
HydraNets: Specialized Dynamic Architectures for Efficient Inference

Ravi Teja Mullapudi

CMU

rmullapu@cs.cmu.edu

William R.Mark

Google Inc.

billmark@google.com

Noam Shazeer

Google Inc.

noam@google.com

Kayvon Fatahalian

Stanford University

kayvonf@cs.stanford.edu

Abstract

There is growing interest in improving the design of deep

network architectures to be both accurate and low cost.

This paper explores semantic specialization as a mecha-

nism for improving the computational efficiency (accuracy-

per-unit-cost) of inference in the context of image classifi-

cation. Specifically, we propose a network architecture tem-

plate called HydraNet, which enables state-of-the-art archi-

tectures for image classification to be transformed into dy-

namic architectures which exploit conditional execution for

efficient inference. HydraNets are wide networks contain-

ing distinct components specialized to compute features for

visually similar classes, but they retain efficiency by dynam-

ically selecting only a small number of components to eval-

uate for any one input image. This design is made possible

by a soft gating mechanism that encourages component spe-

cialization during training and accurately performs compo-

nent selection during inference. We evaluate the HydraNet

approach on both the CIFAR-100 and ImageNet classifica-

tion tasks. On CIFAR, applying the HydraNet template to

the ResNet and DenseNet family of models reduces infer-

ence cost by 2-4× while retaining the accuracy of the base-

line architectures. On ImageNet, applying the HydraNet

template improves accuracy up to 2.5% when compared to

an efficient baseline architecture with similar inference cost.

1. Introduction

Deep neural networks have emerged as state-of-the-art

models for various tasks in computer vision. However,

models that achieve top accuracy in competitions currently

incur high computation cost. Deploying these expensive

models for inference can consume a significant fraction of

data center capacity [19] and is not practical on resource-

constrained mobile devices or for real-time perception in

the context of autonomous vehicles.

As a result, there is growing interest in improving the de-

sign of deep architectures to be both accurate and compu-

tationally efficient. In many cases, the solution has been to

create new architectures that achieve a better accuracy/cost

Figure 1: The HydraNet template architecture: contains

multiple branches specialized for different inputs and a gate

chooses which branches to run when performing inference

on an input, and a combiner that aggregates branch outputs

to make final predictions.

balance. Like most architectures, these new designs are

static architectures that evaluate the entire network for each

input, regardless of the input’s characteristics. In contrast,

dynamic architectures attempt to specialize the work per-

formed during inference to properties of a particular input.

For example, a cascade is a dynamic architecture that em-

ploys multiple models with different computational costs

and uses low cost models to “early out” on easy-to-process

inputs.

In this paper, we explore a dynamic architecture tem-

plate, which we call HydraNet, which achieves efficiency

gains by dynamically determining which subset of the ar-

chitecture to run to best perform inference on a given input.

In other words, a HydraNet maintains accuracy by having

large capacity that is semantically specialized to aspects of

the input domain. However, a HydraNet is computationally

efficient because it only uses a small fraction of this capac-

ity when performing inference on any one input.

Our primary contribution is the HydraNet architecture

template, shown in Figure 1, which is a recipe for trans-

forming state-of-the-art static network designs into dynamic

architectures that offer better accuracy-per-unit-cost. We

evaluate HydraNets in the context of image classification

where we specialize network components for visually simi-

lar classes. The gating mechanism in the HydraNet template

enables a simple training process which effectively special-
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izes the components to similar classes and enables condi-

tional execution for faster inference.

2. Related Work

Sparsity. The common approach to improving DNN effi-

ciency is to enforce sparsity in network connectivity [21, 29,

4, 13]. This can be achieved via manual design of new DNN

modules (Inception [27], SqueezeNet [16], MobileNet [13])

or via automated techniques that identify and remove the

least important connections from a dense network [11, 10].

In either case, determination of the network topology is a

static preprocessing step, and all connections are evaluated

at the time of inference.

A complimentary optimization is to employ conditional

execution at the time of inference to exploit sparsity in ac-

tivations (skipping computation and memory accesses for

model weights when activations are known to be zero).

