
Improving Occlusion and Hard Negative Handling

for Single-Stage Pedestrian Detectors

Junhyug Noh Soochan Lee Beomsu Kim Gunhee Kim

Department of Computer Science and Engineering

Seoul National University, Seoul, Korea

{jh.noh, soochan.lee}@vision.snu.ac.kr, {123bskim, gunhee}@snu.ac.kr

http://vision.snu.ac.kr/projects/partgridnet

Abstract

We propose methods of addressing two critical issues

of pedestrian detection: (i) occlusion of target objects as

false negative failure, and (ii) confusion with hard nega-

tive examples like vertical structures as false positive fail-

ure. Our solutions to these two problems are general and

flexible enough to be applicable to any single-stage detec-

tion models. We implement our methods into four state-of-

the-art single-stage models, including SqueezeDet+ [22],

YOLOv2 [17], SSD [12], and DSSD [8]. We empirically

validate that our approach indeed improves the perfor-

mance of those four models on Caltech pedestrian [4] and

CityPersons dataset [25]. Moreover, in some heavy occlu-

sion settings, our approach achieves the best reported per-

formance. Specifically, our two solutions are as follows.

For better occlusion handling, we update the output ten-

sors of single-stage models so that they include the pre-

diction of part confidence scores, from which we compute

a final occlusion-aware detection score. For reducing con-

fusion with hard negative examples, we introduce average

grid classifiers as post-refinement classifiers, trainable in

an end-to-end fashion with little memory and time overhead

(e.g. increase of 1–5 MB in memory and 1–2 ms in inference

time).

1. Introduction

Recent advances in object detection have been largely at-

tributed to the successful application of convolutional neu-

ral networks (CNNs) to both region proposal and region

classification. The R-CNN approaches [10, 9, 18] have

greatly improved the performance for a variety of object

detection problems and are currently one of the best per-

forming detection paradigms. These approaches consist of

the two stages of proposing regions and computing their

confidences of object presence. YOLO [16] has brought an-

Grid Classifiers

Base Network

Part Score

Refinement

Figure 1: The overview of our refinement system.

other breakthrough in object detection; it formulates the two

stages of region proposal and classification into a single-

stage regression problem to detect objects extremely fast.

Since then, more advanced models based on this single-

stage approach are emerging, including SqueezeDet+ [22],

YOLOv2 [17], SSD [12], and DSSD [8]. They all use a con-

volutional predictor to generate the final output tensor, and

use anchors like the region proposal network (RPN) to pre-

dict the offsets of boxes rather than coordinates. In addi-

tion, DSSD [8] generates a context feature map using the

deconvolutional layer, which enables global information to

be used to detect smaller objects.

While recent research progress has been significant on

improving detection accuracy and speed, there are still big

challenges. To be specific, we limit our discussion to pedes-

trian detection [4, 24, 25], which may be one of the most

important detection problems for various applications, in-

cluding autonomous driving and surveillance. Among many

error sources of pedestrian detection as Zhang et al. [24]

systemically break down, we are interested in two critical

issues: (i) occlusion of target objects (as false negative fail-

ure cases), and (ii) confusion with hard negative examples

(as false positive failures). First, occlusion is one of key

practical difficulties in pedestrian detection, because real

world scenes like street are often crowded with many peo-

966

http://vision.snu.ac.kr/projects/partgridnet

ple and various objects; thus observation with occlusion is

much more common than that without occlusion. Second,

in the scenes for pedestrian detection, there are many hard

negative examples like vertical structures, trees, and traffic

lights, because of which, models detect a lot of false posi-

tives, and they amount to a large portion of overall errors.

Our objective is to propose the approaches that address

these two problems of occlusion and hard negative exam-

ples. One of the key requirements is that the proposed meth-

ods should be general and flexible enough to be applica-

ble to any single-stage detection models. We believe this

requirement is of a particular importance in recent object

detection research, because its progress is so fast that many

new or updated models appear frequently. We integrate

our approach with four recent state-of-the-art single-stage

models, SqueezeDet+ [22], YOLOv2 [17], SSD [12], and

DSSD [8]. We empirically validate that our approach indeed

improves the performance of those four models on Caltech

pedestrian [4] and CityPersons [25] dataset. As shown in

Figure 1, our approach involves two key ideas. For better

occlusion handling, we propose to update the output ten-

sors of single-stage models so that they include the infor-

mation of part confidence scores, from which we obtain a

final occlusion-aware detection score. For reducing the con-

fusion with hard negative examples, we introduce average

grid classifiers as post-refinement classifiers, trainable in an

end-to-end manner without large time and memory over-

heads.

1.1. Related work

We briefly discuss previous research that tackles the two

target problems: occlusion and hard negative examples.

Models for occlusion. The part-based methods [13, 21]

have been one of the most dominant approaches address-

ing the occlusion problem. Mathias et al. [13] propose the

Franken-classifiers, consisting of a set of occlusion-specific

classifiers using Integral Channel Features [3]. DeepParts

[21] model constructs a set of data-driven part prototypes,

trains a CNN classifier to detect each of them, and finally

explores their ensemble to improve the detection of oc-

cluded objects. Enzweiler et al. [6] leverage the features of

intensity, depth and motion to build a part-based mixture-

of-experts classification model. Ouyang et al. [14] propose

a probabilistic framework that can predict well even with

inaccurate scores of part detectors by modeling part visibil-

ity as latent variables. Later they [15] extend the probabilis-

tic framework to represent the relations between the con-

figurations estimated by single- and multi-pedestrian detec-

tors. Tang et al. [20] develop a double-person detector and

tracker that can detect multiple people that occlude one an-

other, based on the DPM model [7].

