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Abstract

Images convey a broad spectrum of personal informa-

tion. If such images are shared on social media platforms,

this personal information is leaked which conflicts with the

privacy of depicted persons. Therefore, we aim for auto-

mated approaches to redact such private information and

thereby protect privacy of the individual.

By conducting a user study we find that obfuscating the

image regions related to the private information leads to

privacy while retaining utility of the images. Moreover, by

varying the size of the regions different privacy-utility trade-

offs can be achieved. Our findings argue for a “redaction

by segmentation” paradigm.

Hence, we propose the first sizable dataset of private im-

ages “in the wild” annotated with pixel and instance level

labels across a broad range of privacy classes. We present

the first model for automatic redaction of diverse private

information. It is effective at achieving various privacy-

utility trade-offs within 83% of the performance of redac-

tions based on ground-truth annotation.

1. Introduction

More and more visual data is captured and shared on the

Internet. Images and video contain a wide range of pri-

vate information that may be shared unintentionally such as

e.g. email-address, picture-id or finger-print (see Figure 1).

Consequently, there is a growing interest within the com-

puter vision community [4, 19, 23, 25, 41, 43] to assess the

amount of leaked information, understand implications on

privacy and ultimately control and enforce privacy again.

Yet, we are missing an understanding how image content

relates to private information and how automated redaction

can be approached.

Therefore, we address two important questions in this

Users want to share 
images containing

private information

Proposed privacy

sensitive regions

Automatic Redactions

remove private information

fingerprint, datetime

person, face, lic_plate

fingerprint, datetime

person, face, lic_plate

Figure 1: Users often share images containing private in-

formation, which poses a privacy risk. For example, in the

top row, user might unintentionally leak their fingerprint.

We present methods to aid users automatically redact such

content by proposing privacy sensitive regions in images.

context. First, how can private information be redacted

while maintaining an intelligible image? We investigate

this question in a user study with highly encouraging re-

sults: we can redact private information in images while

preserving its utility. Furthermore, varying the amount of

pixels redacted results in different privacy vs. utility trade-

offs. We conclude that redaction by segmentation is a valid

approach to perform visual redactions.

We ask a second question in this paper: What kind

of privacy-utility trade-offs can be achieved by automatic

redaction schemes? Based on our first finding, we approach

this as a pixel labeling task on multiple privacy classes

(which we refer to as privacy attributes). Segmenting pri-

vacy attributes in images presents a new challenge of rea-

soning about regions including multiple modalities. For in-

stance, in Figure 1, identifying the name and datetime re-

quires mapping the relevant pixels to the text domain for

understanding, while identifying the student id requires
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reasoning over both visual and text domains. Our automated

methods address these challenges and localize these privacy

attributes for redaction via segmentation. By performing

both quantitative and human evaluation, we find these au-

tomated methods to be effective in segmentation as well as

privacy-utility metrics.

Our model and evaluation for automatic redaction is

facilitated by a new dataset that extends the Visual Pri-

vacy (VISPR) dataset [41] to include high-quality pixel

and instance-level annotations. To this end, we pro-

pose a dataset containing 8.5k images annotated with

47.6k instances over 24 privacy attributes. Refer to

project website: https://resources.mpi-inf.mpg.

de/d2/orekondy/redactions/

2. Related Work

Text Sanitation Redaction techniques are primarily stud-

ied in the context of confidential text documents, wherein

certain sensitive entities need to be removed. Studies focus

on identification of such entities [5, 8, 9, 44, 45, 46] and

methods to prevent over-sanitation [5, 44]. However, un-

like these works which have access to dense structured text

data (e.g. documents), we deal with unstructured pixel-level

representations of such entities.

Image Perturbations for Privacy Adversarial perturba-

tions [16, 21, 39] are suggested to evade person identifi-

cation [25, 48]. However, these methods typically assume

a white-box CNN-based adversary for the specific task of

face recognition. In contrast, we propose redacting con-

tent at the expense of some utility to achieve better privacy

(measured against humans) across a broad range of privacy

classes. Many works [3, 17, 18, 19, 29, 31, 35] propose

and analyze redaction strategies (e.g., blurring, cartooning)

and study their effects on privacy and utility of the image.