While attractive for reducing the energy consumption of

DNN accelerators [9], fine-grained, per-element sparsity is

difficult to exploit on CPUs and GPUs, which rely heavily

on wide vector processing for performance. The subtask

specialization we exploit in HydraNets can be viewed as a

mechanism for designing and training a network architec-

ture that, through coarse-grained conditional execution, is

able to more effectively exploit dynamic sparsity.

Cascades. Cascades [28] are a common form of condi-

tional model execution that reduces inference cost (on av-

erage) by quickly terminating model evaluation on inputs

that are easy to process (“early out”). Region proposal [24]

based models for object detection are canonical example of

cascades in DNNs. Recent work has shown that integrat-

ing cascades into deep network architectures [8, 14] can im-

prove the accuracy vs. cost of state-of-the-art architectures,

where the later stages in a cascade specialize for difficult

problem instances. The HydraNet approach of specializ-

ing network components for different subtasks is orthogonal

and complementary to the benefits of cascades.

Mixture of experts. The idea of specializing components

of a model for different subtasks is related to mixture-of-

experts models where the experts are specialized for dif-

ferent inputs or tasks. Recent work on training very large

DNNs for language modeling [26] has used conditional ex-

ecution of experts for evaluating only a small fraction of ex-

perts for each training instance. One of the key aspects ad-

dressed in [26] is the design of the mechanism for choosing

which experts to evaluate and trade-offs in network archi-

tecture to maintain computational efficiency. These design

choices are tailored for recurrent models and cannot be di-

rectly applied to state-of-the-art image classification models

which are feed-forward convolutional networks.

Hierarchical classification. Categories in ImageNet [6,

25] are organized into a semantic hierarchy using an ex-

ternal knowledge base. The hierarchy can be used to first

predict the super class and only perform fine grained classi-

fication within the super class [5, 7]. HDCNN [30] is a hier-

archical image classification architecture which is similar in

spirit to our approach. HDCNN and Ioannou et al. [20, 17]

improve accuracy with significant increase in cost relative

to the baseline architecture. In contrast, HydraNets on Ima-

geNet improve top-1 accuracy by 1.18-2.5% with the same

inference cost as corresponding baseline architectures.

Both HDCNN and Ioannou et al. model the routing

weights as continuous variables which are used to linearly

combine outputs from multiple experts. Jointly learning

the routing weights with the experts is similar to LEARN

in Table 8, and performs poorly due to optimization diffi-

culties (collapse and poor utilization of experts). HDCNN

uses complex multi-stage training to mitigate optimization

issues and provides robustness to routing error by overlap-

ping the classes handled by each expert. HydraNets use

binary weights for experts during both training and infer-

ence by dropping out all but the top-k experts. This enables

joint training of all the HydraNet components while allow-

ing flexible usage of experts.

Architectural structures similar to HydraNet [1] have

been used for learning the partition of categories into dis-

joint subsets. Our main contribution is a gating mecha-

nism which reduces inference cost by dynamically choosing

components of the network to evaluate at runtime. Recent

work [22, 23] has explored directly incorporating inference

cost in the optimization and explore training methods for

jointly learning the routing and the network features. In

contrast to the complex training regime required for joint

learning, our approach enables a simple and effective train-

ing strategy which we comprehensively evaluate cost on

both ImageNet and CIFAR-100 datasets.

3. HydraNet Architecture Template

The HydraNet template, shown in Figure 1, has four ma-

jor components.

• Branches which are specialized for computing features

on visually similar classes. We view computing fea-

tures relevant to a subset of the network inputs as a

subtask of the larger classification task.

• A stem that computes features used by all branches and

in deciding which subtasks to perform for an input.

• The gating mechanism which decides what branches

to execute at inference by using features from the stem.

• A combiner which aggregates features from multiple

branches to make final predictions.

Realizing the HydraNet template requires partitioning

the classes into visually similar groups that the branches

specialize for, an accurate and cost-effective gating mech-

anism for choosing branches to execute given an input, and

8081



a method for training all the components. The following

sections describe how we address these key questions.

