
Recurrent Residual Module for Fast Inference in Videos

Bowen Pan1†, Wuwei Lin1†, Xiaolin Fang2¶, Chaoqin Huang1†, Bolei Zhou3§, Cewu Lu1‡∗

1Shanghai Jiao Tong University, 2Zhejiang University, 3Massachusetts Institute of Technology
†{googletornado,linwuwei13, huangchaoqin}@sjtu.edu.cn, ¶

fxlfang@gmail.com

§
bzhou@csail.mit.edu;

‡
lucewu@sjtu.edu.cn

Abstract

Deep convolutional neural networks (CNNs) have made

impressive progress in many video recognition tasks such

as video pose estimation and video object detection. How-

ever, CNN inference on video is computationally expensive

due to processing dense frames individually. In this work,

we propose a framework called Recurrent Residual Module

(RRM) to accelerate the CNN inference for video recognition

tasks. This framework has a novel design of using the sim-

ilarity of the intermediate feature maps of two consecutive

frames, to largely reduce the redundant computation. One

unique property of the proposed method compared to pre-

vious work is that feature maps of each frame are precisely

computed. The experiments show that, while maintaining

the similar recognition performance, our RRM yields aver-

agely 2× acceleration on the commonly used CNNs such

as AlexNet, ResNet, deep compression model (thus 8−12×
faster than the original dense models using the efficient in-

ference engine), and impressively 9× acceleration on some

binary networks such as XNOR-Nets (thus 500× faster than

the original model). We further verify the effectiveness of the

RRM on speeding up CNNs for video pose estimation and

video object detection.

1. Introduction

Video understanding is one of the long-standing topics

in computer vision. Recently, deep convolutional neural

networks (CNNs) advanced different tasks of video un-

derstanding, such as video classification [33, 59, 58, 60],

video pose estimation [16, 5], and video object detec-

tion [18, 17, 47, 39, 45, 46]. However, using CNNs to

process the dense frames of videos is computationally expen-

sive while it becomes unaffordable as the video goes longer.

Meanwhile, millions of videos are shared on the Internet,

where processing and extracting useful information remains

a challenge. With the video datasets becoming larger and

∗The corresponding author is Cewu Lu. Cewu Lu is also member of AI

research institution at SJTU. This work was done when Xiaolin Fang was

an intern at MVIG lab of Shanghai Jiao Tong University.

larger [49, 1, 33, 34, 15, 41], training and evaluating neural

networks for video recognition are more challenging. For

example, for Youtube-8M dataset [1] with over 8 million

video clips, it will take 50 years for a CPU to extract the

deep features using a standard CNN model.

One of the bottlenecks for video understanding using

CNNs is the frame-by-frame CNN inference. A one-minute

video contains thousands of frames thus the model infer-

ence becomes much slower in comparison with processing a

single image. However, different from a set of independent

images, consecutive frames in a video clip are usually similar.

Thus, the high-level semantic feature maps in the deep convo-

lutional neural networks of the consecutive frames will also

be similar. Intuitively, we can leverage the frame similarity to

reduce some redundant computation in the frame-by-frame

video CNN inference. An attractive recursive schema is as

follows:

R(It) = R(It−1) + G(It − It−1), (1)

where R is the deep CNN feature, G is a fast and shallow

network that only processes the frame difference between

frame It and It−1 in a video clip. Ideally, G should be

both efficient and accurate to extract the residual feature.

However, it remains challenging to implement such a schema

due to the nonlinearity of CNNs.

Some previous works have tried to address this nonlinear-

ity. Zhu et al. [61] proposed deep feature flow framework

which utilizes the flow field to propagate the deep feature

maps. However, these estimated feature maps will cause a

drop on performance compared to the original feature maps.

Kang et al. [32] developed a NoScope system to perform the

fast binary query of the absence of a specific category. It is

fast but not generic enough for other video recognition tasks.

We propose the framework of Recurrent Residual Module

(RRM) to thoroughly address the nonlinear issue of CNNs

in Eq. 1. The nonlinearity of CNNs results from the pooling

layers and activation functions, while the computationally ex-

pensive layers such as convolution layer and fully-connected

layer are linear. Thus for two consecutive frame inferences,

if we are able to share the overlapped calculation of these

linear layers, a large amount of the computation can be elim-

11536



inated. To this end, we snapshot the input and output feature

maps of convolution layers and fully-connected layers for

the inference on the next frame. Consequently, we only need

to forward pass the frame difference region with the feature

maps of the previous frame in each layer, which leads to the

sparsity matrix multiplication that can be largely accelerated

by the EIE techniques [22]. In general, our RRM can dra-

matically reduce the computation cost from the convolution

layers and fully-connected layers, while still maintains the

nonlinearity of the whole network.