However, we focus on automatically localizing and redact-

ing private content in images across multiple modalities.

Private Information Recognition Many existing stud-

ies focus on either detecting faces [50, 52], license plates

[6, 56, 57], relationships [49, 53], age [2] or occupations

[47]. Research in determining privacy risk across a broad

range of privacy classes are typically treated as a classifica-

tion problem [41, 51, 54]. However, many studies [1, 11]

demonstrate a “privacy paradox” – users share such images

in spite of knowing the privacy risks. Hence in this work,

we propose a middle ground for reducing privacy leakage,

such that users can still share images by redacting private

content while preserving its utility.

Visual Privacy Datasets PicAlert [55] and YourAlert

[54] propose datasets with user-classified privacy labels.

VISPR [41] provides a more exhaustive dataset of 22k im-

ages annotated with a broad range of image-level privacy la-

bels. The PEViD video dataset [30] provides person-centric

bounding box annotation over 20 video sequences in a con-

strained setting. In contrast, our dataset based on VISPR

images provides pixel level annotation from a diverse set of

privacy classes.

Segmentation Identifying pixel-level labels from images

is a well-studied problem in computer vision. However,

most methods [34, 37] and datasets [10, 13, 36] focus on

segmenting common objects in visual scenes. We how-

ever focus on identifying private regions in a privacy-utility

framework, which introduces many new challenges.

3. The Visual Redactions Dataset

In this section we present our pixel-label visual privacy

dataset as an extension to the VISPR dataset [41]. We begin

with a discussion on how images (Section 3.1) and attributes

(Section 3.2) were selected for the task. This is followed by

the annotation procedure (Section 3.3) and a brief analysis

(Section 3.4) of the dataset.

3.1. Selecting Images for Pixel­level Annotation

The VISPR dataset contains 22k real-world user-

uploaded publicly available Flickr images which makes this

a great starting point for addressing the visual redaction

problem “in the wild”. 10k of these images are annotated as

safe. From the remaining 12k images we pixel-annotate the

subset of 8,473 images that contain at most 5 people. The

main reason to focus on this subset was to reduce the anno-

tation cost while maximizing the amount of non-person pix-

els. We preserve the identical 45-20-35 train-val-test split of

these images as in the VISPR dataset.

3.2. Shortlisting Privacy Attributes

The 22k images in the multilabel VISPR dataset are an-

notated using 68 image-level privacy attributes (∼5.2 at-

tributes per image). These privacy attributes are compiled

from multiple privacy-relevant sources – the US Privacy Act

of 1974, EU Data Protection Directive 95/46/EC and vari-

ous social network website rules. Additionally, they cover

a diverse range of private information that can be leaked in

images (e.g. face, tattoo, physical disability, personal rela-

tionships, passport, occupation). Therefore, we use these as

a starting point for redactions in images. We select 42 out of

67 privacy attributes (excluding attribute ‘safe’, which indi-

cates none of the other 67 attributes are present) for three

reasons. First, for 11 attributes (e.g. religion, occupation,

sports) typically the entire image is linked to the attribute

(e.g. scene with church or sport stadium). In such cases, the

solution to keeping the information private is to not share

such images (as proposed in [41]). We instead focus on

attributes which can be localized for redaction, such that

the image might still be useful. Second, 8 attributes were

extremely tedious to annotate, because of their strong co-
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Figure 2: Examples and distribution of privacy attributes in the dataset.

occurrence with crowd-scenes (e.g. political and general

opinion, occupation) or the effort required to outline them

(e.g. hair color). Third, 6 attributes (e.g. place of birth,

email content, national id) contained under 30 examples for

training. In spite of filtering such attributes, we still cover

a broad spectrum of information to help de-identify people

in images (such as by obfuscating faces or names). We fur-

ther merge few groups among these 42 attributes: (i) when

they occur as a complete and partial version (e.g. (complete

face, partial face) merged into face) (ii) when they localize

to the same region (e.g. (race, skin color, gender, relation-

ships) merged into person). As a result, we work with 24

localizable privacy attributes in our dataset representative of

42 of the original 67 VISPR privacy attributes (see Figure 2

for the complete list).

