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Abstract

We present an efficient method for the semi-supervised

video object segmentation. Our method achieves accuracy

competitive with state-of-the-art methods while running in a

fraction of time compared to others. To this end, we propose

a deep Siamese encoder-decoder network that is designed

to take advantage of mask propagation and object detec-

tion while avoiding the weaknesses of both approaches. Our

network, learned through a two-stage training process that

exploits both synthetic and real data, works robustly with-

out any online learning or post-processing. We validate our

method on four benchmark sets that cover single and mul-

tiple object segmentation. On all the benchmark sets, our

method shows comparable accuracy while having the or-

der of magnitude faster runtime. We also provide extensive

ablation and add-on studies to analyze and evaluate our

framework.

1. Introduction

Video object segmentation – separating a foreground ob-

ject from a video sequence – is one of most important tasks

in video analysis and editing, and commercial applications

such as Adobe After Effects have dedicated tools for it.

However, automatic video object segmentation is far from

a solved problem, and post-production video editing often

requires significant manual interaction to achieve pleasing

results. While recent work has addressed this problem, per-

formance is still limited in terms of either the quality or the

speed. In this paper, our goal is to develop an accurate video

object segmentation algorithm that is also fast enough to be

used in interactive settings.

Video object segmentation methods typically rely on two

important cues. Propagation-based methods [13, 37, 28,

30] mainly leverage the temporal coherence of object mo-

tion and formulate this problem as object mask propaga-

tion (i.e. pixel-level tracking) starting from a given anno-

tated frame. These methods rely on the spatiotemporal con-

nections between pixels, and thus can adapt to complex

deformation and movement of a target object as long as

*This work is done during an internship at Adobe Research
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Figure 1: A comparison of the quality and the speed

of previous video object segmentation methods (DAVIS-

2016 benchmark). We visualize the intersection-over-union

(IoU) with respect to the frames-per-second (FPS). Note

that the FPS axis is in the log scale.

the changes in the appearance and the location are smooth.

However, these methods are vulnerable to temporal discon-

tinuities like occlusions and rapid motion, and can suffer

from drifting once the propagation becomes unreliable.

Detection-based methods [5, 27, 45] learn the appear-

ance of the target object from a given annotated frame, and

perform a pixel-level detection of the target object at each

frame. As they rarely depend on temporal consistency, they

are robust to occlusion and drifting. However, as their es-

timation is mostly based on the object appearance in an

annotated frame(s), they often fail to adapt to appearance

changes and have difficulty separating object instances with

similar appearances.

Recent approaches to this problem have utilized deep

networks. Most of these approaches heavily rely on online

learning, where a pre-trained deep network is fine-tuned on

the test video [45, 30, 40, 5, 27, 18, 21]. While online train-

ing improves segmentation accuracy by letting the network

adapt to the target object appearance, it is computationally

expensive, thus limiting its practical use (e.g. it requires sev-

eral minutes of GPU-powered training for each test video).

In this paper, we present a new hybrid method for

semi-supervised video object segmentation. We construct

a Siamese encoder-decoder network that simultaneously
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makes use of both the previous mask to be propagated to

the current frame and the reference frame which specifies

the target object to be detected in the current frame. Our

network is designed to generate a sharp object mask with-

out time-consuming post-processing. To address the lack of

large segmented training video datasets, we use a two-stage

scheme that pre-trains the network on synthetically gener-

ated image data and then fine-tunes it on video data.

Our network architecture and training scheme have been

carefully designed to take advantage of both propagation

and detection cues. Consequently, the network works ro-

bustly without any online learning or post-processing, lead-

ing to tremendous efficiency at test time. Our method not

only achieves state-of-the-art performance on public bench-

mark datasets, but also runs orders of magnitude faster than

previous methods that rely on online learning (as shown

in Fig. 1). We also provide extensive experimental analysis

and evaluation on the influence of each component through

the ablation and the add-on studies.

