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Abstract

A key problem in blind image quality assessment (BIQA)

is how to effectively model the properties of human visual

system in a data-driven manner. In this paper, we propose

a simple and efficient BIQA model based on a novel frame-

work which consists of a fully convolutional neural network

(FCNN) and a pooling network to solve this problem. In

principle, FCNN is capable of predicting a pixel-by-pixel

similar quality map only from a distorted image by using

the intermediate similarity maps derived from conventional

full-reference image quality assessment methods. The pre-

dicted pixel-by-pixel quality maps have good consistency

with the distortion correlations between the reference and

distorted images. Finally, a deep pooling network regress-

es the quality map into a score. Experiments have demon-

strated that our predictions outperform many state-of-the-

art BIQA methods.

1. Introduction

Objective image quality assessment (IQA) is a funda-

mental problem in computer vision and plays an impor-

tant role in monitoring image quality degradations, opti-

mizing image processing systems and improving video en-

coding algorithms. Therefore, it is of great significance

to build an accurate IQA model. In the literature, some

full reference image quality assessment (FR-IQA) method-

s [19, 20, 23, 27, 30, 32, 33] which attempt to build a model

simulating human visual system (HVS) can achieve good

performance. For example, FSIM [33] predicts a single

quality score from a generative similarity map (as shown

in Fig. 1(b)). According to our analysis, two reasons bring

FR-IQA methods into success. One reason is that it can ac-

cess to reference image content and take the reference infor-

mation by comparison. Meanwhile, this way of comparison

is similar with the behavior of human vision and makes it

easy to judge the image quality by FR-IQA methods [12].

The other reason is that hand-crafted features carefully de-

signed by FR-IQA are closely related to some HVS meth-

(a) (b)

(c) (d)

Figure 1. Examples of predicted quality maps: (a) is a distorted

image; (b) is a similarity map from FSIM; (c) is a patch-based

quality map from BIECON [9]; (d) is a pixel-based quality map

predicted from our proposed model.

ods properties. The difference of features on correspond-

ing positions between reference and distorted images can

well measure the distortion degree. On the other hand, some

NR-IQA methods [16–18, 31] which rely on natural scene

statistics do not obtain the same satisfying performance. As

a result, the accuracies of most FR-IQA methods are better

than those of NR-IQA when the performance is objectively

evaluated.

Based on these analysis, it is difficult for NR-IQA meth-

ods to build a model to imitate the behavior of HVS un-

der the case of lacking reference information. Recently, re-

searchers have started to harness the power of convolutional

neural networks (CNNs) to learn discriminative features for

various distortions types [1–3, 8]. We name these method-

s Deep-IQA. Most previous Deep-IQA methods consider

CNN as a complicated regression function or a feature ex-

tractor, but are unaware of the importance of generating in-

termediate quality maps which represent the perceptual im-

pact of image quality degradations. This training process of
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deep-IQA seems not to have an explicit perceptual meaning

and is always a black box for researchers. But what interests

us is that BIECON [9] proposed an idea that training a CNN

to replicate a conventional FR-IQA such as SSIM [27] or F-

SIM [33]. However, the method estimates each local patch

score and patch-wise scores are pooled to an overall quali-

ty score. In essence, it visualizes a score patch map which

contains spatial distribution information and the map does

not reflect the distorted image in pixel level, as shown in

Fig. 1(c). But we consider that the distortion value of each

pixel is affected by its neighboring pixels and should not

be exactly the same in the same patch. The simple patch-

based scheme is not enough to correlate well with perceived

quality. Therefore, how to design an effective deep learning

model for blind predicting an overall pixel-by-pixel quality

map related to human vision is the focus of this work.