3.1. Subtask Partitioning

To create a HydraNet with nb branches, we partition

the classes into nb groups of equal size. Similar to hi-

erarchical classification we group visually similar classes

so that branches can specialize in discriminating among

these classes. While it might be possible to manually cre-

ate groups when the number of classes is small, for large

classification problems we need a mechanism for automati-

cally creating visually similar groups. We compute a feature

representation for each class by averaging the features from

the final fully connected layer of an image classification net-

work for several training images of the same class. Cluster-

ing these average class features using k-means with nb clus-

ter centers results in a partitioning of the feature space. Di-

rectly assigning each class to its nearest cluster center leads

to an imbalanced class partitioning. Instead, each cluster

center is assigned the class that is nearest to it and this pro-

cess is repeated for C
nb

steps, where C is the total number

of classes, resulting in a balanced partitioning. Each of the

nb class partitions is assigned to one of the branches, which

we refer to as a subtask.

3.2. Cost Effective Gating

Given a subtask partitioning, traditional hierarchical

classification uses the gating function to classify among the

subtasks and the branches for classifying among the classes

within a subtask. For dynamic execution to be accurate,

both the gating function and the chosen branch need to

perform their respective classification tasks accurately. In

practice, the accuracy of the gating function depends on the

capacity (computational cost and parameters) of the gating

component. Making the gating function highly accurate in-

curs significant computational cost negating the benefits of

dynamic execution.

Our key insight in making the gating both computation-

ally efficient and accurate is to change the function of both

the subtasks and the gating function. In a HydraNet archi-

tecture, the branches do not perform final classification, in-

stead they only compute features relevant to the subtask as-

signed to the branch. For example, a branch corresponding

to a cluster of bird classes might compute features that dis-

tinguish between the different species of birds. Since the

branches compute features instead of final predictions, exe-

cuting more branches translates to computing more features

that can be combined to make final predictions. Therefore,

the job of the gating function is to choose which features

(which branches) to compute. Since the gating function

only needs to narrow down the final classification problem

to determining which k subtasks to compute (rather than

a single precise subtask), a lower capacity gating function

is sufficient. Note that in the HydraNet template the stem

computation is shared across different branches making the

execution of k branches computationally efficient by design

(Section 4.2).

We denote gating function score for an input I by g(I) ∈
[0, 1]

nb , the output of branch b by branch(b), and indices of

the top-k branches by topk(g(I)). The combined output of

the branches comb is given by:

comb(I) =
∑

b∈topk(g(I))

branch(b) (1)

We find that combining the features from the branches by

concatenation works equally well in practice, but requires

more memory and parameters than linear combination.

3.3. Training

Given a subtask partitioning, the stem, the branches, and

the gating function of the HydraNet architecture are trained

jointly. While direct supervision for branch outputs is not

available, the labels for the gating function are given by

the class to branch mapping determined by the subtask par-

titioning. The gating function and the downstream com-

biner indirectly provide supervision for the features that

each branch needs to compute. Since the mapping of the

class clusters to branch is fixed and determined by subtask

partitioning, consistently using the features from the same

branch for a subtask drives the features to specialize for the

subtask. This approach is similar to the modular network

approach for visual question answering [2, 18], where the

questions define the set of modules to execute and a consis-

tent mapping from questions to the modules encourages ap-

proximately learning the function designated to each mod-

ule. The branches are indirectly supervised by the classi-

fication predictions after combining the features computed

by the top-k branches.

Both the gating function and the branches are supervised

using ground truth labels for image classification. During

training, the top-k branches chosen for different inputs in

the mini-batch can be different. We evaluate all branches on

all inputs and mask out features from branches not picked

by the gating function. In effect, the branch outputs from

the branches other than the top-k for each input are ignored

and not seen by the combiner. Masking ensures that weights

of the branches not chosen by the gating remain unchanged

during back propagation. This can also be view as an adap-

tive form of drop out [3] where entire paths are dropped in-

stead of units within a layer. We use the cross entropy loss

for both the gating function and the final predictions.