2. Related Work

Unsupervised methods. Unsupervised methods aim to

segment a foreground object in a fully automatic way with-

out any user annotation. The main sources of information

include visual saliency [42] and difference in motion (e.g.

optical flow [35] and long-term trajectory [4]). However,

the criteria for a foreground object are often ambiguous

and the unsupervised segmentation does not fit well with

the interactive video editing scenario. We focus on semi-

supervised methods in this paper.

Propagation-based methods. Many video segmentation

methods start from user annotations (e.g. segmentation

masks or scribbles at key-frames) that roughly specify the

object of interest. To propagate these sparse labels through

the entire video sequence, graph representations are often

used [13, 37, 28]. A spatiotemporal graph where pixels

(or superpixels) are connected with space-time neighbors is

built from a video. Energy-based optimization like graph-

cut is performed to assign the optimal label for each node.

For professional video editing applications, interactive

methods are often preferred over automatic methods [41,

11, 2, 25]. These methods focus on designing an efficient

way for users to specify segmentation constraints and to

quickly respond to these constraints.

Recent approaches have used deep learning for label

propagation in videos. A temporal bilateral network was

proposed for spatiotemporal dense filtering in [20]. In [30],

a deep network was trained to refine the previous frame

mask to create the current frame mask. They trained a net-

work for this task using only static images. They use online

fine-tuning using the first frame of the test video to memo-

rize target object appearance, leading to a boost in the per-

formance. Khoreva et al. [21] extended [30] by proposing

a heavy data augmentation strategy for online learning, to

achieve higher accuracy. In [18], Hu et al. developed a re-

current neural network framework for multi-instance seg-

mentation. With a recurrent network, they capture temporal

coherence effectively and take advantage of long-term tem-

poral structure of a video.

Detection-based methods. Another approach in the semi-

supervised setting is to exploit the appearance of the tar-

get object in a given reference frame. Methods in this cat-

egory frame video object segmentation as pixel-level ob-

ject detection in each frame, processing a video frame-by-

frame without considering temporal consistency. In [5],

Caelles et al. applied one-shot online learning that fine-

tunes a deep network on a labeled frame using a pre-trained

model and used that fined-tuned network as the detector.

Maninis et al. [27] extended this idea by incorporating ad-

ditional information from an auxiliary instance segmenta-

tion network [26]. Voigtlaender and Leibe [40] further de-

veloped the idea from [5] by employing an online adap-

tation mechanism originating from the box-level tracking.

Yoon et al. [45] proposed a Siamese network for the pixel-

level matching to detect a target object.

3. Method

Given a reference frame with an object mask, the goal

of our method is to automatically segment the target ob-

ject from the entire video sequence. The key idea of our

method is exposing both the reference frame with annota-

tion and the current frame with previous mask estimation to

a deep network, so that the network detects the target object

by matching the appearance at the reference frame and also

tracks the previous mask by referencing the previous target

mask in the current frame.

3.1. Network Structure

Fig. 2 depicts our network structure. We construct the

model as a Siamese encoder-decoder structure that can effi-

ciently handle four inputs and produce a sharp mask output.

The network consists of two encoders with shared param-

eters, a global convolution block, and a decoder. The net-

work is designed to be fully convolutional, which can han-

dle arbitrary input size and generate sharp output masks.

Siamese encoder. The encoder takes a pair of RGB images,

each with a mask map, as an input. The encoder includes

a reference and a target stream, and the filter weights are

shared between the streams. Inputs to the reference stream

include a reference image which is usually the first frame of

the video, and the groundtruth mask. For the target stream,

a target (current) image and a guidance mask correspond-

ing to the previous frame are provided. We concatenate the

image frame and the mask along the channel axis, then feed

it into the encoder. The parameter-shared encoders map the

two stream data into the same feature space.
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Figure 2: Our network architecture. The network consists of two encoders with shared parameters, a global convolution

block, and a decoder. The network is fully convolutional. The relative spatial scales and channel dimensions of feature maps

are shown below each block.

Our encoder network is based on ResNet50 [16] and is

modified to be able to take a 4-channel tensor by implant-

ing additional single channel filters at the first convolution

layer. The network weights are initialized from the Ima-

geNet pre-trained model, except for newly added filters that

are initialized randomly.