In this paper, we propose a new deep-IQA model which

consists of a fully convolutional neural network (FCNN)

and a deep pooling network (DPN). We refer to this method

as Blind Predicting Similar Quality Map for IQA (BP-

SQM). Specifically, given a similarity index map label, our

proposed model can produce a HVS-related quality map to

approach to the similarity index map in pixel distortion lev-

el. The predicted quality map can be a measurement map

for describing the distorted image. Intuitively, the FCNN

tries to simulate the process of FR-IQA methods generat-

ing similarity index maps. Then, given a subjective score

label, the DPN which can be equivalent to various com-

plicated pooling strategies predicts a global image quality

score based on the predicted quality map. The primary ad-

vantage for this model is that the additional similarity map

label guides FCNN to learn local pixel distortion features in

the intermediate layers. Our proposed model considers as-

sessing image quality as a problem of image-to-image. The

quality maps predicted from BPSQM can reflect distorted

areas in pixel level. Meanwhile, our model is simple and

effective.

Our key insight is that good guided learning policies

can help NR-IQA methods accurately predict global sim-

ilar quality maps which agree with the distortion dis-

tribution between reference and distorted images. We

use HVS-related similarity index maps derived from FR-

IQA methods to navigate the learning direction of FCN-

N. Through guided learning, FR-IQA methods can trans-

mit HVS-related pixel distortion feature information to NR-

IQA methods. Fig. 1(d) shows a generative quality map

from BPSQM. Compared to the patch-based quality map in

(c), it is obvious that (d) represents pixel-wise distortions

for a global distorted image. Meanwhile, the distortion dis-

tribution is generally similar with the feature map (b) from

FSIM. In addition, a deep pooling network used for predict-

ing the perceptual image quality is superior to other pooling

strategies.

2. Related Work

2.1. Full-reference Image Quality Assessment

In order to effectively model the properties of HVS,

many HVS-related methods have been proposed. The struc-

ture similarity index (SSIM) [27] extracted the structural,

contrast and luminance information to constitute a similar-

ity index map for assessing the perceived image quality.

In [33], Zhang et al. proposed a feature-similarity index

which calculated the phase congruency (PC) and gradient

magnitude (GM) as features for the HVS perception. [30]

proposed an efficient and effective standard deviation pool-

ing strategy, which demonstrates that the image gradien-

t magnitude alone can still achieve high consistency with

the subjective evaluations. [19] used a novel deviation pool-

ing to compute the quality score from the new gradient and

chromaticity similarities, which further suggests that the

gradient similarity could well measure local structural dis-

tortions. The aforementioned FR-IQA methods first com-

pute a similarity index map to represent some properties of

HVS and then design a simple pooling strategy to convert

the map into a single quality score.

2.2. No-reference Image Quality Assessment

Many NR-IQA approaches model statistics of natural

images and exploit parametric variation from this model

to estimate perceived quality. DIIVINE [18] framework i-

dentified the distortion type firstly and applied a distortion-

specific regression strategy to predict image quality degra-

dations. BLIINDS-II [25] presented a Bayesian inference

model to give image quality scores based on a statistical

model of discrete cosine transform (DCT) coefficients. The

CORNIA [31] learned a dictionary from a set of unlabeled

raw image patches to encode features, and then adopted

a max pooling scheme to predict distorted image quality.

NIQE [17] used a multivariate Gaussian model to obtain

features which are used to predict perceived quality in an

unsupervised manner. SOM [34] focused on areas with

obvious semantic information, where the patches from the

object-like regions were input to CORNIA.

2.3. Deep Image Quality Assessment

With the rise of CNN for detection and segmentation

tasks [4, 13, 14], more and more researchers have started

to apply the deep network into IQA. Lu et al. [15] proposed

a multi-patch aggregation network based on CNN, which

integrates shared feature learning and aggregation function

learning. Kang et al. [8] constructed a shallow CNN on-

ly consisting of one convolutional layer to predict subjec-

tive scores. [2] proposed a deeper network with 10 convolu-

tional layers for IQA. [28] employed ResNet [5] to extract

high-level features to reflect hierarchical degradation. Most

deep-IQA methods only employ CNN to extract discrimi-
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Figure 2. Architecture of the proposed BPSQM framework. The generative network takes as input a distorted image and predicts a similar

quality map related to human vision. The pooling network directly regresses the generative quality map into a score.

native features and are inadequate for analyzing and visu-

alizing the intermediate results, which makes it difficult for

us to understand how to process IQA based on CNN. In [7],

Kim et al. proposed a full reference Deep-IQA generating a

perceptual error map which provides us an intuitive analy-

sis of local artifacts for given distorted images. BIECON [9]

utilized a CNN to estimate a patch score map and utilized

one hidden layer to regress the extracted patch-wise features

into a subjective score.