3.3. Dataset Annotation

In this section, we discuss the annotation procedure.

Annotation Tool and Instructions We use VGG Im-

age Annotator tool [12] for annotation. Five expert annota-

tors draw polygons around instances based on an instruction

manual. A summary of instructions, definitions of attributes

and examples are provided in the supplementary material.

Consensus and Agreement Measure Agreement is cal-

culated w.r.t. images annotated by one of the authors. We

measure agreement using Mean Intersection Over Union

(mIoU):
∑ tp

tp+fp+fn
averaged over images.

Consensus Experiment and Annotating person We ob-

served 93.8% agreement in consensus task of annotating in-

stances of person in 272 images. Annotators separately

annotated person in remaining images. We obtain 13,171

person instances annotated over 5,920 images.

Annotating face We observed an agreement of 86.2%

(lower due to small sizes of instances) in the consensus task

for annotating face in 100 images. Using the 5,920 images

of people as a starting point, annotators annotated 8,996 in-

stances of faces in separate sets of images.

Annotating Remaining Attributes Images for each of

the remaining attributes are annotated successively by at

most a single annotator. 8 of the text-based attributes (e.g.

name, phone no) are annotated using 4-sided polygons or

bounding boxes. We gather annotation of 26,676 instances.

Auxiliary Detections We augment all images in the

dataset with text detections obtained using the Google

Cloud Vision API to aid localization of text-based at-

tributes. This is provided as OCR and bounding box an-

notation in structured hierarchy of text elements in the or-

der: characters, words, paragraphs, blocks and pages. In

addition, we also gather face and landmark bounding box

detections using the same API. These detections are solely

used as auxiliary input to methods discussed in Section 5

and not for evaluation.

Summary With an annotation effort of ∼800 hours con-

centrated over four months with five annotators (excluding

the authors), we propose the first sizable pixel-labeled pri-

vacy dataset of 8,473 images annotated with ∼47.6k in-

stances using 24 privacy attributes.

3.4. Dataset Analysis and Challenges

We now present a brief analysis of the dataset and the

new challenges it presents for segmentation tasks. Exam-

ples of the proposed attributes and their distribution among

the 8k images in the dataset are presented in Figure 2.

Popular datasets [10, 13, 36] provide pixel-level anno-

tation of various common visual objects. These objects

are common in visual scenes, such as vehicles (car, bicy-

cle), animals (dog, sheep) or household items (chair, table).

Common to all these objects are their distinctive visual cues.

Looking at the examples of attributes in Figure 2, one can

notice similar cues among the VISUAL attributes, but it is

not evident in the others. Recognizing TEXTUAL attributes

(such as names or phone numbers) in images instead require
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s = 0.25 s = 0.5 s = 1 s = 2 s = 4

Figure 3: Dilation/Erosion of attribute fingerprint

detecting and parsing text information and additionally as-

sociating it with prior knowledge. While some of the MUL-

TIMODAL attributes can be associated with visual cues, of-

ten the text content greatly helps disambiguate instances (a

card-like object could be a student id or driv lic). We

also observe a strong correlation between modalities and

sizes of instances. We find TEXTUAL instances to occupy

on average less than 1% of pixels in images, while MUL-

TIMODAL attributes predominantly occur as close-ups oc-

cupying 45% of the image area on average. Consequently,

the privacy attributes pose challenges from multiple modali-

ties and require specialized methods to individually address

them. Moreover, they provide different insights due to the

variance in sizes. Hence, going forward, we treat the modes

TEXTUAL, VISUAL and MULTIMODAL as categories to aid

analysis and addressing challenges presented by them.