Global convolution block. The outputs of the two encoder

streams are concatenated and fed into a global convolution

block. This block is designed to perform global feature

matching between the reference and the target streams to lo-

calize the target object. To overcome the locality of convo-

lution operations, we adopt global convolution [29] that effi-

ciently enlarges the receptive field by combining 1×k+k×1
and k×1+1×k convolution layers (k=7 in our implementa-

tion). The output of the global convolution block is further

processed by one residual block [17]. Note that we remove

the batch normalization [19] from the original shape. All

convolution layers in this block produce a feature map with

256 channels (e.g. the number of filters is 256).

Decoder. The decoder takes the output of the global convo-

lution block and also features in the target encoder stream

through skip-connections to produce a mask output. To effi-

ciently merge features in different scales, we employ the re-

finement module [32] as the building block of our decoder.

We make several modifications from the original structure

by replacing convolution layers with residual blocks [17], as

shown in Fig. 2. Our decoder consists of three refinement

modules, a final convolution layer, and a softmax layer to

generate the object mask. The size of the mask output is

1/4 of the input image size. Every convolution layer in the

refinement module produces a feature map with 256 chan-

nels and the last one produces a two-channel mask map.

3.2. Two­Stage Training

DAVIS-2017 [33, 31] is the largest public benchmark

dataset for the video object segmentation, and provides a

training set consisting of 60 videos. This is not enough to

train our deep network from scratch even though we use

pre-trained weights for the encoder. To address this issue,

we present a two-stage training scheme. Our network is first

trained on simulated samples using static image datasets

and then fine-tuned on video segmentation data.

Pre-training on simulated samples. In the first stage,

we used image datasets with instance object masks (Pascal

VOC [10, 14], ECSSD [34], and MSRA10K [8]) to simulate

training samples. For our two-stream encoder, we need both

the reference and the target frame data that contain the same

object. To automatically generate the training samples, we

used the following two strategies.

• Strategy 1: From an image with an object mask,

we generate a pair of images by applying two dif-

ferent sets of random transformations (rotation, scal-

ing, color perturbation). We used the Pascal VOC

dataset [10, 14] as the source image database.

• Strategy 2: From a pair of a foreground object and

a background image, we applied two different sets
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Figure 3: Training samples automatically generated from

static images. We have two different strategies for generat-

ing training samples as described in Sec. 3.2.

of random transformations to the foreground object,

then generated a pair of images by blending the trans-

formed foreground images with the background im-

age. We used the saliency detection datasets [34, 8]

to segment foreground objects and the Pascal VOC

dataset [10, 14] for background images. In addition,

we simulated occlusions by using the object mask in

the background image (e.g. the butterfly in the target

image (Fig. 3) is occluded by a person).

For both strategies, we further deformed the mask of the

target frame using a random affine transform to simulate the

guidance mask from the previous frame similar to [30]. We

then randomly crop a training sample that contains at least

50% of the target object from each generated image. Fig. 3

shows some examples generated by the two strategies.

Strategy 1 simulates the environment changes (camera

angle, zoom, illumination) of a static scene. Strategy 2 sim-

ulates more complex changes and also covers a larger vari-

ety of object classes as the saliency detection datasets have

more diverse class of objects than the Pascal VOC dataset.

The images from Strategy 2 sometimes look unnatural and

have blending artifacts, while the images from Strategy 1

are natural without the artifacts. We empirically found that

both strategies are helpful, thus we generate training sam-

ples using both strategies with an equal probability. We an-

alyze the effect of this pre-training stage in Sec. 4.2.

Fine-tuning on video data. After pre-training on the sim-

ulated samples, we fine-tune the network with video seg-

mentation data. By training on real video sequences, our

network learns to adapt for long-term appearance changes

(between the reference and the target frames) and short-

term motions (between the target frame and the previous

frame’s mask). We trained our network on the DAVIS-2017

training dataset [33, 31] that consists of 60 short HD videos

(4029 frames in total) with pixel-level instance label maps.

To prepare training samples from a video, we take reference

and target frames at random time indices. We just select one

…

…
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Figure 4: Training with recurrence. We compute train-

ing losses at every time step and update our model by the

BPTT [43].

instance if there are multiple instances in the video.