4. Architecture for ImageNet Classification

To analyze the computational cost and accuracy trade-

offs enabled by HydraNet designs, we need a baseline
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Model Configuration Params MADDs Accuracy

d w (×10
6) (×10

6) (Top-1)

ResSep-A 2 0.50 1.96 181 61.88

ResSep-B 3 0.50 2.68 290 65.27

ResSep-C 2 0.75 3.98 380 67.16

ResSep-D 3 0.75 5.58 620 69.90

ResSep-E 3 1.00 9.53 1060 72.02

ResNet-18 - 11.69 1800 69.30

MobileNet - 4.2 569 70.60

Table 1: Number of multiply-add operations and Top-1

ImageNet classification accuracy of variants of ResSep,

ResNet-18, and MobileNet architectures for image classi-

fication. ResSep-D model is more accurate than Resnet-18,

and 2.5× less expensive.

architecture that is both computationally efficient at in-

ference like MobileNet [13] and allows fast training like

ResNet [12] in order to rapidly train multiple models in

the design space. In response we created a static architec-

ture, called ResSep which incorporates desirable architec-

tural choices from both the MobileNet and the ResNet ar-

chitectures, namely depth wise separable convolutions and

residual connections.

4.1. Baseline Architecture

The high-level structure of the ResSep architecture (Fig-

ure 2) is similar to the ResNet architecture for ImageNet

classification. There are four blocks (excluding the initial

block) that can be stacked multiple times to create deep net-

works. Residual connections are added between the input

and output of each block to accelerate training and provide

regularization. Unlike ResNet, instead of using convolu-

tion layer for each of the blocks we use depth-wise sepa-

rable convolutions, which have been shown to be effective

at reducing computation costs with only minor reduction in

accuracy [13]. The configuration of layers comprising each

block in ResSep is shown in Figure 2. The amount of com-

putation and number of parameters can be varied by scaling

the number of filters in each block by the parameter w and

the depth of the network by the stacking factor d. Table 1

compares the computation cost, number of parameters and

Top-1 ImageNet classification accuracy of several variants

of the baseline ResSep architecture to popular image clas-

sification architectures. The ResSep-D model is more ac-

curate than Resnet-18, and is 2.5× less expensive; it also

compares favorably to the MobileNet architecture which is

highly tuned for low cost inference on mobile devices.

4.2. Design Space for HydraNet Transformation

Transforming a baseline static architecture into a

dynamic HydraNet architecture involves several design

(a) Transforming the baseline ResSep architecture for ImageNet

classification into a HydraNet architecture. Left: ResSep with sep-

arable convolutions in each block. The hyper parameter d is num-

ber of times each block is stacked. Residual connections are added

from each block’s input to its output. Right: the corresponding

HydraNet architecture with branches, gate, and combiner compo-

nents.

Name Layers Stride Channels

Init block conv 3 × 3 2 64

max pool 3 × 3 2 64

Block 1 sep conv 3 × 3 [1, 2] 128 ×w

sep conv 3 × 3 1 128 ×w

Block 2 sep conv 3 × 3 [1, 2] 256 ×w

sep conv 3 × 3 1 256 ×w

Block 3 sep conv 3 × 3 [1, 2] 512 ×w

sep conv 3 × 3 1 512 ×w

Block 4 sep conv 3 × 3 [1, 2] 1024 ×w

sep conv 3 × 3 1 1024 ×w

Projection conv 1 × 1 1 1024 ×w

Combiner add 1024 ×w

sep conv 3 × 3 1 1024 ×w

Prediction avg pool 7 × 7 1 1024 ×w

fully connected 1000

(b) Layer configuration for each of the block in the ResSep archi-

tecture. The parameter w controls the number of filters in each

block. The first convolution layer in the first instance of each

blocks uses stride 2 and subsequent instances use stride 1.

Figure 2: ResSep and the corresponding HydraNet Archi-

tecture for ImageNet.

choices for each of the components. We describe these

choices in the context of ResSep, but the design space trans-

forming ResNet [12] and DenseNet [15] architectures for

CIFAR-100 classification is similar (Section 5.1).

The first of these choices is determining the architecture
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Parameter Description

d Number of times each block is stacked.