One of the most relevant works to ours is the DeepParts

[21] model, yet our approach has the following three con-

tributions. First, our model can be plugged into any single-

stage CNN architecture, whereas DeepParts is a stand-alone

pedestrian detector. Second, our model is end-to-end learn-

able with any base networks, whereas DeepParts consists

of multiple components that should be separately learned.

For example, each semantic part of DeepParts has its own

classification network, and the final score is obtained via

additional linear SVM on the part detection scores. Finally,

DeepParts uses 6 or 45 pre-defined semantic parts, whereas

our approach does not require pre-defining semantic parts;

instead, the best visibility patterns are directly learned from

part confidence maps.

Models for hard negative examples. False-positives

due to hard negative examples account for a large portion of

the errors in the pedestrian detection problem [24]. It is due

to wrongly assigning a higher probability to a background

region which looks like a person. However, for single-stage

models, hard negative examples could be more harmful; the

methods assume object candidates as anchors at every cell

in a pre-fixed grid, and thus negative anchors are much more

than positive anchors in their prediction. To resolve such a

highly unbalanced distribution between positive and nega-

tive anchors, for example, SSD [12] and DSSD [8] select

only three times of negative anchors (than positive ones)

with the highest classification loss for training.

Recently, some state-of-the-art models [23, 5, 11] in-

troduce additional post-refinement classifiers to reject hard

negatives. For example, Zhang et al. [23] apply a boosted

forest classifier to the candidate boxes of pedestrians that

are obtained by the RPN. Du et al. [5] exploit multiple neu-

ral networks in parallel for further refinement of pedestrian

candidates obtained by the SSD. Compared to Du et al. [5]

and Hu et al. [11], our approach has the following three con-

tributions. First, our approach generates a set of grid confi-

dence maps from multi-layer feature maps from which final

detection scores are computed. This idea not only induces

ensemble effect, but is also more robust against hard nega-

tives that erroneously incur high detection confidence in a

certain scale of a feature map. Second, we do not require

pixel-level annotation for training, and use bounding box

labels instead. Finally, our additional classifiers increase lit-

tle inference time, and are also trainable with the overall

networks in an end-to-end manner.

1.2. Contributions

Our main contributions are two-fold.

(1) We propose an approach to address the two critical is-

sues of pedestrian detection: (i) occlusion of objects, and (ii)

confusion with hard negative examples. To the best of our

knowledge, our approach is the first to be applicable to any

single-stage detection models while addressing these two

issues. As solutions, we propose to update output tensors of

single-stage detection models to account for the information

967

of part confidence scores, and introduce average grid classi-

fiers for post-refinement, trainable in an end-to-end manner

with little memory and time overhead (e.g. increase of 1–5

MB in memory and 1–2 ms in inference time).

(2) We validate the flexibility and utility of our method

on Caltech pedestrian [4] and CityPersons [25] dataset.

First, we show that our approach is integrable with four

state-of-the-art single-stage models, SqueezeDet+ [22],

YOLOv2 [17], SSD [12], and DSSD [8]. Second, we

demonstrate that our approach indeed improves the per-

formance of those four models for pedestrian detection.

Moreover, in some heavy occlusion settings, our approach

achieves the best reported performance on the datasets.

2. A Unified View of Output Tensors

Most single-stage networks formulate the detection as a

regression problem, and generate a tensor as prediction out-

put [16, 17, 12, 8, 22]. As shown in Figure 2a, the width (W)

and the height (H) of output tensors depend on the spatial

grid of an input image, and the depth (K) depends on the

number of anchors per grid. The prediction output per an-

chor is differently defined according to the model in Figure

2b. The box offset is defined by the position and scale be-

tween the ground truth (xgt, ygt, wgt, hgt) and its matched

anchor (xi, yj , wk, hk), i ∈ [1,W], j ∈ [1, H], k ∈ [1,K].
All the models use the scale parameters (δw, δh) to describe

how different the scale is compared to that of an anchor:

δw,(ijk) = log

(
wgt

wk

)
, δh,(ijk) = log

(
hgt

hk

)
. (1)

For the position parameters (δx, δy), YOLOv2 [16, 17] pre-

dicts the relative position of top-left corner in the grid with

a bound of [0, 1) in Eq.(2), whereas SqueezeDet+ [22],

SSD [12], and DSSD [8] predict the relative position of cen-

ter point to the anchor in Eq.(3).

δx,(ijk) = σ

(
xgt − xi

wgrid

)
, δy,(ijk) = σ

(
ygt − yj

hgrid

)
(2)

δx,(ijk) =
xgt − xi

wk

, δy,(ijk) =
ygt − yj

hk

(3)

where σ is the sigmoid.