The naive fine-tuning explained above may not be com-

patible with a real test scenario as it does not reflect the

error accumulation over time. To resolve this problem,

we fine-tune our model with its own estimation that of-

ten comes with mistakes. Specifically, we recurrently con-

nect our model through time similar to [18] and feed the

softmax (not binarized) output of the previous frame as

the guidance mask of the current frame in order to pre-

serve the uncertainty of the estimation. This enables us to

use back-propagation-through-time (BPTT) for training the

recurrently-connected network [43]. For this training, we

use N successive target frames from a random time index

of a video. Our recurrently-connected-through-time net-

work is depicted in Fig. 4. We will discuss the effect of

fine-tuning on video data with and without applying the re-

currence in Sec. 4.2.

3.3. Inference

We assume the groundtruth mask of the first frame is

given following the common semi-supervised setting of

video object segmentation. We set the first frame as the

reference and estimate masks of the remaining frames se-

quentially. Note that we pass the output probability map

of the previous frame as the guidance mask for the target

frame without binarization. When testing a video sequence,

we compute the feature of the reference (first frame) stream

encoder only once and this makes our inference more ef-

ficient as shown in Fig. 4. To capture objects at different

sizes, we process frames in three different scale inputs (e.g.

0.5, 0.75, and 1) and average the results.

Multiple Objects. In the case of multiple objects, we still

use the same model but handle the scenario at the infer-

ence time. One naive way is to run each object indepen-

dently and assign the label with the largest output proba-

bility. Another approach is the winner-take-all approach
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OL PP OF J Mean F Mean Time

PLM [45] X X 70.0 62.0 0.3s

SegFlow [7] X 74.8 74.5 7.9s

MSK [30] X X X 79.7 75.4 12s

LCT [21] X X X 80.5 77.6 -

MaskRNN [18] X X 80.7 80.9 -

OSVOS [5] X X 79.8 80.6 9s

OSVOSS [27] X X 85.6 86.4 4.5s

OnAVOS [40] X X 86.1 84.9 13s

BVS [28] 60.0 58.8 0.37s

OFL [38] 68.0 63.4 120s

VPN [20] 70.2 65.5 0.63s

SegFlow† [7] 67.4 66.7 -

MaskRNN† [18] X 56.3 - -

OnAVOS† [40] 72.7 - -

Ours 81.5 82.0 0.13s

Table 1: Quantitative evaluation on the DAVIS-2016 vali-

dation set. We highlight common features of each method:

online learning (OL), post-processing (PP), and optical flow

input (OF). We group methods according to whether on-

line learning is used or not. Time shows the approximated

runtime (seconds per frame). †indicates a variant of each

method without online learning and post-processing.

that exploits the disjoint constraint of instances, i.e. each

pixel cannot belong to multiple instances, by setting non-

maximum instance probabilities to zeros at each estima-

tion. The winner-take-all approach improved the accuracy

of benchmarks compared to the naive approach, but is still

far from the optimal as it discards beneficial information.

To this end, we propose softmax aggregation that com-

bines multiple instance probabilities softly while constrain-

ing them to be positive and sum to 1:

pi,m = σ
(

logit(p̂i,m)
)

=
p̂i,m/(1− p̂i,m)

∑M

j=0
p̂i,j/(1− p̂i,j)

, (1)

where σ and logit represent the softmax and logit functions

respectively, p̂i,m is the network output probability of the

instance m at the pixel location i, m=0 indicates the back-

ground, and M is the number of instances. To compute

the probability of the background, we compute the network

output of the merged foreground then subtract it from 1. We

aggregate the network outputs of instances using Eq. (1) at

each time step and pass it to the next frame.

3.4. Implementation Details

We used 256× 256 and 256× 512 sized patches for the

pre-training and the fine-tuning, respectively. In the fine-

tuning, we set the number of recurrences as 5 and randomly

skipped frames to simulate fast motion. We also augmented

all the training samples using a random affine transform.