Controls overall network depth.

nb Total number of branches

k Number of branches selected by the gating

mechanism for an input image

ws, wb, wg Multipliers for controlling number of fil-

ters in layers of stem, branches, and gating

components respectively

Table 2: Hyper parameters for exploring various trade-offs

in the design of HydraNet architectures.

of the stem and the branches. Having a deeper stem allows

sharing higher level features across the different branches or

subtasks and allows features from deeper layers to be used

to make more accurate gating decisions. On the other hand,

making the gating decision after a deep stem diminishes the

potential savings of dynamic execution. Therefore, decid-

ing where to branch is crucial for retaining both computa-

tional efficiency and accuracy. We empirically observe that

partitioning the first three ResSep blocks into the stem and

replicating the fourth block in each of the branches gives

better accuracy per unit computation cost.

In designing the branches, directly replicating ResSep

Block 4 into branches results in an inordinate increase in

the number of model parameters and the number of float-

ing point operations (by 3-4× for nb = 10) during training,

even for a small number of branches. Since training on Ima-

geNet is computationally expensive, we retain the structure

of Block 4 but scale the number of filters in each convolu-

tion layer by wb to reduce training time. Balancing the com-

putation in the branches, stem, and the number of branches

is essential for improving computational efficiency of in-

ference. The hyper parameters that govern this balance are

listed in Table 2: nb controls the number of branches, ws

and wb control the number of filters in the layers in the

stem and branches respectively. When transforming archi-

tectures for smaller datasets (CIFAR-100) where training is

relatively cheap we do not scale down the number of filters.

The architecture of the gating function is the same as

that of a branch, but followed by a prediction block. The

gating function predicts the top-k branches relevant for the

given input. Features from these branches are combined by

first projecting them from a wb-dimensional space into a

ws-dimensional space and adding them together. The com-

biner block uses the ws features to make final class predic-

tions. The hyper parameters wg and k (Table 2) control the

cost of the gating function and the number of branches dy-

namically evaluated for each input. We further elaborate on

how these hyper parameter choices impact gating accuracy

in Section 5.2.
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(a) ResNet architectures.
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(b) DenseNet architectures.

Figure 3: Inference cost vs accuracy of HydraNet archi-

tectures for CIFAR-100 classification. HydraNet architec-

tures have the same accuracy as the baseline ResNet and

DenseNet architecture at lower dynamic cost.

5. Experiments

In this section, we demonstrate the effectiveness of Hy-

draNet architectures by evaluating the computational cost

vs. accuracy for image classification using both ImageNet

and CIFAR-100 datasets. We use the total number of

multiply-add (MADD) operation performed by the network

during inference as measure of cost. Although the number

of MADDs does not directly translate to inference runtime,

it is indicative of the runtime and allows for comparing net-

work cost independent of hardware and associated software

implementation details.

We first analyze the computational cost and accuracy of

HydraNet architectures based on two state-of-the-art archi-

tectures on CIFAR-100. We then use the ResSep archi-

tecture, which is designed to be computationally efficient

for both training and inference, on the ImageNet dataset for

evaluating the design choices in each component of the Hy-

draNet template.
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Model Params Inference Accuracy

(×10
6) MADDs (×10

6) (Top-1)

Hydra-Res-d1 1.28 52 65.81

Hydra-Res-d2 2.86 118 71.24

Hydra-Res-d3 4.43 184 72.30

Hydra-Res-d4 6.01 251 73.35

Hydra-Res-d5 7.59 317 73.84

Hydra-Res-d6 9.17 383 74.29

Hydra-Res-d7 10.74 449 74.71

Hydra-Res-d9 13.90 581 75.26

ResNet-14 0.17 52 65.42

ResNet-20 0.27 81 66.18

ResNet-26 0.37 109 67.55

ResNet-32 0.47 137 67.98

ResNet-56 0.85 250 69.89

ResNet-110 1.73 505 72.11

ResNet-164 2.60 760 73.26

Hydra-Dense-d2 2.77 195 72.04

Hydra-Dense-d3 5.43 360 73.58

Hydra-Dense-d4 8.97 574 74.84

Hydra-Dense-d6 18.72 1151 76.25

DenseNet-d3 0.36 212 67.58

DenseNet-d4 0.58 333 69.41

DenseNet-d6 1.19 655 72.18

DenseNet-d8 2.00 1080 73.80

DenseNet-d10 3.03 1619 75.03

DenseNet-d12 4.27 2260 75.43

DenseNet-d14 5.72 3008 75.68

Table 3: Computation cost and CIFAR Top-1 accuracy of

several variants of HydraNet architectures and baseline ar-

chitectures. The HydraNet architectures have the same ac-

curacy as the baseline networks with much lower dynamic

cost. All the HydraNet architectures have nb = 20 branches

and use k = 4 branches during inference.