The main contribution of this work is the framework of

Recurrent Residual Module, which is able to speed up al-

most any CNN-based models for video recognition without

extra training cost. To the best of our knowledge, this is the

first acceleration method that can compute the feature maps

precisely when deep CNNs process videos. We evaluate the

proposed method and verify its effectiveness on accelerat-

ing CNNs for video recognition tasks such as video pose

estimation and the video object detection.

2. Related Work

We have a brief survey on the related work of improving

the neural network efficiency as below.

Network weight pruning. It is known that removing

the redundant model parameters reduces the computational

complexity of networks [36, 25, 26, 55, 9]. At the very begin-

ning, Hanson & Pratt [25] applied the weight decay method

to prune the network, then Optimal Brain Damage (OBD)

[36] and Optimal Brain Surgeon (OBS) [26] pruned the pa-

rameters using the Hessian of the loss function. Recently,

Han et al. [24, 23] showed that they could even reduce the

model parameters by an order of magnitude in deep CNN

models while maintaining the performance. They devised

an efficient inference engine [22] to speed up the models.

Instead of pruning model weights, our RRM framework fo-

cuses on factorizing the input at each layer, then further

speeds up the model based on the pruning methods.

Network quantization. Quantizing network weight is to

replace the high-precision float numbers of the weights with

several limited integers, such as +1/-1 [54, 10, 11, 43, 37] or

+1/0/-1 [4]. Rastegari et al. [43] proposed XNOR-Networks

that use both binary weights and binary inputs to achieve

58× faster convolution operations on a CNN trained on

ImageNet. Yet, applying these quantization methods requires

retraining the model and also results in a loss of accuracy.

Low rank acceleration. Decomposing weight tensor

based on low-rank methods are used to accelerate deep con-

volutional networks. Both [13, 31] reduced the redundancy

of the weight tensors through the low-rank approximation.

Yang et al. [57] showed that they can use a single Fast-

food layer to replace the FC layer. Liu et al. [38] reduced

the computation complexity using a sparse decomposition.

All of these methods speed up the test-time evaluation of

convolutional networks with some sacrifice in precision.

Filter optimization. Reducing the filter redundancy in

convolution layers is an effective method to simplify the

CNN models [40, 28, 29]. Luo et al. [40] pruned filters and

set the output feature maps as the optimization objective

to minimize the loss of information. Howard et al. [29]

developed MobileNet which applied depth-wise separable

convolution to decompose a standard convolution operation

and showed an effectiveness. He et al. [28] proposed an

iterative algorithm to jointly learn additional filters for filter

selection and scalar masks for each output channel. They

achieved 13× speedup on AlexNet.

Sparsity. It is most related to our method. Obviously,

sparsity can significantly accelerate the convolutional net-

works both in training and testing [38, 6, 21, 56]. There

are many previous works showing that they can save the

energy [8, 44] and accelerate the convolution [2, 48, 14] by

skipping the zeros or elements close to zero in the sparse

input. Albericio et al. [2] proposed an efficient convolu-

tion accelerator utilizing the sparsity of inputs, while Shi &

Chu [48] sped up the convolution on CPUs by eliminating

the zero values in the output of ReLUs. Graham & Maaten

[20, 19] introduced a sparse convolution that eliminated the

computation of values in some inactive output positions by

recognizing the input cells in the ground state. Recently, Han

et al. [22] devised an efficient inference engine (EIE) that

can exploit the dynamic sparsity of the input feature maps to

accelerate the inference. Our RRM integrates EIE as a step

to further optimize the model weight.

Our Recurrent Residual Module works in a recurrent man-

ner. The most similar architecture to ours is the Predictive-

Corrective Networks [12], which derives a series of recurrent

neural networks to make prediction about feature and then

correct them with some bottom-up observations. The key

difference, also the most innovative point of our model, is

that we utilize the recurrent framework to accelerate CNN

models using sparsity and Efficient Inference Engine, which

is much more efficient than the Predictive-Corrective Net-

works [12]. Besides our method is a generic framework

that could be plugged in a variety of CNN models without

retraining to speed up the forward pass.

3. Recurrent Residual Module Framework

The key idea of the Recurrent Residual Module is to

utilize the similarity between the consecutive frames in a

video clip to accelerate the model inference. To be more spe-

cific, we first improve the sparsity of the input to each linear

layer (layers with linearity, including convolution layer and

FC layer), then use the sparse matrix-vector multiplication

accelerators (SPMV) to further speed up the forward pass.