3. Quality Map Prediction

Problem formulation

Given a color or gray distorted image Id, our goal is to

estimate its quality score by modeling image distortions.

Previous works for deep NR-IQA [2, 8] lets fθ be a regres-

sion function using CNN with parameter θ. S indicates the

subjective ground-truth score:

S = fθ(Id) (1)

In this case, the deep network simply trains on input im-

ages and directly outputs results. From the process, we can

not understand how the deep network learns features relat-

ed with the image distortion. In contrast, FR-IQA methods

generate similarity index map firstly and then pool the map.

The process can be formulated as below:

S = P (M(Id, Ir)) (2)

Where Ir represents a reference image. M indicates the way

to calculate similarity index map and P denotes a pooling s-

trategy, for example, P can be a simple average operation in

SSIM or a standard deviation operation in GMSD. Given all

that, we combine the advantage of FR-IQA modeling gen-

eral properties of HVS with the advantage of NR deep-IQA

without hand-crafted features. Our approach is first to con-

struct a generative network G with parameters ω to predict

a global quality map in pixel level. Then, a deep pooling

network fφ regarded as a complicated pooling strategy con-

verts the predicted quality map into a score.

S = fφ(Gω(Id)) (3)

3.1. Architecture

The proposed overall framework is illustrated in Fig. 2.

This framework consists of two main components: a gen-

erative quality map network and a quality pooling network.

The requirement for the generative network is outputting a

quality map of the same size with the input image. We se-

lect U-Net [24], an extension of FCNN, as a base of genera-

tive network. Because U-Net integrates the hierarchical rep-

resentations in subsampling layers with the corresponding

features in upsampling layers. So the degradations on both

the low and high level features are considered for IQA [28].

The generative network consists of a subsampling path

(SP) and an upsampling path (UP). In the SP, the distorted

image goes through four convolutional layers with kernel

3×3 and padding 1×1. In the UP, there are also four corre-

sponding deconvolution layers with kernel 2×2 and stride

2×2. The feature maps in the SP are contacted with the

corresponding feature maps of the same size in UP. The last

deconvolution layer outputs a pixel-wise dense prediction

map with the same size as the input image. Batch normal-

ization [6] and leaky rectified linear unit (LReLU) are used

after all convolution and deconvolution operations. A 3×3

convolutional layer with padding 1×1 for keeping same size

is used for reducing dimensionality into one channel feature

map. U-Net can be trained with a pixel-wise logist loss a-

gainst the ground-truth map. The output of logist layer is

directly passed into the subsequent network. In our paper,

the pooling network contains five 3×3 convolutional layers

with 2×2 maximum pooling and two fully connected layers.

We perform 50% dropout after each fully connected layers

6375



so as to prevent overfitting. The pooling network ends up

with a squared Euclidean loss layer. It should be noted that

we crop the input image into some overlapping fixed size

patches so as to adapt to the pooling network. This patch

size should be large enough, which will not influence the

learning of pixel distortion.

3.2. Quality Map Selection

SSIM [27], FSIM [33] and MDSI [19] are adopted to

generate similarity maps as label separately. Because the

luminance, contrast and structural information are treated

equally in SSIM, the similarity map derived from SSIM is

directly used as map label. In contrast, the FSIM method us-

es a pooling weight to combine the phase congruency (PC)

and gradient magnitude (GM) in computing the final qual-

ity score. So we select the two features as map label sepa-

rately. As for MDSI [19], the combination of gradient and

chromaticity similarity maps is selected as label.

We remove pre-processing including filtering and down-

sampling in the process of computing the similarity index

map label to guarantee the generative map same size with

the input image. Specially, for SSIM, owing to the input im-

ages processed with a kernel 11×11 Gaussian filter, it leads

to less 5 pixels near borders around the similarity map. To

guarantee image alignment, we exclude each 5 rows and

columns for each distorted image border before training S-

SIM labels.