For the object likelihood, YOLOv2 and SqueezeDet+ de-

fine the confidence of object presence in Eq.(4), and follow

the conditional probabilities of C object classes in Eq.(5).

The final likelihood is obtained by multiplying the condi-

tional probabilities by the confidence.

c(ijk) = P(ijk)(Object)× IOU
gt

(ijk), (4)

pm,(ijk) = P(ijk)(Class = m | Object),m ∈ [1, C]. (5)

On the other hand, SSD and DSSD consider the background

(i.e. absence of objects) as another class, and compute the

Anchors

Box Offset Object Confidence Class Probability

� �������

Box Offset (optl.) Object Score Class Score

(a) Structure of the output tensor.

YOLOv2
SqueezeDet+

�" �# �$ �% c �' �(�)*' �)

�" �# �$ �% �+ �' �(�)*' �)

Box Offset Class Probability

Object Confidence

SSD
DSSD

(b) Output formats of four methods per anchor.

Figure 2: A unified view of output tensors of four methods:

YOLOv2, SqueezeDet+, SSD, and DSSD.

Model Shape of Output Tensors {W,H,K}

SqueezeDet+ [22] {38, 28, 9}

YOLOv2 [17] {20, 15, 9}

SSD [12]
{40, 30, 4}, {20, 15, 3}, {10, 8, 3},

{8, 6, 2}, {6, 4, 1}

DSSD [8]

{1, 1, 3}, {6, 4, 3}, {8, 6, 6},

{10, 8, 6}, {20, 15, 3}, {40, 30, 3},

{80, 60, 3}, {160, 120, 1}

Table 1: The shape of output tensors for a 640× 480 image

(W : width, H: height, K: number of anchors). In SSD and

DSSD, output tensors come from multiple feature maps,

and they are listed in a generation order.

likelihood of all C + 1 classes Eq.(6):

pm,(ijk) = P(ijk)(Class = m), m ∈ [0, C]. (6)

For pedestrian detection, there exists only one class of in-

terest, person (C = 1); thus, a single value for object/class

probability is necessary in the output per anchor for all mod-

els, and regard it as c.

Another difference between the models is which feature

maps are used to generate output tensors. Table 1 shows the

default shapes of output tensors for 640×480 input images.

SSD and DSSD use multiple feature maps to regress output

tensors. YOLOv2 has only one type of output, but it is cre-

ated from concatenated feature maps, not from a single one.

3. Refinement for Occlusion Handling

Our key idea for occlusion handling is to divide the pre-

diction confidence by parts rather than expressing it as a

single value that existing single-stage networks do. While

normal single-stage networks are likely to assign a low con-

fidence to an occluded person due to the hidden parts, our

model can leverage the confidences of visible parts of a

body to correct the final detection confidence of a person.

968

In
p

u
t

Im
ag

e
G

ro
u

n
d

 T
ru

th
 (

B
B

s)

�
=
6

� = 3

1 1 1

1 1 1

1 1 1

0 0 0

0 0 0

0 0 0

�' �(�) �* c V,,, V,,. ⋯ V0,1

0.9 0.9 0.9

0.9 0.9 0.8

0.6 0.6 0.5

0.1 0.1 0.1

0.1 0.1 0.1

0.0 0.0 0.0

Output tensor

�345678

ℒ3,(;<=)

Part score
generatorRefinement

Base Network

�@�AB

Figure 3: The overview of our occlusion handling method.

�"

0.9 0.9 0.9

0.9 0.9 0.8

0.6 0.6 0.5

0.1 0.1 0.1

0.1 0.1 0.1

0.0 0.0 0.0

�$%&'()

�*

�+

�,

��

���"

Soft parts

�0

�1

Classifier

���"

�"

Figure 4: The generator module for the soft part score.

We first introduce the concept of part confidence map

denoted by V, which is an M × N grid in the range of

[0, 1] (by applying a sigmoid function), as shown in Figure

3. The groundtruth for the part confidence map is gener-

ated as follows. We first identify a bounding box for a full-

body person, and divide it as an M ×N grid. For each cell

(m,n),m ∈ [1,M], n ∈ [1, N], we set Vgt(m,n) = 1 if

a pedestrian occupies more than τv times of area at the cell.

In our experiments, we set M = 6, N = 3, τv = 0.4.

3.1. Computing Occlusion­aware Detection Scores

For occlusion handling, we extend the output tensor to

include the prediction of part confidence map V̂ (See Figure

3). That is, the network predicts V̂ as detection output, from

which we compute a final occlusion-aware detection score

of each anchor. We design two different methods: (i) a max

part score, and (ii) a soft part score.

Max part score. One of the simplest ways to compute

the final detection score is to apply the max pooling to a

predicted part confidence map V̂ (Figure 3). Its intuition is

that if the score for a particular position is very high, it could

be an occluded person whose confidence is high only at this

position:

sperson = max
m,n

V̂(m,n). (7)

Soft part score. The approach of max part score has one

limitation; it does not take into account the person occlusion

patterns in real world. For example, in the Caltech pedes-

trian dataset [4], more than 97 % of occluded persons be-

long to only seven sets of occlusion patterns. As discussed

in section 1.1, the DeepParts approach [21] thus defines a

part pool containing representative semantic appearance of

body parts, and decide the final score using a linear SVM

with the score of those parts. However, DeepParts require

an external classifier to compute a final detection score, and

thus cannot be trained in an end-to-end manner.