Applicability to other problems We believe the proposed

dataset could be beneficial to many other problems apart

from visual redactions. In visual privacy, it complements

datasets to perform tasks such as person de-identification

[4, 19]. Outside of the privacy domain, we also provide

a sizable face segmentation dataset with 9k face instances,

compared to 2.9k in Labeled Faces in the Wild [26] and 200

in FASSEG [27].

4. Understanding Privacy and Utility w.r.t.

Redacted Pixels

In this section, we study how redacting ground-truth pix-

els of attributes influences privacy and utility of the im-

age by conducting a user study on Amazon Mechanical

Turk (AMT). The results from this section motivates our

approach in Section 5. We will also use the results from

this study as a reference point for evaluating our proposed

automated methods in Section 6.2.

4.1. Generating Redactions

Given an image Ia containing attribute a, we generate

a ground-truth redacted version of the image Iā by simply

blacking-out pixels corresponding to a in the ground-truth.

Spatially extending a We now want to redact fewer

or more pixels in image Iā to understand how this influ-

ences the image’s privacy and utility. We generate multiple

versions of the ground-truth redacted image {Isā : s ∈ S}
at different scales of redaction, such that Insā contains n

times as many blacked-out pixels of Isā. We achieve dif-

ferent scales of redactions by dilating/eroding the ground-

truth binary mask of a, as shown in Figure 3. We use seven

scales S = {0.0, 0.25, 0.5, 1.0, 2.0, 4.0, inf}, where I0ā is

the unredacted image, I1ā (= Iā) is the GT redacted image

and I infā is a completely blacked-out image.

4.2. User Study

We create an AMT project of 1,008 tasks (24 attributes

× 6 images × 7 scales), each to be responded by 5 unique

workers from a pool of 29 qualified workers. Each task

contains 2 yes/no questions based on an image Isā, one each

for Privacy and Utility. We consider privacy and utility w.r.t.

(i) two versions of the same image: (Ia, I
s
ā), and (ii) users

(AMT workers in our case).

Defining Privacy To understand if attribute a has been

successfully redacted in Isā, we pose the privacy question in

the form: “Is a visible in the image?”. We also provide a

brief description of the attribute a along with examples. We

consider Isā to be private, if a majority of the users respond

no.

Defining Utility To understand utility of an image, we

pose the question: “Is the image intelligible, so that it can

be shared on social networking websites? i.e. does this im-

age convey the main content of the original image (i.e., the

image without the black patch)”. As a result, we define the

utility of an image independent to its aesthetic value and

instead associate it with the semantic information. We con-

sider Isā to have utility, if a majority of the users respond

yes.

Measuring Privacy and Utility We label each of the

1,008 images with varying redacted scales their privacy and

utility as discussed above. For any given redaction scale s,

we aggregate privacy/utility scores simply as the percentage

of images considered private/useful. Consequently, an ideal

visual redaction has both high privacy and utility.

4.3. Analysis

We now discuss results based on the privacy-utility

scores obtained over modes and various sizes (i.e. relative

size of a in Ia) based on Figure 4.

Privacy is a Step Function We observe in Figure 4

across all plots, that a minimum number of pixels of at-

tribute a need to be removed to effectively redact it from

the image. This minimum number corresponds to exactly

the ground-truth redaction (s = 1) – redacting fewer pixels

than this makes the image non-private and redacting more

pixels achieves marginal privacy gains. More specifically,

we achieve 94% privacy with ground-truth redactions. The

imperfect privacy score is predominantly (5/9 failure cases)

due to turkers overlooking important details in the question.

Apart from this, other cases involve contextual cues reveal-

ing the attribute (e.g. wheelchair shadow) and regions that

were not annotated (e.g. outline of a person at a distance).
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Figure 4: Privacy and Utility using various scales of ground-truth redaction over (Top row) modes (Bottom row) sizes

Gradual Loss in Utility From Figure 4 OVERALL, we

find utility to decrease gradually as the size of redacted re-

gion increases. Another interesting observation is that util-

ity strongly depends on the size of a in the image. In the

bottom row of Figure 4, we see that for smaller GT regions

(a = 0 − 10%), we still obtain high utility at larger dila-

tions. However, as the area of the GT regions increases be-

yond 50% of the image, redaction entails blacking-out the

majority of the image pixels and hence zero utility.