3.3. Multi Types Quality Maps Fusion

For each FR-IQA method, we will train U-Net sepa-

rately. Many conventional FR-IQA methods [19, 33] have

demonstrated that multi complementary features are com-

bined to increase the prediction accuracy for image quali-

ty. Thus, we also fuse the information from predicted multi

types quality maps to feed into the pooling network. Differ-

ent pooling strategies of quality maps are experimented:

-single pooling stream is performed by concatenating d-

ifferent type quality maps into a multi channels quality map

followed by a single pooling network (shown in Fig. 3 (a)).

-multi pooling streams indicate that each type quality

map is fed into an independent pooling network. The last

convolutional layers of the pooling networks are concate-

nated, followed by two full connected layers (shown in

Fig. 3 (b)).

3.4. Regression

The input to U-Net is an RGB patch of fixed size

144×144×3 sampled from a distortion image without any

image pre-processing. We set the step of the sliding win-

dow to 120, i.e. the neighboring patches are overlapped by

24 pixels, which can compensate partial distorted area con-

tinuous. Considering that the patch size is large enough to

reflect the overall image quality, we set the quality score of

Figure 3. Different pooling strategies to combine multi types qual-

ity maps: single pooling stream (a), multi pooling streams (b).

each patch to its distorted images subjective ground-truth s-

core. The proposed pooling network is to conduct nonlinear

regression from the predicted quality map to the subjective

score. To compare the performances of different network

structures as regression function, we also test a simple net-

work with only two fully connected layers and ResNet [5].

Then, the final objective function is defined as:

Ls(Id;φ, ω) = ||(fφ(Gω(Id))− Eυa)||2 (4)

Where Eva denotes the human evaluation for the input dis-

torted image. The final score of a global distorted image is

averaging the cropped patches.

3.5. Training Method

The proposed network was implemented in MXNet. By

outputting the intermediate results, we find that the quality

maps from individually training U-Net are more close to the

similarity index maps than those from the joint training of

the overall framework. Thus, we first only train the genera-

tive network on similarity maps, and then fix its parameters

in training process of the overall framework.

Our network was trained end-to-end by back-

propagation. For optimization, the adaptive moment

estimation optimizer (ADAM) [10] is employed with

β1 = 0.9, β2 = 0.999, ε = 10−8 and α = 10−4. We set

an initially learning rate to 1×10−3 and 5×10−3 for the

generative network and the pooling network, respectively.

We set the weight decay to 1×10−11 for all layers to help

prevent overfitting. To evaluate the performance on IQA

databases, each database is randomly divided into 80% for

training and 20% for testing by reference images, which

ensures that the content of images in test sets never exists

in train sets. We only use the horizontally flip operation

to expand training data, for general data argumentation

skills, such as rotation, zoom, contrast, will affect the final

image quality. The models are trained for 100 epochs

and we choose the model with the lowest validation error.

The partition was repeated 100 times to eliminate the bias

caused by data division.
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4. Experiments

4.1. Datasets

Four datasets are employed in our experiments to val-

idate the performance of the proposed method including

LIVE [26], CSIQ [11], TID2008 [22] and TID2013 [21].

LIVE consists of 982 distorted images with 5 differen-

t distortions: white Gaussian noise (WN), Gaussian blur

(BLUR), JPEG, JPEG2000 (JP2K) and fast-fading distor-

tion (FF). Each image is associated with Differential Mean

Opinion Scores (DMOS) in the range [0, 100]. The CSIQ

database includes 30 original images and 866 distorted im-

ages with 6 distortion types at four to five different levels

of distortion. It is reported in the form of DMOS which are

normalized to span the range [0, 1]. TID2008 contains 25

reference images and a total of 1700 distorted images with

17 distortion types at 4 degradation levels. TID2013 is an

extension of TID2008 and includes seven new types and one

more level of distortions. Mean Opinion Scores (MOS) are

provided for each image in the range [0, 9]. Owing to more

distortion types and images, the TID2013 is more challenge

for researchers in the four databases.

