its spa-

tial resolution matches that of the expected decoder input.

The prediction itself is made via a new 1× 1 convolutional

layer, dedicated for that purpose.

If the label autoencoder learns useful abstractions, re-

quiring the CNN to work through the decoder ensures that

it learns to work with those abstractions. The hypercolumn

pathway allows the CNN to make direct predictions, while

the decoder pathway ensures that the CNN has “good rea-

sons” or a high-level abstract justification for its predictions.

Assuming autoencoder layers gradually build-up good

abstractions, there exist alternative methods of connecting

it as a regularizer. Figure 4 diagrams one such alternative.

Here, we ask the CNN to directly predict the feature rep-

resentation built by the label encoder. Encoder parameters

are, of course, frozen here. An auxiliary layer attempts to

predict the encoder hypercolumn from the CNN hypercol-

umn at the corresponding spatial location. The CNN must

5632



also still solve the original semantic segmentation task.

As Section 4 shows, this alternative scheme works well,

but not quite as well as using the decoder pathway. Us-

ing the decoder is also appealing for more reasons than per-

formance alone. Defining an auxiliary loss in terms of de-

coder semantic segmentation output is more interpretable

than defining it in terms of mean square error (MSE) be-

tween two hypercolumn features. Moreover, the decoder

output is visually interpretable; we can see the semantic

segmentation predicted by the CNN via the decoder.

4. Experiments

The PASCAL dataset [12] serves as our experimental

testbed. We follow standard procedure for semantic seg-

mentation, using the official PASCAL 2012 training set, and

reporting performance in terms of mean intersection over

union (mIoU) on the validation set (as validation ground-

truth is publicly available). We explore both our decoder-

and encoder-based regularization schemes in combination

with multiple choices of base network, data augmentation,

and pretraining. When applying the encoder as a regular-

izer, we task the CNN with predicting the concatenation of

the encoder’s activations in its conv1 and conv3 layers.

4.1. Setup

All experiments are done in PyTorch [1], using the

Adam [20] update rule when training networks. Models

trained from scratch use a batch size of 12 and learning rate

of 1e−4 which after 80 epochs decreased to 1e−5 for an

additional 20 epochs. For the case of ImageNet pretrained

models, we normalize hypercolumn features such that they

have zero-mean and unit-variance. We keep the deep net-

work weights frozen and train the classifier for 10 epochs

with learning rate of 1e−4. Then we decrease the learning

rate to 1e−5 and train end-to-end for additional 40 epochs.

Data augmentation, when used, includes: a crop of ran-

dom size in the (0.08 to 1.0) of the original size and a ran-

dom aspect ratio of 3/4 to 4/3 of the original aspect ratio,

which is finally resized to create a 256 × 256 image. Plus

random horizontal flip. Pretrained models are based on the

PyTorch torchvision library [2].

We use cross-entropy loss on auxiliary regularization

branches, except where indicated by a superscript † in re-

sults tables. For these experiments, we use MSE loss.

4.2. Semantic Segmentation Results

Tables 1, 3, and 4 summarize the performance benefits

of training with our regularizer. In the absence of pretrain-

ing or data augmentation, we boost performance of both

VGG-16 and DenseNet-67 by 5.1 and 4.7 mIoU, respec-

tively, which is more than a 10% relative boost. Regular-

ization with our decoder still improves mIoU (from 58.8 to

Architecture Data-Aug? Auxiliary Regularizer mIoU

no none 37.3

VGG-16
no Encoder (conv1 & conv3)† 41.1

-hypercolumn
no Decoder (32 channel)† 42.4

yes none 55.2

yes Decoder (128 channel) 57.1

VGG-16-FCN8s
yes none 51.5

yes Decoder (128 channel) 54.1

no none 40.5

no Encoder (conv1 & conv3)† 44.0

no Decoder (32 channel)† 45.2

DenseNet-67 no Decoder (128 channel) 42.5

-hypercolumn yes none 58.8

yes Decoder (32 channel) 59.4

yes Decoder (128 channel) 60.6

yes Decoder (256 channel) 59.8

Table 1. PASCAL mIoU without ImageNet pretraining. In each

experimental setting (choice of architecture, and presence or ab-

sence of data augmentation), training with any of our regularizers

improves performance over the baseline (shown in gray).

Architecture Data-Aug Auxiliary Regularizer mIoU

yes none 58.8

DenseNet-67 yes Decoder (128 channel) 60.6

-hypercolumn yes Unfrozen Decoder 60.2

yes Random Init. Decoder 58.8

Table 2. Ablation study. PASCAL mIoU deteriorates if the de-

coder parameters are not held fixed while training the main CNN.