Privacy and Utility What can we take away from this

while proposing automated methods to preserve privacy

while retaining utility? Due to the correlation between

modes and sizes, we can predict more pixels for smaller

attributes with minimal loss to utility. For instance, for

TEXTUAL attributes, we can predict 4x as many ground-

truth pixels for redaction. However, for larger ground-truth

regions (>50% of image) both privacy and utility are step

functions and hence making redaction a choice between pri-

vacy and utility.

GT Segmentations are a Good Proxy In general, for im-

ages over all attributes and sizes (Figure 4 OVERALL), we

see that we can already achieve high privacy while retain-

ing considerable utility of the image. Moreover, we obtain

near-perfect privacy with the highest utility in all cases at

s = 1, the ground-truth redactions. This justifies to address

privacy attribute redaction as a segmentation task.

5. Pixel-Labeling of Private Regions

In Section 3 we discussed the challenges of attributes

occurring across multiple modalities (TEXTUAL, VISUAL,

MULTIMODAL). In Section 4, we motivated how ground-

truth segmentations in our dataset make a good proxy for

visual redactions. In this section we propose automated

methods to perform pixel-level labeling (semantic segmen-

tation) of privacy attributes in images, with an emphasis on

methods tackling each modality.

We begin with a simple baseline Nearest Neighbor

(NN): A 2048-dim feature is extracted using ResNet-50 for

each image. At test time, we predict the segmentation mask

of the closest training image in terms of L2 distance.

5.1. Methods for TEXTUAL­centric attributes

To facilitate segmenting textual attributes, for each im-

age we first obtain an ordered sequence of bounding box

detections of words and their OCR using the Google Cloud

Vision API (as discussed in Section 3.3).

Proxy GT We represent n words in an image as a se-

quence [(wi, bi, yi)]
n
i=1, where wi is the word text, bi is the

bounding box and yi is the label. We use 9 labels (8 TEX-

TUAL attributes + safe). We assign each yi in the sequence

the ground-truth attribute that maximally overlaps with bi,

or a safe label in case of zero overlap. At test-time, we seg-

ment pixels in region bi if a non-safe label is predicted for

word wi. For the test set, we refer to predictions from this

proxy dataset as PROXY to obtain an upper-bound for our

methods on these text detections.

Rule-based Classification (RULES) We use the follow-

ing rules to label words in the sequence: (i) name: if it exists

in a set of 241k names obtained from the US Census Bu-

reau website (ii) location, landmark, home address:

if it exists in a set of 2.8M locations consisting of countries,

states, cities and villages from the GeoNames geographi-

cal database [15] (iii) datetime, phone no, birth dt:

if the word contains a digit (iv) emailadd: if the word

contains the symbol @, we predict this word and adjacent

words assuming a format �@�.�

Named Entity Recognition (NER) We use the popular

Stanford NER CRFClassifier [14] to label each word of the
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Figure 5: Architecture to perform Sequence Labeling

sequence as from a set of recognized entity classes (e.g. per-

son, organiziation, etc.). We use the model which is trained

on case-invariant text to predict one of seven entity classes.

Sequence Labeling (SEQ) We train a sequence labeler

similar to [22, 33, 38] as shown in Figure 5. We prepro-

cess by replacing all digits with 0s and stem each word to

reduce the size of the vocabulary. We tokenize the words

in the training sequences using a vocabulary of size 4,149

(number of words with at least 4 occurrences). We embed

the words using 100-d GloVe embeddings [42]. To capture

the temporal nature, we use two-level Bidirectional LSTMs.

At each time-step, we obtain a joint embedding by element-

wise multiplication of: the text embedding (256-d output of

the LSTM) and the image embedding (2048-d ResNet-50

[20] feature reduced to 256-d using an FC layer). We clas-

sify this joint embedding into 9 labels using an FC layer

followed by softmax activation.