We use Adam [22] optimizer for all of our experiments with

J Mean F Mean

OFL [38] 43.2 -

OSVOS [5] 52.1 -

MaskRNN [18] 60.5 -

MaskRNN† [18] 45.5 -

OnAVOS [40] 61.0 66.1

OnAVOS+ [39] 64.5 71.1

Ours 64.8 68.6

Table 2: The quantitative evaluation of multi-object video

object segmentation on DAVIS-2017 validation set. †: a

variant without online learning. +: the result of the chal-

lenge entry obtained from an ensemble model. The results

for OFL [38] and OSVOS [5] are directly copied from [18].

a fixed learning rate 1e-5. The pre-training takes about 3

days and the fine-tuning takes about 2 days using a single

NVIDIA GeForce 1080 Ti GPU.

4. Experiments

We evaluate our method on standard benchmark

datasets [31, 33, 24, 11] and compare our performance with

state-of-the-art methods. Then, we perform comprehensive

ablation and add-on studies to validate the effect of each

component of our method.

4.1. Main results

We used DAVIS [31, 33], SegTrack v2 [24], and Jump-

Cut [11] datasets for evaluation: 1) DAVIS-2016 valida-

tion set for single object segmentation, 2) DAVIS-2017 val-

idation set and SegTrack v2 for multi-object segmentation,

3) JumpCut for the video cutout scenario. For the DAVIS

datasets, we measured the region similarity J and the con-

tour accuracy using the provided benchmark code [31]. For

SegTrack v2 [24] and JumpCut [11], since videos has vari-

ous resolutions, we rescaled video frames to have 480 pixels

on the shorter edge before processing and we measured per-

formance according to the evaluation protocols suggested

by the original papers. Result videos are included in the

supplementary material. The code and the model are avail-

able online.

DAVIS-2016. We compare our method with state-of-the-

art methods in Table 1. In the table, we highlight common

features of each method. Most of previous methods rely on

online learning that fine-tunes a network on the first frame

of each test video. Post-processing is often employed to re-

fine the output (dense CRF [23] in [30, 21, 40] and bound-

ary snapping in [5, 27]). Some methods are also aided by

additional optical flow information [30, 21].

Among the methods without online learning, our method

significantly outperforms all other methods. Compared

to methods with online learning, our technique achieves
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BVS OFL MSK OSVOS MaskRNN LCT Ours

IoU 58.4 67.5 70.3 65.4 72.1 77.6 71.1

Table 3: Quantitative results on Segtrack v2 [24]. We report

IoU according to [24].

RB DA SS JC PLM
Ours

Error [2] [46] [1] [11] [45]

d = 8 20.0 14.8 15.7 7.21 - 4.89

d = 16 28.7 23.7 18.9 9.82 9.55 6.91

d = 32 39.9 34.9 27.0 16.2 - 10.3

Table 4: Performance on JumpCut [11] (lower is bet-

ter). According to the standard evaluation protocol of

this dataset, we sample multiple key-frames (0, 16, . . . , 96)

from a video and propagate each by the transfer distance d
(frames). The errors are measured at the end of each prop-

agation as the ratio between wrongly classified area and the

actual object area.

comparable accuracy without further online fine-tuning and

post-processing.

In the table, the runtimes of OSVOS [5] and OFL [38]

are from [40] and [30], respectively. Otherwise, we put

the runtimes reported in the original papers. Even consider-

ing the differences in implementations and running environ-

ments, our method shows incomparable efficiency against

previous methods thanks to our efficient inference without

online learning and post-processing.

DAVIS-2017. In Table 2, we report the result of multi-

object video segmentation on DAVIS-2017. Our method

achieves state-of-the-art performance, which is comparable

with the challenge entry of [40] that comes with bells and

whistles including an ensemble model [39].

Generalization on SegTrack v2. We evaluate our model

on SegTrack v2 [24]. We estimate object masks using ex-

actly the same model and parameters as the DAVIS ex-

periment. In Table 3, our method shows competitive per-

formance with the latest methods that use online learning.

Note that, as we avoid online learning, our network trained

on the DAVIS-2017 training set is completely blind to the

domain of SegTrack v2 data. Thus, this experiment demon-

strates the generalization performance of our method.