5.1. CIFAR

We use the HydraNet template to transform ResNet

(plain residual units) and DenseNet architectures for

CIFAR-100 classification into Hydra-Res and Hydra-Dense

architectures. The overall structure of the Hydra-Res

and Hydra-Dense models is similar to that of the Hydra-

ResSep architecture for ImageNet, however both ResNet

and DenseNet for CIFAR-100 classification architectures

have three blocks instead of four. We replicate the third

block in each of the nb = 20 branches and dynamically

run k = 4 branches for each input. Unlike the Hydra-

ResSep model for ImageNet, the number of filters in the

stem, branches and gating function are not scaled down

(wb, ws, wg=1) from the design of the static baseline archi-

tecture. We create multiple variants of both Hydra-ResNet

and Hydra-DenseNet by varying the depth (which is en-

coded in the variant name in Table 3). The hyper param-

eters k, nb and the point to branch were chosen empiri-

cally by searching over nb = [5, 10, 20, 25], k = [3, 4, 5]
and branching at block 2 or block 3. The hyper param-

eter sweep was done using the smallest HydraNet archi-

tecture, Hydra-Res-d1 and Hydra-Dense-d2 in Table 3 and

reused for the more expensive variants. We found that in-

creasing the total number of branches (nb) and dynamic

branches (k) beyond 20 and 4 respectively had diminish-

ing returns, while branching at block 2 delivered the better

cost-accuracy trade-off.

The cost (in MADDs), number of model parameters and

accuracy of variants of both Hydra-Dense and Hydra-Res

are shown in Table 3. Both the Hydra-Res and Hydra-

Dense architectures give the same level of accuracy as the

static baseline architectures with significantly lower com-

putational cost. For example, Hydra-Res-d4 yields the same

accuracy as ResNet-164 while incurring one third the cost.

As seen in Figure 3, similar trends hold for several variants

of the HydraNet architectures. The improved accuracy of

the HydraNet models is due to the overall increased capac-

ity of the model, i.e., the total number of parameters and

MADDs. However, at inference time the model dynami-

cally picks a small subset of branches to execute; reducing

the inference cost dramatically.

5.2. ImageNet

As with CIFAR, we trained multiple HydraNets to ex-

plore the accuracy vs. cost landscape. However, due to the

high cost of training large models on ImageNet classifica-

tion we focus on a single baseline family of architectures

(ResSep from Section 4.2). The ResSep-D model takes

∼ 12 hours to train with distributed asynchronous training

using 32 GPUs. Relative to ResSep-D, the Hydra-ResSep-

D architecture shown in Table 4 takes ∼ 2.5× longer to

train. Training time and GPU memory make it impractical

to explore large values for nb and wb. For example, setting

wb = 0.5 instead of wb = 0.125 in the Hydra-ResSep-D

architecture makes the training time ∼ 4× longer. The par-

ticular configurations in Table 4 were chosen to have similar

inference cost as the baseline ResSep architectures (the hy-

per parameters d, ws directly correspond to the baseline ar-

chitectures and nb, k, wg are balanced such that the dynamic

inference cost closely matches the corresponding baseline).

We further elaborate on the choice of hyper parameters in

the rest of the section with associated experiments.