5.2. Methods for VISUAL­centric attributes

Recent deep-learning segmentation methods have

proven to be effective in localizing objects based on their

visual cues. We propose using a state of the art method in

addition to few pretrained methods for VISUAL attributes.

Pretrained Models (PTM) We use pretrained methods

to classify three classes typically encountered in popular

visual scene datasets. (i) face: We use bounding box

face detections obtained using the Google Cloud Vision

API. (ii) person: We use the state-of-the-art segmentation

method FCIS [34] to predict pixels of COCO class “person”

(iii) lic plate: We use OpenALPR [40] to detect license

plates in images.

FCIS We retrain all layers of the FCIS model [34] for

our task and dataset. We train it for 30 epochs with learn-

ing rate 0.0005 over trainval examples and their horizontally

mirrored versions. We fine tune it from the model provided

by the authors trained for segmentation on MS-COCO [36].

We obtained best results using default hyper-parameters.

5.3. Methods for MULTIMODAL­centric attributes

Recognizing Multimodal attributes (e.g. driv lic,

receipt) require reasoning over both visual and textual

domains. We treat this as a classification problem due

to: (i) limited training examples (∼125 per multimodal

attribute) (ii) large region of these attributes (∼45% im-

age area), which provides only ∼10% utility even after

GT-based redaction (Section 4.2).

Weakly Supervised Labeling (WSL) We propose learn-

ing a multilabel classifier based on visual-only (WSL:I)

and visual+text content (WSL:I+T). If the class probabil-

ity of an attribute is beyond a certain threshold, we predict

all pixels in the image for the attribute. WSL:I is the same

approach used in [41] – a multilabel ResNet-50 [20] classi-

fier. In the case of WSL:I+T, we obtain a multimodal em-

bedding by concatenating visual and text representations.

We obtain visual representation (identical to WSL:I) with

a ResNet-50 architecture. We obtain text representation by

encoding all words in the image. We tried three such vari-

ants: (i) Bag-of-Words (BOW) encoding: Words in the im-

age are represented as a one-hot vector with vocabulary of

size 1,751. (ii) LSTM encoding: Identical to SEQ, we en-

code the word sequence using an LSTM with 128-hidden

units. We use output from the last cell as the text represen-

tation. (iii) Conv1D encoding: We use 1D convolutions to

encode the word sequence (typically used for sentence clas-

sification tasks [28]) followed by max pooling to obtain a

fixed-size text representation In all three cases, we reduce

the text-representation to 512-d using an FC+ReLU layer.

We report BOW encoding results for WSL:I+T in the rest

of the paper since this provided the best results.

Salient Object Prediction (SAL) Using WSL:I+T as the

base classifier, we use the salient object as an approximation

of the attribute’s location. We obtain class-agnostic saliency

obtained using DeepLab-v2 ResNet [7, 24].

Weakly Supervised Iterative Refinement (IR) For

document-like objects, the text regions tend to be densely

clustered in images. Hence, after classification using

WSL:I+T, we refine the convex hull of the text regions using

DenseCRF [32] to “spill into” the document region.

6. Experiments and Discussion

In this section, we discuss segmentation performance

(Section 6.1) and privacy-vs-utility performance (Section

6.2) of our proposed methods.

6.1. Evaluating Segmentation Performance

We now evaluate methods proposed in Section 5 in terms

of its segmentation performance using Mean Average Pre-

cision, suggested in Pascal VOC [13]. This is calculated by

averaging area under precision-recall curves over the pri-

vacy attributes. We use 50 thresholds uniformly spaced be-

tween 0 and 1 to obtain this curve. At each threshold t, we:

(i) binarize the prediction score masks per image by thresh-

olding pixel-level scores at t (ii) aggregate pixel-level TP,
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Figure 6: Qualitative examples from our method

FP, FN counts (normalized by image size) per attribute over

all images to obtain attribute-level precision and recall. We

ignore GT masks containing under 252 pixels during evalu-

ation (<1% GT masks).