We will first introduce some preliminary concepts and

discuss the linearity of convolution layers and FC layers.

Then the recurrent residual module will be introduced in

1537



Figure 1: Illustration of the Recurrent Residual Module on two layers. Dense convolution operation represents the standard

convolution operation. Sparse convolution operation represents the SPMV-equipped convolution operation which will deliver

speed up to the sparse input. Sparse convolution has no bias term and shares the same weight filters with Dense convolution.

Mapping f represents some nonlinear operator combinations in CNNs such as ReLUs and max poolings.

detail, followed by the analysis of computation complexity,

sparsity enhancement, and accumulated error. Last but not

least, we integrate the efficient inference engine [22] (EIE)

to further improve the framework’s efficiency.

3.1. Preliminary

We denote a standard neural network using the notion set

〈I,F , ∗,W, f〉, where I represents the set of input tensor

(it could be the input image or the output from the previous

layer), F is the set of weight filters in convolution layers, ∗
denotes the convolution operations, W represents the set of

weight tensors in FC layers, and f represents some nonlinear

operators. In convolution phase, f can be a ReLU [42] or a

pooling operator. And in the fully-connected phase, it can

be a short-cut function.

We use Itl ∈ I to denote the input tensor to the lth linear

layer when we process the tth frame in the video, Wl ∈ W
to represent the weight tensor of the lth layer if it is FC layer,

Fl ∈ F to represent the weight filter of the lth layer if it is

convolution layer. When processing the tth frame, the lth

layer performs the following operation:

It(l+1) =

{

f(Fl ∗ Itl + bl) if lth layer is convolution

f(WlItl + bl) if lth layer is FC
, (2)

where bl is the bias term of the lth layer. And we define the

projection layer Ptl as:

Ptl =

{

Fl ∗ Itl + bl if lth layer is convolution

WlItl + bl if lth layer is FC
. (3)

Due to the linearity of convolution operation and multipli-

cation operation, given the difference of Ptl and P(t−1)l, we

have:

Ptl − P(t−1)l =

{

Fl ∗∆Itl if lth layer is convolution

Wl∆Itl if lth layer is FC
, (4)

where ∆Itl = Itl − I(t−1)l. Thus Eq. 2 can be written as:

It(l+1) =

{

f(P(t−1)l + Fl ∗∆Itl) if lth layer is convolution

f(P(t−1)l +Wl∆Itl) if lth layer is FC
.

(5)

Eq. 5 is the key point in our RRM framework. P(t−1)l has

been obtained and preserved during the inference phase of

the last frame. Evidently, the computation mainly falls on

Fl ∗ ∆Itl or Wl∆Itl. Due to the similarity between the

consecutive frames, ∆Itl is usually highly sparse (This will

be verified in our experiment). As a result, to obtain the

final result, we just need to work on a rather sparse tensor

∆Itl instead of the original one Itl, which is dense and

computationally expensive. With the help of sparse matrix-

vector multiplication accelerators (SPMV), the calculations

of zero elements can be skipped, thus inference speed is

improved.

3.2. Recurrent Residual Module for Fast Inference

The illustration of the recurrent residual module (RRM)

is shown in Fig. 1. In order to preserve the information of

the last frame and obtain the efficient G which is introduced

in Sec. 1, the information of input tensor to each linear layer

I(t−1) and the corresponding projection layer set P(t−1) of

each linear layer is saved. The preserved information can be

applied during the inference phase for the following frame.

As shown in the Fig. 1, in the inference stream of frame 2,

when the input tensor I2,l is fed to the convolution layer

(the lth layer), we first subtract I1,l from I2,l to obtain ∆I2,l,

where I1,l is the input tensor to the lth layer of frame 1 and

was snapshotted when processing frame 1. As illustrated

in the previous discussion, ∆I2,l is a sparse tensor. Apply

the sparse matrix-vector multiplication accelerator to the lth

layer, we can skip the zero elements and get the convolution

result within a short time. Next, the output of the convolution

layer is snapshotted. Add the output to projection layer P1,l,

we can obtain the intact tensor that is exactly the same as

the output of a normal convolution layer which is fed I2,l.

After that, we perform the nonlinear mapping f to P1,l. In

this manner, the final result is obtained. To some extent, it is

similar to the distributive law of multiplication.

The specific procedure of the inference with Recurrent

1538



Residual Module is listed in Algorithm 1.