Video cutout on JumpCut. To evaluate our method on the

video cutout scenario, we further test our network on the

JumpCut [11] dataset. Again, our network is totally blind

to JumpCut as we use the model pretrained on DAVIS with-

out any modification. As shown in Table 4, our method

significantly outperforms all previous methods.

Fig. 7 shows some qualitative visual results. Our method

works well on various types of objects and motions, and is

able to handle multiple instances well.

Our -Ref -Prev -PT -FT -Rec

J Mean 81.5 68.3 73.5 68.6 55.0 74.3

F Mean 82.0 68.2 74.2 68.9 59.1 74.8

∆ - -13.5 -7.9 -13.0 -24.7 -7.2

Table 5: Ablation study on the DAVIS-2016 validation

set. We compare models with ablations from our complete

model, and report the performance change with respect to

our full model in terms of the global mean (J + F)/2).

-P
re

v
O

u
rs

-R
e
f

frame 13 frame 26 frame 36

Figure 5: The effect of the network inputs. Results from

ablated models (-Prev and -Ref) and our complete model is

shown.

4.2. Ablation Study

We run an extensive ablation study to demonstrate the

effects of different components of our method. We summa-

rize the results in Table 5.

Network inputs. Our model takes two sets of image and

mask, one for the reference frame and the other for tar-

get frame. We investigate the importance of each input

stream of our model. If we block the access to the refer-

ence input stream, the network should propagate the pre-

vious mask to the current frame without reference infor-

mation. To evaluate the setup, we zero out the reference

stream input rather than modifying our network structure.

We named this model -Ref. On the other hand, if we do not

feed the previous mask, the network should detect the target

object in the reference frame without any temporal prior. To

simulate this setup, we zero out to the previous mask input

at the target stream. We named this model -Prev. Note that,

for this experiment, we train two separate models using our

two-stage training scheme.

Table 5 shows the experimental result. In both abla-

tion setups, we observe significant performance drops. The

model -Ref has a similar setup with [30] but without on-

line learning. The low score of this setup shows that simply

refining the previous frame mask according to the current

frame image is not enough to get good results as it is prone

to drifting and cannot handle occlusions. [30] overcome this
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Our +OL +CRF +GRU

J Mean 81.5 82.4 81.9 79.6

F Mean 82.0 82.2 79.9 81.0

time 0.13s + 1.74s + 2.53s + 0.01s

Table 6: Add-on study on the DAVIS-2016 validation set.

We compare models with additional components added to

our model. We also provide additional time per frame with

each component.

issue by employing online learning and optical flow.

For the model -Prev, while the problem setup is similar

to [45], our -Prev model performs better than [45] (+3.5 in

terms of J mean). We argue that the improvement comes

from our pre-training. Nonetheless, this model still suffers

from its structural limitation as it purely depends on the ap-

pearance of the target object in the reference frame, and has

difficulty handling object appearance changes or multiple

instances with a similar appearance. This limitation is re-

solved in [40] by online adaptation which updates the model

at every time step.

In Fig. 5, we compare the ablation variants with our com-

plete model to demonstrate their limitations. -Ref drifts

to the background textures and -Prev fails to adapt to the

appearance changes over time, while our complete model

shows a stable result.

Training stages. As described Sec. 3.2, we train our model

through two training stages: pre-training on simulated sam-

ples and fine-tuning on video data. In Table 5, we empiri-

cally verify the effect of each training stage. The model -PT

skipped the pre-training stage and the model -FT skipped

the fine-tuning stage. In addition, to highlight the effect of

the recurrence while training on video data, the model -Rec

is trained with both stages but without the recurrence during

the fine-tuning. As shown in Table 5, both training stages

are important to get accurate results and training with recur-

rence further boosts our performance to reach the state-of-

the-art.

4.3. Add­on Study

While our model by itself is able to achieve the state-

of-the-art performance, we investigate how additional com-

ponents can further boost the performance. Table 6 sum-

marizes the result of this add-on study on the DAVIS-2016

validation set.