Table 1 presents the quantitative results of the proposed

methods on the test set. Qualitative results in Figure 6 are

based on an ENSEMBLE, using predictions of SEQ for

TEXTUAL, FCIS for VISUAL, WCS:I+T for MULTIMODAL

attributes. Auxiliary results and analysis are available in

the supplementary material. We generally observe that NN

underperforms simple baselines across all modalities, high-

lighting the difficulty and diversity presented by the dataset.

TEXTUAL We observe: (i) Patterns, frequency and con-

text: SEQ achieves the best overall score, justifying the need

for special methods to tackle text attributes. It is reason-

ably effective in detecting datetime (Fig. 6a), emailadd

and phone no due to patterns they often display. We addi-

tionally find SEQ detect attributes which often require prior

knowledge (e.g. name, location). The common success

modes in such cases are when the words are popular enti-

ties (e.g. “Berlin” in Fig. 6a) or have discriminative vi-

sual/textual context (e.g. detecting home addr in Fig. 6b).

(ii) Challenges imposed by text detections: PROXY repre-

sents an upper bound to our textual methods. The low scores

highlights the difficulty of text detection and this is espe-

cially severe for scene and handwritten text detection, a fre-

quent case in our dataset (e.g. Fig. 6e,f). Moreover, our text

detections do not perfectly overlap with ground-truth anno-

tations. Since text regions are small, we additionally pay a

high performance penalty even for correct detections (e.g.

IoU=0.42 for home addr in Fig. 6b). Moreover, even in the

case of correct text detections, we observe failures in OCR

which affects the quality of input for dependent methods.

This can be observed by the under-performance of NER,

which is typically very effective on clean sanitized text.

VISUAL We observe: (i) The unreasonable effective-

ness of FCIS: We obtain the highest score in the VISUAL

category using FCIS. We find FCIS to be highly effec-

tive localizing visual objects commonly encountered in

other datasets (e.g. person, face). Moreover, we find it

achieves reasonable performance even when there is a lack

of training data (e.g. only <60 examples of fingerpr,

phys disb, see Fig. 6d). The common failure modes are

difficult examples (e.g. face in Fig. 6e) and uncommon vi-

sual objects (e.g. signtr in Fig. 6b). (ii) Comparison with

Baselines: PTM achieves comparable results for person,

due to Flickr images used to train both models. However, it

underperforms for face (detections are not precise enough)

and lic plate (poor performance in the wild).

MULTIMODAL We observe: (i) WSL:I is a good simple

baseline: WSL:I achieves reasonable performance (45.4)

for multimodal attributes, compared to other modes (1.5 in

text and 20.8 in visual) although the prediction spans the

entire image. This is attributed to large size of MULTI-

MODAL instances found in images. (ii) Multimodal reason-

ing helps: We find WSL:I+T improves performance over

WCS:I by 20%, justifying the need for methods to perform

multimodal reasoning to detect these attributes. This is par-

ticularly necessary to disambiguate similar looking visual

objects (e.g. card-like objects driv lic and stud id, Fig.

6b). (iii) Precision-Recall trade-off : We find precision for

WSL:I+T for this method can be improved for some at-

tributes (e.g. cr card, ticket) by IR, which instead of

the entire image, predicts only the smoothened hull of text

regions. We observe FCIS achieve the best overall score

due to higher precision.
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TEXTUAL