Therefore, we propose an end-to-end learnable soft part

score method, which is illustrated in Figure 4. We first de-

fine a P number of soft parts Wp ∈ R
M×N , p ∈ [1, P].

We compute the interim part score sp by element-wise dot

product with a predicted part confidence map V̂:

sp =

M∑

m=1

N∑

n=1

(
V̂(m,n) ·Wp(m,n)

)
(8)

Once computing s = [s1, s2, · · · , sP], the final score sperson

is obtained via an MLP with one hidden and ReLU layer:

sperson = σ
(
w⊤

2 max
(
0,w⊤

1 s
))

(9)

{Wp}Pp=1 and w1,2 are parameters to learn, and determined

automatically from setting only the number of semantic

parts P . The number of semantic parts depends on variabil-

ity of occlusion patterns in the dataset, although it is fine to

simply use a sufficiently large number, and we set P = 45.

We test different configurations of MLPs, but the simple one

in Eq.(9) performs the best.

Finally, we adjust the confidence per bounding box as

the geometric mean of sperson and its initial confidence c.

c′ =
√
spersonc. (10)

3.2. The Training Objective

Single-stage models used in this paper have two types

of losses: localization loss Ll and confidence loss Lc. Since

there is only one class in pedestrian detection, the classifica-

tion loss is omitted. We use the losses proposed in the orig-

inal paper of each model. On top of that, our occlusion han-

dling introduces two additional losses: part loss and score

loss. The part loss Lp is the ℓ2 loss of the part confidence

map for max/soft part scores:

Lp,(ijk) =
(
λ+
p I

+
(ijk) + λ−

p I
−

(ijk)

)

×
M∑

m=1

N∑

n=1

(
V(ijk)(m,n)− V̂(ijk)(m,n)

)2

(11)

969

Output tensor

�"
�# �$

② Grid classification

�",'(�)" �#,'(�$,'(�)# �)$

D
etectio

n
 resu

lts
⑤

Base Network

�" �# �$

ℒ'," ℒ',# ℒ',$

GT generation

In
p

u
t

Im
ag

e
G

ro
u

n
d

 T
ru

th

①
Σ

Resizing③

Pixel classification④

⑦

⑥

Figure 5: The overview of hard negative handling method.

Models Shapes of grid confidence maps {wl, hl}

SqueezeDet+ [22] {78, 58}, {38, 28}

YOLOv2 [17] {80, 60}, {40, 30}, {20, 15}

SSD [12] {40, 30}, {20, 15}

DSSD [8] {40, 30}, {20, 15}, {40, 30}

Table 2: The dimensions of grid confidence maps for a

640× 480 input image (wl: width, hl: height).

where I+(ijk) = 1 indicates that the (ijk)-th anchor is a posi-

tive example while I
−

(ijk) = 1 indicates a negative example.

The score loss Ls is identically defined as

Ls,(ijk) =
(
λ+f
s I

+f

(ijk) + λ+o
s I

+o
(ijk)

) (
1− ŝp,(ijk)

)2

+λ−

s I
−

(ijk)ŝ
2
p,(ijk) (12)

where I
+o
(ijk) = 1 indicates that the (ijk)-th anchor is posi-

tive but occluded, while I
+f

(ijk) = 1 indicates a fully visible

example. We divide the positive cases in these two ways

in order to assign larger weights to occluded examples. Fi-

nally, the total loss is a weighted sum of all four losses:

L =

W∑

i=1

H∑

j=1

K∑

k=1

(
λlLl,(ijk) + λcLc,(ijk)

+λpLp,(ijk) + λsLs,(ijk)

)
. (13)

4. Refinement for Hard Negative Handling

Our key idea for reducing false-positives by hard nega-

tive examples is to introduce the average grid classifiers,

which are not only universally applicable to any single-

stage model, but also end-to-end trainable with little time

overhead. Figure 5 presents the overview of our hard neg-

ative handling method. Given an image, each single-stage

method internally generates a set of feature maps of various

resolutions. We apply the convolutional classifiers to the in-

termediate feature maps to obtain a set of grid confidence

maps, whose sizes are summarized in Table 2. We then re-

size all confidence maps to the resolution of the input image,

and average them to obtain a single grid map of pixel-wise

confidence. Finally, models adjust the confidence of each

bounding box, using the pixel values of the grid map.

Grid confidence map. The grid confidence map of layer

l ∈ [1, L] is a wl × hl grid map denoted by Gl whose val-

ues are ranged in [0, 1] (see Table 2). The groundtruth for

Gl,gt is generated as follows. First, for layer l, the input

image is divided as a wl × hl grid. At each cell (i, j), we

calculate the area ratio of how much this cell is occupied

by a groundtruth bounding box, which becomes the value

of Gl,gt(i, j). We use Gl,gt(i, j) to learn the following grid

classifiers that predict grid confidence maps.

In the forward pass, we can compute a feature map Fl ∈
R

wl×hl×cl at each layer l ∈ [1, L]. The grid classifier is im-

plemented as an 1× 1 convolutional filter gl ∈ R
1×1×cl×1.