Online learning. Similar to other methods with online

learning, we fine-tune our model on the reference frame of

a test video to adapt the model to the appearance of the tar-

get object. To train our model using a single frame, we use

Strategy 1 of in Sec. 3.2. i.e., we automatically generate

both the reference and the target frame inputs from a single

image by applying different random transformations. For

this online fine-tuning, we set learning rate as 1e-7 and the

number of iteration as 1000 with ADAM optimizer [22].

(a) Scene (b) Before CRF (c) After CRF

Figure 6: The effect of the CRF.

While online fine-tuning improves (J : 81.5 to 82.4)

from our model, it is relatively small compared to previous

methods [30, 45, 18] that experience more than 10 point

gains. This result is natural as the performance of all the

state-of-the-art methods is saturated at a similar point on

the dataset. We argue that this implies that our model al-

ready exploits the appearance information of the target ob-

ject from the reference stream input. Thus, unlike previous

methods [5, 40, 27, 21], we can avoid the considerable com-

putational overhead of online learning (e.g. it takes more

than 2 minutes per video with a high-end GPU in Table 6).

Refinement with CRF. We apply the dense CRF [23] as a

post-processing to refine our outputs. We find the hyper-

parameter of the dense CRF using a grid search on the vali-

dation set following [6, 21].

The CRF affects the two measures differently; it boosts

J mean (+0.4), but degrades F mean (-2.1). We observed

that the CRF helps to refine mask boundaries to be aligned

with objects and increases the overall overlapping area (J )

but sometimes smooths out fine details where F measure

is very sensitive as shown in Fig. 6 (e.g. parachute strings).

We argue that our network structure, especially the refine-

ment module used in the decoder, is able to recover fine

details without additional post-processing, unlike previous

methods [30, 21, 36] that are based on the DeepLab archi-

tecture [6] that produces the output at a coarser scale (1/8
compared to 1/4 of ours).

Visual memory (RNN). Inspired by [36], we augmented

our model with visual memory. While our current training

scheme uses recurrence (Fig. 4), it can be helpful to have

an extra memory module that directly connects internal fea-

tures at different time steps. To this end, we extend our

model to have visual memory by implanting a RNN cell to

the output of the global convolution block. In particular,

we combine the feature from the previous time step with

the current one using a 3×3 convolutional GRU unit [9, 3].

Note that we insert the GRU cell after the pre-training stage

(that uses synthetic samples) since RNN training requires

sequential data. We randomly initalized the GRU weights

and trained it after fixing the weights of other network fil-

ters. Following [44], we employ a curriculum learning

scheme that increases the number of recursion by 1 every

3000 iterations until it reaches 5. After this GRU training,

we fine-tune all the weights together.

As shown in Table 6, we get no improvement with an

additional GRU unit. We conjecture that this is due to
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Figure 7: The qualitative results on DAVIS and SegTrack v2. Frames are sampled uniformly.

over-fitting as we observe that the training loss is much

lower than our model (mean cross-entropy: 0.012 vs. 0.02).

In practice, the video training data is very limited (60 se-

quences in total) to train RNNs.

5. Conclusion

In this paper, we have presented a novel approach for

semi-supervised video object segmentation. We demon-

strate that our Siamese encoder-decoder network trained us-

ing a two-stage scheme reaches the current state-of-the-art

performance without online learning and post-processing,

making it much faster than comparable methods.

There are several future directions for this problem.

First, we could incorporate ROI extraction techniques such

as ROI-pooling [12] and ROI-align [15]. In our experi-

ments, we found that the estimation is sensitive to object

scale. Currently, we alleviate it with multi-scale inference.

The ROI of a target object in the previous frame captures

the object scale. Thus, ROI extraction techniques can make

the problem easier by normalizing scales. While we failed

to get much improvement from RNNs due to over-fitting,

we still believe that long-term memory has the potential to

handle challenging scenarios (e.g. momentary occlusions)

if we have more video training data. We are also interested

in extending our approach to be interactive. Currently we

only use the first frame as the reference frame following the

standard benchmark setup. However, our model is flexible

and fast enough to allow users to change the reference frame

(by choosing one of visually confirmed intermediate results

or providing additional frame annotations).
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