To evaluate the performance of our model, two wide-

ly applied correlation criterions are applied in our experi-

ments including the Pearson Linear Correlation Coefficient

(PLCC) and Spearman Rank Order Correlation Coefficient

(SRCC).For both correlation metrics, a higher value indi-

cates higher performance of a specific quality metric. The

MOS values of TID2013 and the DMOS values of CSIQ

have been linearly scaled to the same range [0, 100] as the

DMOS values in LIVE.

4.2. Quality Map Prediction

To validate if BPSQM is consistent with human vi-

sual perception, the intermediate generative quality maps

and their corresponding similarity map labels are shown in

Fig. 4. The first column in Fig. 4 shows three different dis-

tortion types from TID2013, including JPEG, high frequen-

cy noise (HFN) and local block-wise distortions (LBWD).

The remaining columns correspond to SSIM, the gradient

magnitude of FSIM (Fg) and MDSI, respectively. A(1-3),

B(1-3) and C(1-3) are the ground-truth map labels. A(4-

6), B(4-6) and C(4-6) are the predicted quality maps. The

dark areas indicate distorted pixels. Overall, the generative

quality maps are similar with ground-truth maps on distort-

ed degrees and areas. In case of JPEG distortion, the artifact

edges caused by compression on the root are clearly shown

in A(5) and A(6). But owing to SSIM similarity index map-

s emphasizing local structure features, this leads to some

areas in the predicted quality map to be smooth without lo-

cal pixels distortion, as shown in A(4). For HFN, noises

spread over an overall distorted image. B(4-6) not only dis-

play the uniform distribution well but also give a clear air-

plane profile. LBWD is a very challenging distortion type

for most BIQA methods to distinguish additional blocks and

undistorted regions. Even though some wrong pixel distor-

tion predictions appear in the undistorted regions, as shown

in C(4-6), each predicted block is darker than other areas.

Meanwhile, the predicted positions of local blocks can a-

gree with those of the map labels.

In Fig. 5, the predicted quality maps of spatially cor-

related noise and JPEG with different distortion levels are

shown. The first row denotes the spatially correlated noise,

and the second row denotes the JPEG. With the noises be-

coming strong gradually from left to right, the predicted

quality maps grow darker and darker as shown in (a)-(e).

Meanwhile, when the degree of JPEG compression increas-

es, the blocking artifact on the sculpture area was empha-

sized in (j). Generally, with the degree of distortion increas-

ing, the predicted scores gradually decrease, which suggests

that BPSQM predicts good pixel-by-pixel quality maps a-

greeing with the distortion correlations between the refer-

ence and distorted images.

4.3. Dependency on FR-IQA Similarity Map

To validate the feasibility and effectiveness of direct-

ly pooling quality maps, we compare pooling ground-truth

FR-IQA maps with pooling predicted quality maps. We

choose the more challenging full TID2013 database in this

experiment. Here, directly pooling ground-truth map label-

s from SSIM and the gradient magnitude of FSIM are de-

noted by S LB and Fg LB, respectively. Directly pooling

predicted maps of SSIM is denoted by S PM. The gradient

magnitude computed from FSIM is denoted by Fg PM. We

also feed the distorted image into the pooling network di-

rectly, named as D LB. The results are shown in Table 1, we

can see that the S LB and Fg LB both perform better than

their original methods, especially for the SRCC of SSIM in-

creasing from 0.637 to 0.904, which suggests that the deep

pooling network can better fit a quality map to a subjective

score than simple averaging. The D LB performs worse

than Fg PM. We consider the primary reason is that distort-

ed images contain too much redundant information and do

not highlight distorted distribution features. Even though

the deep network has strong ability of extracting discrimi-

native features, it is still not enough to accurately present

distorted patterns. For this reason, we need to firstly predic-

t similar quality maps which correctly reveal the distorted

areas and degrees.