Then the predicted grid confidence map Ĝl ∈ R
wl×hl×1

is obtained by convolution between the feature map Fl and

the filter gl:

Ĝl = Fl ∗ gl, l ∈ [1, L]. (14)

Once we compute a set of {Ĝl}Ll=1 for all L layers, we

resize them to be the same with the input image using a

bilinear interpolation: {Ĝ′

l}Ll=1. Finally we obtain a single

averaged confidence map: Ĝ = 1
L

∑L

l=1 Ĝ
′

l, where Ĝ ∈
R

W×H . Given an input image, suppose that its initial pre-

dicted bounding boxes are bbk, k ∈ [1, B] where bbk =
{xk, yk, wk, hk, ck}. For each bounding box bbk, k ∈
[1, B], we compute the averaged confidence score sk:

sk =
1

wkhk

xk+wk−1∑

i=xk

yk+hk−1∑

j=yk

Ĝ(i, j). (15)

Finally, the adjusted confidence for each bbk is computed

as the geometric mean of sk and its initial confidence ck.

c′k =
√
skck, k ∈ [1, B]. (16)

The intuition of why this method works is two-fold.

First, except SSD [12] and DSSD [8] that use multiple fea-

ture maps, other single-stage models generate output ten-

sors only from one (e.g. SqueezeDet+ [22]) or two feature

maps (e.g. YOLOv2 [17]). However, relying on only one or

two feature maps may be risky and error-prone especially

to hard negative examples. Thus, our idea is to make a final

970

Anchor box

Predicted box

(a) In single-stage models (b) In region-based models

Figure 6: An intuition of why the single-stage models suffer

from the mismatch of a predicted box with its feature repre-

sentation. The anchor is shown in red, the predicted box is

in blue, and the feature region is shaded in green.

detection decision based on the average of multi-resolution

feature maps. Concatenating feature maps of several lay-

ers [1] or using skip connections [8, 19] can be alternatives,

but our method is simpler and more intuitive.

Second, our grid classifiers complement one drawback of

single-stage models: the mismatch of a predicted box and its

feature representation. For better understanding, we present

an example in Figure 6, in which an anchor is shown in

red, a prediction box is in blue, and the feature region is

shaded in green. The two-stage models using ROI pooling

(e.g. [10, 9, 18]) use the features on the actual region of

a predicted bounding box (Figure 6b), whereas the single-

stage models use the features where the default anchor is lo-

cated. (Figure 6a). Our grid classifiers alleviate this issue by

allowing the model to use the features of the exact predicted

region, which makes the detection output more reliable.

4.1. The Training Objective

For the grid classifier, we add the grid loss Lg to the

localization and confidence losses in Section 3.2. The grid

loss of each layer is defined as

Lg,l =

wl∑

i=1

hl∑

j=1

(
λ+
g I

+
l,(ij) + λ−

g I
−

l,(ij)

)
×
(
Gl(i, j)−Ĝl(i, j)

)2

where I
+
l,(ij) = 1 if Gl(i, j) > 0 and I

−

l,(ij) = 1 if

Gl(i, j) = 0. Finally, the total loss is

L =

W∑

i=1

H∑

j=1

K∑

k=1

(
λlLl,(ijk) + λcLc,(ijk)

)
+

L∑

l=1

λg,lLg,l.

5. Experiments

We focus on validating that the proposed approach for

occlusion and hard negative handing indeed help improve

accuracies of pedestrian detection. We use two benchmark

datasets: Caltech pedestrian [4] and CityPersons [25]. We

apply our approach into four state-of-the-art single-stage

models: SqueezeDet+ [22], YOLOv2 [17], SSD [12], and

DSSD [8]. For fair comparison, we implement all meth-

ods using TensorFlow. For SqueezeDet+, we directly use

the source code provided by the authors, while for all the

other methods, we re-write the codes in TensorFlow.

We evaluate our occlusion handling method (section

5.2), hard negative handling method (section 5.3), and joint

learning of the two methods (section 5.4). We also analyze

the size/time overhead of our approach (section 5.5). We

present detailed experimental setup and additional results

in the supplementary file.

5.1. Experimental Setting

Dataset. The Caltech dataset consists of about 250, 000
frames taken from urban scenes. It is divided into 11 sets:

set00–set05 as training data, and set06–set10 as test data.

The label consists of three classes (person, people, and per-

son?), and we only use person for training. We strictly fol-

lowing the experimental protocols of the dataset.

The CityPersons dataset contains 5,000 images in total

and approximately 3,000 images are for training. Since the

CityPersons dataset is derived from a subset of Cityscapes

dataset [2] that has pixel-level instance labels, the visible

area annotations can be generated automatically. It also in-

cludes full-body annotations at a fixed ratio 0.41 for four

classes (pedestrian, rider, sitting person and other person),

and we use the pedestrian class only.

In both datasets, a bounding box is assigned to the whole

area of a person, which is the prediction target of our task.

The visible area is additionally annotated for an occluded

person, which allows us to make the ground truth of part

confidence maps in Section 3. For training, we augment the

dataset 5 times with shifting and flipping, and add noise

to training images by changing brightness, saturation, and

contrast at random.