Method mAP loca
tion

home
addr

name birth
dt

phone
no

land
mark

date
time

email
add

PROXY 45.0 31.7 37.8 48.7 52.5 52.6 33.6 52.4 50.8

NN 0.9 0.3 1.9 0.4 0.7 0.0 3.1 0.6 0.0

NER 3.0 6.0 1.7 4.4 0.5 0.0 0.5 10.9 0.0

RULES 4.2 3.1 0.5 2.8 0.6 1.4 1.2 6.4 17.5

FCIS 7.2 4.3 0.2 9.8 0.1 2.5 27.6 12.9 0.0

SEQ 26.8 18.4 19.4 19.1 25.1 45.8 13.9 33.4 38.9

VISUAL

Method mAP face licp
late

per
son

nud
ity

hand
writ

phy
disb

med
hist

fing
erpr

sig
ntr

NN 16.6 9.0 16.0 33.6 6.2 37.5 11.4 18.9 16.9 0.1

WSL:I 20.8 5.0 4.3 30.3 16.4 49.9 13.7 37.7 28.8 1.3

PTM 20.0 47.6 44.5 88.3 0.0 0.0 0.0 0.0 0.0 0.0

FCIS 68.3 83.8 77.9 87.0 69.7 80.7 59.0 45.8 68.1 42.6

MULTIMODAL

Method mAP cr
card

pass
port

driv
lic

stud
id

mail rece
ipt

tic
ket

NN 24.1 10.5 49.5 19.9 14.5 20.6 17.1 36.7

WSL:I+T 55.6 27.7 68.8 83.3 56.1 41.4 54.2 58.0

SAL 36.2 55.9 37.2 23.8 30.4 8.1 42.5 55.1

IR 53.6 41.7 51.2 67.8 48.1 36.9 57.2 72.5

FCIS 59.2 53.2 76.3 66.5 50.3 33.1 59.4 75.4

Table 1: Quantitative results of our methods for segmenting

privacy regions. Bold numbers denote highest and italicized

numbers second highest scores in the columns.

6.2. Privacy vs. Utility Trade­off by Automatic
Redaction

In the previous section, we evaluated our approaches

w.r.t. segmentation quality. Now, we ask how effective are

redactions based on our proposed methods in terms of pri-

vacy and utility?

To answer this, we once again run the user study in Sec-

tion 4.2 on AMT, but now by redacting proposed pixels of

our automated method over those exact images. To vary

the number of predicted pixels, we vary the threshold to

binarize the predicted score masks over attributes. As a re-

sult, we obtain 6-8 redacted versions for each of the 144

images (24 attributes × 6 images). Each image is labeled

by 5 unique qualified AMT workers.

Results We obtain privacy-utility scores for each thresh-

old and plot it as a curve in Figure 7. We also plot the

scores obtained for different dilations of redacted ground-

truth annotated region. It should be noted that perfect

redactions are unavailable to us and we use these ground-

truth based redactions (or manual redactions) only to serve

as a reference. We evaluate performance by calculating

area under the curve (AUC). We observe: (i) Overall, we

find our method obtain a privacy-utility score of 65% – a

relative performance of 83% compared to redactions us-

ing ground-truth annotation from the dataset. (ii) MUL-

TIMODAL attributes present a hard choice between pri-
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Figure 7: Comparing redactions using predicted and

ground-truth segmentations

vacy and utility, as these regions are often large. We find

the slightly lower AUC(gt) to be an artifact of sampling.

(iii) Although we obtain a low mAP for TEXTUAL at-

tributes, we observe an 81% privacy-utility score. This oc-

curs as we can now over-predict regions, exhibiting low pre-

cision and high recall w.r.t. segmentation, but yet retaining

high utility due to their small size. Consequently, we can

predict more text pixels “for free”.

Based on these observations, we find the automatic

redactions of our models trained on the proposed dataset

show highly promising results – they closely mimic perfor-

mance achieved by redacting ground-truth regions across a

broad range of private information.

7. Conclusion

We proposed a redaction by segmentation approach to

aid users selectively sanitize images of private content. To

learn automated approaches for this task, we proposed the

first sizable visual redactions dataset containing images

with pixel-level annotations of 24 privacy attributes. By

conducting a user study, we showed that redacting ground-

truth regions in this dataset provides near-perfect privacy

while preserving the image’s utility. We then presented au-

tomated approaches to segment privacy attributes in images

and observed that we can already reasonably segment these

attributes. By performing a privacy-vs-utility evaluation of

our automated approach, we achieved a highly encouraging

83% performance w.r.t. GT-based redactions.
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