Architecture Data-Aug? Auxiliary Regularizer mIoU

VGG-16 no none 67.1

-hypercolumn no Decoder (32 channel) 68.8

DenseNet-121 yes none 71.6

-hypercolumn yes Decoder (128 channel) 71.9

ResNet-101 yes none 75.4

-PSPNet yes Decoder (128 channel) 75.9

Table 3. PASCAL mIoU with ImageNet pretraining.

Architecture Data-Aug Auxiliary Regularizer mIoU

DenseNet-67 yes none 72.3

-hypercolumn yes Decoder (128 channel) 73.6

Table 4. PASCAL mIoU with COCO pretraining.

60.6) of DenseNet-67 trained with data augmentation. To

further show the robustness of our regularization scheme

to the choice of architecture, we also experiment with an

FCN [26] version of VGG-16, as included in Table 1.

Table 2 demonstrates the necessity of our two-phase

training procedure. If we unfreeze the decoder and up-

date its parameters in the second training phase, test perfor-

mance of the primary output deteriorates. Likewise, if we

skip the first phase, and train from scratch with an unfrozen,

randomly initialized decoder, the accuracy gain disappears.

Thus, the regularization effect is due to a transfer of infor-

mation from the learned label model, rather than stemming

from an architectural design of dual output pathways.

5633



0 10 20 30 40 50

Auxiliary Loss Weight (Relative)

37

38

39

40

41

42

43

44

45

46

P
A

S
C

A
L
 m

Io
U

VGG-16

DenseNet-67

Figure 5. Auxiliary loss weighting. We plot test performance as

a function of the relative weight of the losses on the auxiliary vs

primary output branches when training with the setup in Figure 1.

Weighting is important, but the optimal balance appears consistent

when changing architecture from VGG-16 (green) to DenseNet-67

(magenta). Performance is mIoU on PASCAL, without ImageNet

pretraining or data augmentation. Note that any nonzero weight on

the auxiliary loss (any regularization) improves over the baseline.

Table 3 shows that our regularization scheme synergizes

with ImageNet pretraining. It improves VGG-16 perfor-

mance, and even provides some benefit to a very deep 121-

layer DenseNet pretrained on ImageNet, while using data

augmentation. A baseline 71.6 mIoU for DenseNet appears

near state-of-the-art for networks that do not employ addi-

tional tricks (e.g. custom pooling layers [46], use of multi-

scale, or post-processing with CRFs [7]). Our improvement

to 71.9 mIoU may be nontrivial. Expanding trials in com-

bination with pretraining, our regularizer improves results

when pretraining on COCO, as shown in Table 4.

We also combine our regularizer with the latest network

design for semantic segmentation: dilated ResNet aug-

mented with the pyramid pooling module of PSPNet [46].

We used the output of the pyramid pooling layer to predict

input for the decoder and semantic segmentation. Table 3

shows gain over the corresponding PSPNet baseline.

Beyond autoencoder architecture choice, application of

our regularizer involves one free parameter: the relative

weight of the auxiliary branch loss with respect to the pri-

mary loss. Figure 5 shows how performance of the trained

network varies with this parameter, when using our 32-

channel bottleneck layer decoder with MSE loss on the aux-

iliary branch.

We have also run similar experiments with cross-entropy

loss on the auxiliary branch with the weight parameter in

[0, 6]. Here, the weight parameter range is changed due to

the difference in the dynamic range of values between MSE

loss and cross-entropy loss. Behaving similarly to Figure 5,

relative weighting of 0.5 achieves the highest accuracy. We

use this weight value across all of the experiments using our

decoder with 128-channel bottleneck layer. While the reg-

ularizer always provides a benefit, placing a proper relative

weight on the auxiliary loss is important.

Figure 6 visualizes the impact of training with our

learned label decoder as a regularizer. Most notably,

the network trained with regularization appears to correct

some global or large-scale semantic errors in comparison

to the baseline. Contrast such behavior to CRF-based post-

processing, which typically achieves impact through fixing

local mistakes. Also notable is that our auxiliary output it-

self is quite reasonable. This suggests that the autoencoder

training phase is successful in creating encoders and de-

coders that model label structure.

4.3. Label Model Introspection

To further investigate what the autoencoder learns, we

consider using the bottleneck representation produced by

the encoder as defining features by which we can perform

queries in label space. Specifically, we pick a region of a

training image label and represent that region with features

extracted from bottleneck layer. As the bottleneck layer is

low resolution, we are selecting features at coarse, but cor-

responding spatial location.