Performance evaluation. The models are evaluated us-

ing the log-average miss rate, the official metric of both Cal-

tech and CityPersons dataset. This is the average value of

miss rates for 9 FPPI (false positives per image) rates evenly

spaced in the log-space ranging from 10−2 to 100. Depend-

ing on occlusion levels and scales, there are different evalu-

ation settings. The occlusion level is divided into none, par-

tial, and heavy, meaning 0, (0, 35], (35, 80] percent frac-

tions of occlusion, respectively. The scale is divided into

none, medium, and far, corresponding to [20, 30), [30, 80),
[80, 480), respectively, based on the height in pixels.

5.2. Evaluation on Occlusion Handling

The most widely used setting in Caltech dataset is

called as reasonable setting, which only includes pedestri-

ans whose sizes are greater than 50 pixels and occlusion lev-

els are none or partial. However, one of our evaluation goals

is occlusion robustness, thereby we test all setting, which

971

Model Reasonable All None Partial Heavy

SqueezeDet+ [22] 23.37 32.83 21.58 36.07 63.65

+ Max part 22.08 30.30 19.46 40.14 56.60

+ Soft part 20.78 30.18 18.76 34.65 59.87

YOLOv2 [17] 20.83 29.35 18.97 34.37 57.55

+ Max part 19.31 27.56 17.40 31.69 53.90

+ Soft part 18.29 27.16 16.12 31.94 57.02

SSD [12] 16.36 25.18 14.55 27.89 53.80

+ Max part 15.60 23.70 13.69 27.85 50.02

+ Soft part 14.23 22.53 12.22 27.52 50.46

DSSD [8] 13.25 20.53 11.23 25.23 44.13

+ Max part 12.72 20.23 10.72 25.80 44.81

+ Soft part 10.97 18.58 8.88 26.14 44.11

Table 3: Detailed breakdown performance of our occlusion

handling methods on Caltech test dataset (Height ≥ 50).

We report the log-average miss rate (lower is better).

includes all occlusion levels (none, partial, and heavy). We

tune each model so that it performs the best for the all set-

ting. That is, the model is trained to work well with the

largest subset, so occasionally our performance for other

small subsets can be not as good as the base networks.

Table 3–5 show the breakdown performance of our oc-

clusion handling on Caltech and CityPersons dataset. Our

methods of max/soft part scores lead significant perfor-

mance improvement over all four base models. Overall, the

error rates can be sorted in the following order: soft < max

< base. The max part score is worse than the soft part score,

but sometimes it is the best in the heavy setting. That is, the

max part score is good at detecting severely occluded per-

sons, because it attains a high detection score even if only a

single cell of the part confidence map is high-valued.

Table 4 shows additional results for SSD and DSSD

models on the test subset of height ≥ 20. We choose SSD

and DSSD as base models, because they are particularly

robust to small objects among four base models, thanks

to its adoption of multi-scale feature maps. We train and

test SSD/DSSD-based models, including images with very

small pedestrians (height ≥ 20), and observe that our oc-

clusion handling consistently improve SSD and DSSD to

detect very small and highly occluded pedestrians.

Figure 7 shows examples of success and failure cases of

our occlusion handling. In the success cases of Figure 7a,

the initial confidences for the person are relatively low (e.g.

c = 0.50 and 0.70), but they are correctly adjusted thanks

to the high part scores (e.g. c′ = 0.65 and 0.82). Figure 7b

shows some negative cases, in which some hard negatives

such as vertical objects confusingly look like pedestrians,

and thus their confidences increase in a wrong direction.

5.3. Evaluation of Hard Negative Handling

Table 4–5 show the detailed breakdown performance of

our hard negative handling on the two datasets. The perfor-

mance is always better than baseline when the grid classi-

� �#$%&'(�′

0.50 0.83 0.65

� �#$%&'(�′

0.70 0.95 0.82

(a) Success cases

� �#$%&'(�′

0.49 0.90 0.66

� �#$%&'(�′

0.53 0.86 0.67

(b) Failure cases

Figure 7: Examples of occlusion handling. For better visu-

alization, we crop detection regions from images.

fiers are used only for training. However, if we use the ad-

justed confidence, SqueezeDet+ and YOLOv2 perform the

best, but SSD and DSSD become worse than the baseline.

As discussed in section 4, there are two cases where the grid

classifiers are helpful: i) the refinement by the averaged re-

sults from multiple feature maps, and ii) mitigation of the

mismatch between a predicted box and its feature represen-

tation. SSD and DSSD already uses rich information from

several layers of both low- and high-resolution feature maps

(e.g. five and eight layers respectively). And they have lay-

ers that care for the object scales; thus the feature represen-

tations of the groundtruth and its anchor are not significantly

mismatched because of their similar scales.

Figure 8 shows the examples of applying the grid classi-

fiers to the SqueezeDet+ model. As in Table 2, SqueezeDet+

uses two feature maps (i.e. L = 2), from which we generate

the grid confidence map. In Figure 8b, our grid classifiers

effectively suppress the confidence scores of false positives.

The score of initially misclassified vertical structure is re-

duced from 0.45 to 0.35. We also find that there are some

cases where our method increases the confidence scores of

hard positives as in 8a. The score of a faint pedestrian is

doubled through the refinement of grid classifiers.