Table 1. SRCC and PLCC comparison for pooling ground-truth

FR-IQA maps and pooling predicted quality maps

NR FR

D LB S PM Fg PM S LB Fg LB SSIM FSIMc

SRCC 0.781 0.758 0.828 0.904 0.923 0.637 0.851

PLCC 0.837 0.803 0.856 0.913 0.930 0.691 0.877
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(A)

A(1)

A(4)

A(2)

A(5)

A(3)

A(6)

(B)

B(1)

B(4)

B(2)

B(5)

B(3)

B(6)

(C)

C(1)

C(4)

C(2)

C(5)

C(3)

C(6)

Figure 4. Predicted quality maps and ground-truth similarity maps: (A), (B) and (C) are distorted images with JPEG, HFN, LBWD,

respectively; the second, the third and the forth columns indicate three FR-IQA methods which are SSIM, Fg and MDSI, respectively.

A(1-3), B(1-3) and C(1-3) are ground-truth similarity maps. A(4-6), B(4-6) and C(4-6) are predicted quality maps.

Table 2. SRCC and PLCC comparison for each predicted quality

map from different FR-IQA methods on the TID2013 database

No LB S PM Fg PM Fp PM MD PM

SRCC 0.736 0.758 0.828 0.723 0.863

PLCC 0.779 0.803 0.856 0.789 0.879

4.4. Similarity Map Labels Comparison

To investigate the performance of different FR-IQA

ground-truth maps, the similarity maps derived from SSIM,

FSIM and MDSI were respectively chosen as labels for

training the model. The TID2013 database with all distor-

tion types was applied in this experiment. The combination

of gradient and chromaticity similarity maps from MDSI

are referred to MD PM. The phase congruency (PC) from

FSIM is denoted by Fp PM. In order to analyze the effect

of removing FR-IQA similarity maps, we directly employ

the overall framework to perform an end-to-end training

without any FR-IQA map labels, referred to No LB. The

final SRCC and PLCC values are shown in Table 2, No LB

achieves worse performance among the results except for F-

p PM. Clearly, selecting FR-IQA similarity maps for train-

ing the generative network can help to learn a better model
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(a) 0.917116 (b) 0.893441 (c) 0.846894 (d) 0.77455 (e) 0.670482

(f) 0.931055 (g) 0.917338 (h) 0.882224 (i) 0.818775 (j) 0.736828

Figure 5. Examples of predicted quality maps with various distortion levels of spatially correlated noise, and JPEG: (a)-(e) are distorted by

spatially correlated noise; (f)-(j) are distorted by JPEG. The values indicate the predicted scores output from the pooling network. Smaller

values indicate higher distortions.

for predicting image quality, because the task improves the

ability of U-Net learning discriminative features about dis-

tortion. In particular, Fp PM achieves unfavorable perfor-

mance and seems not to fit with this framework. Because

when it comes to the the ability in describing local pixel

distortion, the selected quality map of PC from FSIM is

less than the quality map of gradient features from FSIM.

In contrast, Fg PM achieves the second rank, suggesting

that gradient distortion variations learned from the U-Net

is more suitable than phase congruency to apply into the

framework. MD PM performs the best result, suggesting

that the chromaticity feature can be complementary to gra-

dient features.

4.5. Effects of Pooling Network

To investigate the pooling performance of convolution-

al network with different depth and full connected layer-

s. We experimented with three pooling network structures.

The first network is the pooling network proposed by this

paper, called DPN. The second network only contains two

full connected layers with 1024 neurons each, called FC2.

ResNets [5] with 18 layers and 50 layers are selected as the

third and the forth pooling network. The results are shown

in Table 3. The DPN performs better than FC2, which indi-

cates that the additional convolutional layers have the strong

ability of pooling quality maps. Although ResNet perform-

s better than shallow networks on image classification and

recognition, the deeper network is no necessarily to use at

this experiment.