Next, we perform nearest neighbor search over all re-

gions in the validation set and find the two closest regions

to the query region. Figure 7 shows the results of this exper-

iment. Returned regions not only have the same object class

types as the query regions, but also share similar shapes to

that of the query. This reveals that our label autoencoder

has learned to capture object shape characteristics.

We also repeat this experiment, except with queries start-

ing from images. Here the bottleneck representation is pro-

duced by a CNN, which was trained with both hypercol-

umn and decoder prediction pathways; the latter yields the

required features. As shown in the top-right of Figure 7, re-

turned regions have similar context and shape to the query.

5. Conclusion

Our novel regularization method, when applied to train-

ing deep networks for semantic segmentation, consistently

improves their generalization performance. The intuition

behind our work, that additional supervisory signal can be

squeezed from highly detailed annotation, is supported by

the types of errors this regularizer corrects, as well as our

efforts at introspection into our learned label model.

Our results also indicate that one should now reevalu-

ate the relative utility of different forms of annotation; our

method makes detailed labeling more useful than previously

believed. This observation may be especially important for

applications of computer vision, such as self-driving cars,

that demand detailed scene understanding, and for which

large-scale dataset construction is essential.

Acknowledgements. This work was in part supported by the

DARPA Lifelong Learning Machines program.

5634



Image Auxiliary Output Primary Output

Our System: DenseNet-67 trained with regularizer

Ground-truth Baseline DenseNet-67

Figure 6. Semantic segmentation results on PASCAL. We show the output of a baseline 67-layer hypercolumn DenseNet (rightmost

column) compared to that of the same architecture trained with our auxiliary decoder branch as a regularizer (middle columns). All

examples are from the validation set. While we can discard the auxiliary branch after training, we include its output here to display

the decoder’s operation. Our network provides high-level signals to the decoder which, in turn, produces reasonable segmentations. To

best illustrate the effect of regularization, all results shown are for networks trained from scratch, without ImageNet pretraining or data

augmentation. This corresponds to the 40.5 to 45.2 jump in mIoU reported in Table 1, between the baseline and our primary output.

5635



Figure 7. Finding regions with similar representations. For each query image (green border) and region (green dot), the next two images

to the right are those in the validation set containing the nearest regions to the query region. All query images are from the training set.

For examples on red background, search is conducted not by looking at images, but via matching features produced by the encoder run on

ground-truth label maps. The bottom-right shows failure cases, such as matching a cat’s arm to the car rear door. For examples on gray

background, our DenseNet-67-hypercolumn CNN is used to predict the label space search representations from images.

5636



References

[1] PyTorch. https://github.com/pytorch/pytorch.

[2] PyTorch torchvision. https://github.com/pytorch/vision.

[3] P. Agrawal, A. Nair, P. Abbeel, J. Malik, and S. Levine.

Learning to poke by poking: Experiential learning of intu-

itive physics. NIPS, 2016.

[4] V. Badrinarayanan, A. Kendall, and R. Cipolla. SegNet: A

deep convolutional encoder-decoder architecture for image

segmentation. PAMI, 2017.

[5] L. Bourdev, S. Maji, T. Brox, and J. Malik. Detecting people

using mutually consistent poselet activations. ECCV, 2010.

[6] L. Bourdev and J. Malik. Poselets: Body part detectors

trained using 3d human pose annotations. ICCV, 2009.

[7] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and

A. L. Yuille. Deeplab: Semantic image segmentation with

deep convolutional nets, atrous convolution, and fully con-

nected CRFs. arXiv:1606.00915, 2016.

[8] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-

Fei. ImageNet: A large-scale hierarchical image database.

CVPR, 2009.

[9] C. Desai, D. Ramanan, and C. Fowlkes. Discriminative mod-

els for multi-class object layout. IJCV, 2011.

[10] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang,

E. Tzeng, and T. Darrell. DeCAF: A deep convolutional ac-

tivation feature for generic visual recognition. ICML, 2014.

[11] J. Donahue, P. Krähenbühl, and T. Darrell. Adversarial fea-

ture learning. ICLR, 2017.

[12] M. Everingham, L. van Gool, C. Williams, J. Winn, and

A. Zisserman. The PASCAL Visual Object Classes (VOC)

challenge. IJCV, 2010.

[13] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,

D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-

erative adversarial nets. NIPS, 2014.