� �# �$ � �′

0.11 0.61 0.32 0.46 0.22

(a) Positive example

� �# �$ � �′

0.45 0.35 0.20 0.28 0.35

(b) Negative example

Figure 8: Examples of grid classifiers in SqueezeDet+. For

better visualization, we crop detection regions from images.

5.4. Evaluation of Joint Learning

Table 4–5 also show the performance of joint application

of the two methods for occlusion and hard negative han-

dling. In this case, the adjusted confidence is computed as

the geometric mean of a part score (Eq.(7) or Eq.(9)), an av-

eraged confidence score (Eq.(15)), and an initial confidence.

For SSD and DSSD, we use the grid confidence map only

for training, because this setting leads the best performance

972

Model
Height ≥ 50 Height ≥ 20

Reasonable All None Partial Heavy All None Partial Heavy

SqueezeDet+ [22] 23.37 32.83 21.58 36.07 63.65 – – – –

+ Part score 20.78 30.18 18.76 34.65 59.87 – – – –

+ Grid classifiers 19.58 28.72 17.79 29.68 56.53 – – – –

+ Joint learning 18.99 28.29 16.83 30.82 57.77 – – – –

YOLOv2 [17] 20.83 29.35 18.97 34.37 57.55 – – – –

+ Part score 18.29 27.16 16.12 31.94 57.02 – – – –

+ Grid classifiers 16.92 27.65 14.95 27.44 63.57 – – – –

+ Joint learning 17.56 26.61 16.59 25.68 53.77 – – – –

SSD [12] 16.36 25.18 14.55 27.89 53.80 60.19 52.21 67.96 76.47

+ Part score 14.23 22.53 12.22 27.52 50.46 58.94 51.71 68.85 74.37

+ Grid classifiers* 14.04 23.79 12.03 26.52 55.10 59.66 51.60 68.93 76.04

+ Joint learning* 15.03 23.54 13.06 29.57 51.53 58.88 51.52 70.71 74.81

DSSD [8] 13.25 20.53 11.23 25.23 44.13 53.03 44.72 64.15 69.59

+ Part score 10.97 18.58 8.88 26.14 44.11 50.55 41.51 61.68 69.65

+ Grid classifiers* 10.85 18.20 9.00 24.28 42.42 49.24 41.32 60.74 65.99

+ Joint learning* 11.42 19.38 10.00 21.11 45.80 52.00 43.88 61.57 69.50

Table 4: Overall performance on Caltech test dataset (lower is better). * denotes that grid classifiers are used only for training.

Model Reasonable All None Partial Heavy

SqueezeDet+ [22] 28.42 43.90 20.48 28.64 62.61

+ Part score 26.33 41.90 19.38 25.57 60.01

+ Grid classifiers 26.69 41.92 19.26 26.32 61.56

+ Joint learning 26.29 40.88 18.22 26.22 58.57

YOLOv2 [17] 23.36 38.01 14.23 22.65 52.50

+ Part score 20.45 36.36 12.36 20.08 51.99

+ Grid classifiers 21.41 36.76 13.18 20.13 50.30

+ Joint learning 19.19 34.09 10.77 18.69 50.18

SSD [12] 22.54 35.61 16.91 21.95 50.66

+ Part score 19.01 33.95 13.18 18.16 51.48

+ Grid classifiers* 19.71 34.32 13.28 19.11 49.02

+ Joint learning* 18.99 33.52 12.70 19.33 48.42

DSSD [8] 19.70 34.37 15.75 18.90 51.88

+ Part score 18.25 33.16 13.79 17.65 49.47

+ Grid classifiers* 18.45 31.67 12.82 17.96 46.60

+ Joint learning* 16.77 31.71 11.15 16.05 48.52

Table 5: Overall performance on CityPersons val dataset

(Height ≥ 50). * denotes that grid classifiers are used only

for training.

as discussed in section 5.3. As expected, the joint learning

improve the performance of the models that are adjusted

well by grid classifiers (e.g. SqueezeDet+ and YOLOv2).

Especially, they achieve the best performances for standard

subset of Caltech dataset (i.e. all for height ≥ 50).

5.5. Memory and Computation Time Analysis

We report model sizes and computation times of our

methods in Table 6–7, which clearly show that the addi-

tional size and time overheads by our methods are very

small. We test on a workstation with Intel Xeon Processor

E5-2695 V4 CPU and NVIDIA Titan X Pascal GPU.

6. Conclusion

We addressed the two critical issues of pedestrian detec-

tion: occlusion and confusion with hard negative examples.

Model Baseline
Additional methods

Total
+ Part score + Grid cls.

SqueezeDet+ [22] 27.59 1.99 0.04 29.62

YOLOv2 [17] 268.35 0.45 0.06 268.86

SSD [12] 93.06 4.65 0.06 97.77

DSSD [8] 345.07 2.07 0.09 347.23

Table 6: Comparison of model sizes (in MB).

Model Baseline
Additional methods

Total
+ Part score + Grid cls.