4.6. Quality Maps Fusion

We evaluate two different fusion schemes for combin-

ing multi types predicted quality maps. The first is a single

pooling stream scheme (shown in Fig. 3(a)) and the second

is multi pooling streams (shown in Fig. 3(b)). The result-

Table 3. SRCC and PLCC comparison for different pooling net-

works using Fg PM on the TID2013 database

DPN FC2 ResNet18 ResNet50

SRCC 0.828 0.707 0.787 0.795

PLCC 0.856 0.711 0.833 0.840

Table 4. SRCC and PLCC comparison for different fusion schemes

and multi predicted quality maps combinations on TID2013

Fg MD S Fg MD S S Fg MD

Single stream
SRCC 0.862 0.825 0.853 0.855

PLCC 0.885 0.859 0.873 0.880

Multi streams
SRCC 0.842 0.821 0.825 0.834

PLCC 0.873 0.854 0.861 0.868

s are given in Table 4. We can see that the single pooling

stream is better. This further illustrates that, compared with

the feature maps output from the pooling network-con5, the

quality maps directly output from U-Net are more in con-

sistent with human vision.

In the 4.4 section, S PM, MD PM and Fg PM rank the

top three. In order to compare multi type quality maps com-

binations, we design all possible combinations which con-

tain any two types and all types. As we can see from Ta-

ble 4, the combination of more types seems not yield sig-

nificant performance gains. Moreover, the predicted SSIM

quality map combined with other quality maps caused a lit-

tle performance degradation. Since the gradient operator

is different in MDSI and FSIM, the two joint achieves the

best performance, which indicates that gradient features are

complementary to each other.

4.7. Performance Comparison

In Table 5, the proposed BPSQM is compared

with 7 state-of-the-art NR-IQA methods (DIIVINE [18],

BRISQUE [16], NIQE [17], IMNSS [29], HFD-BIQA [28],
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Table 5. Performance comparison on the whole database (LIVE, CSIQ and TID2013). Italics indicate our proposed model.
Type FR NR

Method SSIM FSIMc MDSI DIIVINE BRISQUE NIQE IMNSS HFD-BIQA BIECON DIQaM BPSQM-Fg BPSQM-MD BPSQM-Fg-MD

LIVE IQA
SRCC 0.948 0.960 0.966 0.892 0.929 0.908 0.943 0.951 0.958 0.960 0.971 0.967 0.973

PLCC 0.945 0.961 0.965 0.882 0.920 0.908 0.944 0.948 0.960 0.972 0.961 0.955 0.963

CSIQ
SRCC 0.876 0.931 0.956 0.804 0.812 0.812 0.825 0.842 0.815 - 0.862 0.860 0.874

PLCC 0.861 0.919 0.953 0.776 0.748 0.629 0.789 0.890 0.823 - 0.891 0.904 0.915

TID2013
SRCC 0.637 0.851 0.889 0.643 0.626 0.421 0.598 0.764 0.717 0.835 0.828 0.863 0.862

PLCC 0.691 0.877 0.908 0.567 0.571 0.330 0.522 0.681 0.762 0.855 0.856 0.879 0.885

Weighted Avg.
SRCC 0.743 0.887 0.917 0.722 0.721 0.589 0.708 0.816 0.783 - 0.863 0.884 0.887

PLCC 0.773 0.902 0.928 0.668 0.673 0.500 0.655 0.772 0.813 - 0.884 0.899 0.906

Table 6. SRCC comparison on individual distortion types on the LIVE IQA and TID2008 databases. Italics indicate deep learning-based

methods.

Method
LIVE IQA TID2008

JP2K JPEG WN BLUR FF AGN ANMC SCN MN HFN IMN QN GB DEN JPEG JP2K JGTE J2TE

SSIM 0.961 0.972 0.969 0.952 0.956 0.811 0.803 0.792 0.852 0.875 0.700 0.807 0.903 0.938 0.936 0.906 0.840 0.800

GMSD 0.968 0.973 0.974 0.957 0.942 0.911 0.878 0.914 0.747 0.919 0.683 0.857 0.911 0.966 0.954 0.983 0.852 0.873

FSIMc 0.972 0.979 0.971 0.968 0.950 0.910 0.864 0.890 0.863 0.921 0.736 0.865 0.949 0.964 0.945 0.977 0.878 0.884