[14] B. Hariharan, P. Arbelaez, R. Girshick, and J. Malik. Hyper-

columns for object segmentation and fine-grained localiza-

tion. CVPR, 2015.

[15] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. CVPR, 2016.

[16] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger.

Densely connected convolutional networks. CVPR, 2017.

[17] P. Isola, D. Zoran, D. Krishnan, and E. H. Adelson. Learning

visual groups from co-occurrences in space and time. ICLR,

workshop paper, 2016.

[18] D. Jayaraman and K. Grauman. Slow and steady feature

analysis: Higher order temporal coherence in video. CVPR,

2016.

[19] T.-W. Ke, M. Maire, and S. X. Yu. Multigrid neural architec-

tures. CVPR, 2017.

[20] D. P. Kingma and J. Ba. Adam: A method for stochastic

optimization. ICLR, 2015.

[21] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Ima-

geNet classification with deep convolutional neural net-

works. NIPS, 2012.

[22] G. Larsson, M. Maire, and G. Shakhnarovich. Learning rep-

resentations for automatic colorization. ECCV, 2016.

[23] G. Larsson, M. Maire, and G. Shakhnarovich. Colorization

as a proxy task for visual understanding. CVPR, 2017.

[24] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-

manan, P. Dollár, and C. L. Zitnick. Microsoft COCO: Com-

mon objects in context. ECCV, 2014.

[25] Z. Liu, X. Li, P. Luo, C. C. Loy, and X. Tang. Semantic

image segmentation via deep parsing network. ICCV, 2015.

[26] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional

networks for semantic segmentation. CVPR, 2015.

[27] I. Misra, C. L. Zitnick, and M. Hebert. Unsupervised

learning using sequential verification for action recognition.

ECCV, 2016.

[28] H. Mobahi, R. Collobert, and J. Weston. Deep learning from

temporal coherence in video. ICML, 2009.

[29] M. Mostajabi, P. Yadollahpour, and G. Shakhnarovich.

Feedforward semantic segmentation with zoom-out features.

CVPR, 2015.

[30] A. Nair, D. Chen, P. Agrawal, P. Isola, P. Abbeel, J. Malik,

and S. Levine. Combining self-supervised learning and imi-

tation for vision-based rope manipulation. ICRA, 2017.

[31] M. Noroozi and P. Favaro. Unsupervised learning of visual

representations by solving jigsaw puzzles. ECCV, 2016.

[32] A. Owens, J. Wu, J. H. McDermott, W. T. Freeman, and

A. Torralba. Ambient sound provides supervision for visual

learning. ECCV, 2016.

[33] D. Pathak, R. Girshick, P. Dollár, T. Darrell, and B. Hariha-

ran. Learning features by watching objects move. CVPR,

2017.

[34] D. Pathak, P. Krähenbühl, J. Donahue, T. Darrell, and

A. Efros. Context encoders: Feature learning by inpainting.

CVPR, 2016.

[35] O. Ronneberger, P. Fischer, and T. Brox. U-Net: Convolu-

tional networks for biomedical image segmentation. MIC-

CAI, 2015.

[36] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. ICLR, 2015.

[37] N. Srivastava, E. Mansimov, and R. Salakhutdinov. Unsuper-

vised learning of video representations using LSTMs. ICML,

2015.

[38] E. B. Sudderth, A. Torralba, W. T. Freeman, and A. S. Will-

sky. Learning hierarchical models of scenes, objects, and

parts. ICCV, 2005.

[39] A. Torralba. Contextual priming for object detection. IJCV,

2003.

[40] X. Wang and A. Gupta. Unsupervised learning of visual rep-

resentations using videos. ICCV, 2015.

[41] S. Xie, X. Huang, and Z. Tu. Top-down learning for struc-

tured labeling with convolutional pseudoprior. ECCV, 2016.

[42] F. Yu and V. Koltun. Multi-scale context aggregation by di-

lated convolutions. ICLR, 2016.

[43] R. Zhang, P. Isola, and A. A. Efros. Colorful image coloriza-

tion. ECCV, 2016.

[44] R. Zhang, P. Isola, and A. A. Efros. Split-brain autoencoders:

Unsupervised learning by cross-channel prediction. CVPR,

2017.

5637



[45] Y. Zhang, K. Lee, and H. Lee. Augmenting supervised neural

networks with unsupervised objectives for large-scale image

classification. ICML, 2016.

[46] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia. Pyramid scene

parsing network. CVPR, 2017.

5638