HydraNet architecture improves accuracy while having

similar computation costs as the baseline ResSep archi-

tecture. Figure 4 shows the cost vs. accuracy of both

Hydra-ResSep and the baseline ResSep architectures. As

shown in Table 4, the HydraNet architectures are more ac-

curate, and have more parameters compared to the baseline

ResSep architectures with similar inference cost, especially

in the low-cost regime. However, at inference time only
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Figure 4: Cost vs. accuracy trend for Hydra-ResSep and the

baseline ResSep architectures.

k = 5 of the nb = 50 branches are evaluated, making the

inference cost comparable to the corresponding baseline ar-

chitecture. The accuracy improvements of HydraNets in the

low cost regime are more pronounced. We believe this is

because of the increase in total capacity (parameters and to-

tal static MADDs) of the HydraNet architectures relative to

the baseline is larger in this regime (HydraNet-ResSep-A

has 5.6× more parameters and 3.3× more MADDs). In the

high accuracy regime, the accuracy improves by 1.18% rel-

ative to the baseline (HydraNet-ResSep-D has 2.8× more

parameters and 1.5× more multiply-adds).

Increasing the total number of branches results in bet-

ter accuracy and increases training costs. In order to

analyze the impact of the number of branches (nb) we vary

nb while keeping the other hyper parameters the same as

HydraNet-ResSep-A (Figure 4). Increasing the number of

branches increases the total capacity of the network and al-

lows for more specialization, but makes learning the sub-

task gating function harder. However, since we rely on a

soft top-k gating mechanism, increasing the total number of

branches results in a net improvement in overall accuracy as

shown in Table 5. Note that increasing the total number of

branches increases the training cost, but not inference cost.

Training cost and available GPU memory make it imprac-

tical to scale nb and wb to large values. We set nb = 50
and wb = 0.125 to keep the training time under ∼ 2 days

(asynchronous training with 32 GPUs) for all the variants

of HydraNet-ResSep.

Executing a small number of branches dynamically im-

proves accuracy significantly relative to executing a sin-

gle branch. Table 6 shows the importance of the soft-

gating mechanism by varying k while keeping other hyper

parameters the same. Dynamically executing only a single

branch results in lower accuracy than the ResSep-A model.

This is due to inaccuracy in gating as well as the low capac-

ity of a single branch. However, executing a small number

of branches recovers accuracy and outperforms the ResSep-

A model by 2.5%. There are diminishing improvements

in accuracy with increasing k. We set k = 5 for all the

HydraNet-ResSep architectures.

Branching earlier in the network hurts accuracy with

only a slight reduction in dynamic compute cost. An

important aspect of transforming a baseline architecture us-

ing the HydraNet template is deciding where the model is

partitioned into branches. Table 7 shows the accuracy when

the baseline architecture ResSep-A is transformed into a

HydraNet architecture by branching at Block 2 (each branch

and the gating function now has both Block 3 and 4 with

the number of filters scaled by wb and wg respectively).

Branching earlier in the network increases the overall train-

ing cost and results in significantly lower accuracy. We be-

lieve this is due to inaccurate decisions by the gating func-

tion when relying on low-level features. In principle, one

could empirically search for the best split point at the layer

granularity rather than block granularity. We restricted our

experiments to block granularity to limit the time spent on

this search.

Clustering based subtask partitioning works well in

practice. We evaluate the effectiveness of clustering

based subtask partitioning by comparing with several base-

lines. Table 8 shows different methods for partitioning and

their corresponding accuracy. CLUSTER is the k-means

based subtask partitioning described in Section 3.1. RAN-

DOM partitions the classes into equally sized subsets ran-

domly. NO GATING does not require subtask partitioning

since all the branches are used both at training and infer-

ence, and serves as an upper bound on the accuracy that can

be achieved since any gating function will utilize a subset

of the branches per input. CLUSTER is 1.33% more accu-

rate than RANDOM demonstrating that semantically parti-

tioning the classes allows the branches to specialize more

effectively. The accuracy gap between CLUSTER and NO

GATE is 1.8%, which is narrow given that CLUSTER only

uses five branches out of the total 50 per input.