BLIINDSII 0.929 0.942 0.969 0.923 0.889 0.779 0.807 0.887 0.691 0.917 0.908 0.851 0.952 0.908 0.928 0.940 0.865 0.855

DIIVINE 0.937 0.910 0.984 0.921 0.863 0.812 0.844 0.854 0.713 0.922 0.915 0.874 0.943 0.912 0.930 0.938 0.873 0.852

BRISQUE 0.914 0.965 0.979 0.951 0.877 0.853 0.861 0.885 0.810 0.931 0.927 0.881 0.933 0.924 0.934 0.944 0.891 0.836

NIQE 0.914 0.937 0.967 0.931 0.861 0.786 0.832 0.903 0.835 0.931 0.913 0.893 0.953 0.917 0.943 0.956 0.862 0.827

BIECON 0.952 0.974 0.980 0.956 0.923 0.913 0.835 0.903 0.835 0.931 0.913 0.893 0.953 0.917 0.943 0.956 0.862 0.827

BPSQM-Fg-MD 0.969 0.946 0.993 0.986 0.960 0.881 0.801 0.935 0.786 0.938 0.933 0.920 0.937 0.914 0.943 0.967 0.829 0.644

BPSQM-MD 0.972 0.929 0.985 0.977 0.964 0.923 0.880 0.941 0.948 0.948 0.892 0.909 0.908 0.878 0.950 0.967 0.836 0.756

BIECON [9] and DIQaM [2]) and 3 FR-IQA methods (MD-

SI [19], SSIM [27], FSIM [33]). All distortion types are

considered over the three databases. The best PLCC and S-

RCC for the NR IQA methods are highlighted. The weight-

ed average in the last column is proportional to the num-

ber of distorted images of each database. We can see that

the BPSQM obtains superior performance to state-of-the-

art BIQA methods, except for DIQaM evaluated by PLCC

on LIVE. Especially for the challenging TID2013, BPSQM

achieves a remarkable improvement against BEICON. It is

obvious that predicted global quality maps in pixel level

helps the model extract more useful features to achieve a

good accuracy. Meanwhile, the BPSQM-Fg-MD achieves

competitive performance to some FR-IQA methods.

Table 6 shows the SRCC performance of the competing

BIQA methods for individual distortion type on LIVE and

TID2008 database. The best results are in bold. In gen-

eral, BPSQM-MD and BPSQM-Fg-MD achieve the com-

petitive performances among most distortion types on the

two databases. Compared with BIECON, BPSQM is more

capable in dealing with the distortion of SCN, HFN, QN

and JP2K. By contrast, for the distortions of GB, JGTE

and J2TE, BEICON performs better than BPSQM-MD and

BPSQM-Fg-MD. Moreover, the achieved scores on some

distortion types are close to state-of-the-art FR-IQA meth-

ods.

4.8. Cross Database Test

To evaluate the generalization ability of BPSQM, we

trained it on the LIVE IQA database and tested it using the

TID2008 database. Since the TID2008 includes more dis-

tortion types, we only chose the common types between the

Table 7. SRCC comparison of the models trained using LIVE IQA

database and tested on the TID2008 database
Metrices JP2K JPEG WN BLUR ALL

FR SSIM 0.963 0.935 0.817 0.960 0.902

NR

BRISQUE 0.832 0.924 0.829 0.881 0.896

BIECON 0.878 0.941 0.842 0.913 0.923

BPSQM-Fg-MD 0.947 0.909 0.886 0.874 0.910

two databases, including JP2K, JPEG, WN and BLUR. Ta-

ble 7 shows that BPSQM performs well on the four distor-

tion types. These results suggest that our proposed method

does not depend on the database and shows good general-

ization capabilities.

5. Conclusion

In this paper, we developed a simple yet effective blind

predicting quality map for IQA that generates the map in

pixel distortion level under the guidance of similarity maps

derived by FR-IQA methods. Meanwhile, we also compare

how to fuse the multi features information for predicting

image quality. We believe that this proposed model could

achieve better performance if where there is a better simi-

larity index map navigating the generative network training.

Optimizing our generative network to predict more accurate

pixel distortion is a potential direction for future work.
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