SqueezeDet+ [22] 23.02 0.89 0.54 24.45

YOLOv2 [17] 32.19 0.70 1.12 34.01

SSD [12] 32.50 1.08 1.18 34.76

DSSD [8] 84.36 0.97 1.55 86.88

Table 7: Comparison of inference time (in milliseconds).

Our approach is general and flexible enough to be applica-

ble to any single-stage detectors. We implemented our oc-

clusion and hard negative handling methods into four state-

of-the-art single-stage models, including SqueezeDet+ [22],

YOLOv2 [17], SSD [12], and DSSD [8]. We demonstrated

that our approach indeed improved the performance of four

base models for pedestrian detection on Caltech [4] and

CityPersons [25] datasets. One future work may be to ap-

ply our methods to other general object detection problems.

Since our approach can be universally integrated with any

general-purpose detectors, there is no fundamental limita-

tion to extend our approach into other domains.

Acknowledgements. We thank Yunseok Jang and Juy-

ong Kim for helpful discussions. This work was supported

by Samsung Research Funding Center of Samsung Elec-

tronics under Project Number SRFC-TC1603-01. Gunhee

Kim is the corresponding author.

973

References

[1] S. Bell, C. Lawrence Zitnick, K. Bala, and R. Girshick.

Inside-Outside Net: Detecting Objects in Context with Skip

Pooling and Recurrent Neural Networks. In CVPR, 2016.

[2] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler,

R. Benenson, U. Franke, S. Roth, and B. Schiele. The

Cityscapes Dataset for Semantic Urban Scene Understand-

ing. In CVPR, 2016.

[3] P. Dollár, Z. Tu, P. Perona, and S. Belongie. Integral Channel

Features. In BMVC, 2009.

[4] P. Dollár, C. Wojek, B. Schiele, and P. Perona. Pedestrian

Detection: An Evaluation of the State of the Art. PAMI,

34(4):743–761, 2012.

[5] X. Du, M. El-Khamy, J. Lee, and L. Davis. Fused DNN: A

Deep Neural Network Fusion Approach to Fast and Robust

Pedestrian Detection. In IEEE WACV. IEEE, 2017.

[6] M. Enzweiler, A. Eigenstetter, B. Schiele, and D. M. Gavrila.

Multi-cue Pedestrian Classification with Partial Occlusion

Handling. In CVPR, 2010.

[7] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ra-

manan. Object Detection with Discriminatively Trained Part-

based Models. IEEE TPAMI, 32(9):1627–1645, 2010.

[8] C.-Y. Fu, W. Liu, A. Ranga, A. Tyagi, and A. C. Berg. DSSD:

Deconvolutional Single Shot Detector. arXiv:1701.06659,

2017.

[9] R. Girshick. Fast R-CNN. In ICCV, 2015.

[10] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich Fea-

ture Hierarchies for Accurate Object Detection and Semantic

Segmentation. In CVPR, 2014.

[11] Q. Hu, P. Wang, C. Shen, A. van den Hengel, and F. Porikli.

Pushing the Limits of Deep CNNs for Pedestrian Detection.

IEEE TCSVT, 2017.

[12] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y.

Fu, and A. C. Berg. SSD: Single Shot MultiBox Detector. In

ECCV, 2016.

[13] M. Mathias, R. Benenson, R. Timofte, and L. Van Gool. Han-

dling Occlusions with Franken-Classifiers. In ICCV, 2013.

[14] W. Ouyang and X. Wang. A Discriminative Deep Model for

Pedestrian Detection with Occlusion Handling. In CVPR,

2012.

[15] W. Ouyang and X. Wang. Single-pedestrian Detection Aided

by Multi-pedestrian Detection. In CVPR, 2013.

[16] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You

Only Look Once: Unified, Real-Time Object Detection. In

CVPR, 2016.

[17] J. Redmon and A. Farhadi. YOLO9000: Better, Faster,

Stronger. In CVPR, 2017.

[18] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN:

Towards Real-Time Object Detection with Region Proposal

Networks. In NIPS, 2015.

[19] A. Shrivastava, R. Sukthankar, J. Malik, and A. Gupta. Be-

yond Skip Connections: Top-Down Modulation for Object

Detection. arXiv:1612.06851, 2016.

[20] S. Tang, M. Andriluka, and B. Schiele. Detection and Track-

ing of Occluded People. IJCV, 110(1):58–69, 2014.

[21] Y. Tian, P. Luo, X. Wang, and X. Tang. Deep Learning

Strong Parts for Pedestrian Detection. In ICCV, 2015.

[22] B. Wu, F. Iandola, P. H. Jin, and K. Keutzer. SqueezeDet:

Unified, Small, Low Power Fully Convolutional Neural Net-

works for Real-Time Object Detection for Autonomous

Driving. arXiv:1612.01051, 2016.

[23] L. Zhang, L. Lin, X. Liang, and K. He. Is Faster R-CNN

Doing Well for Pedestrian Detection? In ECCV, 2016.

[24] S. Zhang, R. Benenson, M. Omran, J. Hosang, and

B. Schiele. How Far Are We from Solving Pedestrian De-

tection? In CVPR, 2016.

[25] S. Zhang, R. Benenson, and B. Schiele. CityPersons: A Di-

verse Dataset for Pedestrian Detection. In CVPR, 2017.

974