We also explored alternative methods to CLUSTER which

learn the subtask partitioning jointly with the training of the

branches. Instead of supervising the gating function with

a branch classification loss, LEARN uses the scores gen-

erated by the gating function as weights for linearly com-

bining output features of the top-k branches. The gating

function learns to weigh the relevant branches higher for

a given input based on the overall classification loss. Ta-

ble 8 shows that LEARN gives lower accuracy than the base-

line. We observe the gating function tends to favor branches

which initially get more training signal. This results in a

self-reinforcing loop: branches which are not picked do

not learn to compute useful features and the gating func-

tion learns to ignore these branches. Prior work in language
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Model Branch Point Configuration Params Inference Accuracy

d ws wb wg k nb (×10
6) MADDs (×10

6) (Top-1)

Hydra-ResSep-A Block 3 2 0.50 0.125 0.125 5 50 10.89 193 64.40

Hydra-ResSep-B Block 3 3 0.50 0.125 0.250 5 50 13.30 299 68.13

Hydra-ResSep-C Block 3 2 0.75 0.125 0.250 5 50 15.70 374 69.09

Hydra-ResSep-D Block 3 3 0.75 0.125 0.500 5 50 19.51 630 71.52

Hydra-ResSep-E Block 3 3 1.00 0.125 0.500 5 50 26.83 1075 73.20

Table 4: Computation cost, hyper parameters, and Top-1 accuracy several variants of the Hydra-ResSep architecture for

ImageNet classification. All the architectures are transformed from corresponding baseline ResSep architecture.

Total branches nb = 10 nb = 25 nb = 50

Accuracy (Top-1) 61.76 63.21 64.40

Params (×10
6) 3.30 6.14 10.89

Total MADDs (×10
6) 239 376 605

Table 5: Increasing number of branches (nb) gives better ac-

curacy but increases training cost and the number of model

parameters. Total MADDs is the cost of all branches which

is proportional to training time. Other hyper parameters are

the same as Hydra-ResSep-A in Table 4.

Dynamic branches k = 1 k = 3 k = 5 k = 10

Accuracy 60.08 63.38 64.40 64.89

Inference MADDs (×10
6) 157 175 193 239

Table 6: Increasing the number of dynamically executed

branches (k) of HydraNet-ResSep-A results in better accu-

racy with diminishing returns.

Split point Params MADDs (×10
6) Accuracy

Total Cond

Block 2 9.66 695 174 61.35

Block 3 9.66 605 193 64.40

Table 7: Branching at Block 2 of ResSep-A gives lower

accuracy compared to branching at Block 3. All other hyper

parameters are the same as Hydra-ResSep-A in Table 4.

Method Accuracy

RANDOM 63.07

LEARN 61.50

LEARN-BALANCE 63.17

CLUSTER 64.40

NO GATING 66.21

Table 8: Accuracy of HydraNet-ResSep-A with different

subtask partitioning and gating strategies. Other hyper pa-

rameters are the same as in Table 4 except for no gating

which uses outputs of all the branches.

modeling has overcome the under utilization problem by

adding a loss term encouraging equal utilization of branches

for a batch of inputs [26]. Given a batch size of N and

the gating function g(batch id, branch id), the utilization

of the branch b across the batch is given by
∑N

i=0 g(i, b).
We encourage equal utilization of branches by adding an

additional loss term λbal

∑nb

b=0(
∑N

i=0 g(i, b))
2, this corre-

sponds to the LEARN-BALANCE row in the table. LEARN-

BALANCE does significantly better than LEARN but still

falls short of CLUSTER.

6. Discussion

The HydraNet architecture reduces computational cost

by specializing components of a network for subtasks and

exploiting this specialization at inference time. Although,

the paper focuses on classification we believe that sparse

dynamic execution will be increasingly important for build-

ing multi-task models which perform a wide range of tasks

using a shared representation. Inference on high resolution

images and video would need to exploit dynamic execution

to keep up with the demand for computational efficiency.

Although HydraNet architectures enable more work-

efficient inference than static architectures, this efficiency

comes at the cost of longer training times due to the net-

work’s many branches. One approach to reducing the train-

ing time is to leverage dynamic execution in the training

process. Unlike inference, training is sensitive to batch size

and efficient dynamic execution in small batch settings is

challenging since each item in the batch may need to exe-

cute a different set of branches. Current frameworks are not

designed for efficient execution in these scenarios. How-

ever, dynamic training approaches have been used for train-

ing large scale language models [26] and adapting them to

image models would be an interesting avenue to explore.
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