Algorithm 1 Inference with Recurrent Residual Module

Input: A video clip X := {xt|t = 1, 2, ..., T},where xt is

the frame at time t, a pre-trained neural network M.

Output: Frame-level feature set F := {ft|t = 1, 2, ..., T},

where ft is the deep feature of the frame xt.

1: I0,: ⇐ 0
2: for t = 1 to T do

3: It,0 ⇐ xt

4: for l, L in enumerate(M) do

5: Ît,l ⇐ It,l − I(t−1),l

6: if L is convolution layer then

7: Ptl = P(t−1)l + Fl ∗ Ît,l
8: else

9: Ptl = P(t−1)l +WlÎt,l

10: It,l+1 ⇐ f(Ptl)

11: ft ⇐ It,T

One drawback of the RRM is that we can only forward

pass frames with the help of the feature snapshots of the

previous frames, which limits doing inference in parallel for

the whole video. To address this we can split the video into

several chunks then process each chunk with RRM-equipped

CNN in parallel.

3.3. Analyzing computational complexity

Layer Type Complexity

Convolution layer O(WciHciC
in
ci
Cout

ci
wFhF )

Convolution layer + SPMV O(ρciWciHciC
in
ci
Cout

ci
wFhF )

FC layer O(Cin
fj
Cout

fj
)

FC layer + SPMV O(ρfjC
in
fj
Cout

fj
)

Table 1: Ablation analysis of computational complexity.

Layers equipped with SPMV will skip the calculations of

zero elements.

The computational complexity of the neural network with

the recurrent residual module in test-phase is analyzed. In a

sequence of convolution layers Mc1 ,Mc2 , ...,Mcn , suppose

that for layer Mci , the density (the proportion of non-zero

elements) of the input tensor Ici ∈ R
Cin

ci
×Wci

×Hci is ρci ,

the weight matrices is Fci ∈ R
Cin

ci
×Cout

ci
×WF×HF . Simi-

larly, for an FC layer Mfj , we have the density ρfj , the input

vector Ifj ∈ R
Cin

fj and the weight tensor Wfj ∈ R
Cin

fj
×Cout

fj .

In our Recurrent Residual Module, compared to the mul-

tiplication operation, both execution time and computational

cost of add operation are trivial. Hence, to analyze the com-

putation complexity, the following discussion will only focus

on the multiplication complexity in the original linear layer

and in our RRM framework. Table 1 shows the multipli-

cation complexity of a single layer. For the entire neural

network, the computational complexity after utilizing the

sparsity can be calculated as follows (assume that the stride

is 1):

O(
∑

i

ρciWciHciC
in
ci
Cout

ci
wFhF+

∑

j

ρfjC
in
fj
Cout

fj
). (6)

Eq. 6 illustrates that the sparsity (the proportion of zero ele-

ments) of the input tensor to each layer is the key to reduce

the computation cost. In terms of the sparsity, some networks

equipped with ReLU activation functions already have many

zero elements in their feature maps. In our recurrent resid-

ual architecture, the sparsity can be further improved as

discussed below.

3.4. Improving sparsity

Our framework can obtain the inference output identical

to the original model without any approximation. And we

could further improve the sparsity of the intermediate fea-

ture map to approximate the inference output as a trade-off

to further accelerate inference. However, it would possibly

lead to the issue of error accumulation over time. To address

this issue, we estimate the accumulated error given by accu-

mulated truncated values. First, the accumulated truncated

values are obtained by

et =
∑

t

∑

j

ℓ2(ut,j), (7)

where ut,j is the truncated map to the jth linear layer in

the inference stream of tth frame. We denote accumulated

accuracy error by

ec = H(et, µ). (8)

H is a fourth order Polynomial function regression with the

parameter µ, which is fitted from large amount of data pairs

of accumulated truncate value and accumulated error. If it is

larger than a certain threshold, a new precise inference will

be carried out to clear accumulated error and a new round of

fast inference will start.

3.5. Efficient inference engine

To implement the RRM framework efficiently, we utilize

dynamic sparse matrix-vector multiplication(DSPMV) tech-

nique. While there are a number of existing off-the-shelf

DSPMV techniques [22, 48], the most efficient one among

them is the efficient inference engine (EIE) proposed by Han

et al. [22].

EIE is the first accelerator which exploits the dynamic

sparsity in the matrix-vector multiplications. When perform-

ing multiplication between matrix W and sparse vector a,

the vector a is scanned and a Leading Non-zero Detection

Node (LNZD Node) is applied to recursively look for the

next non-zero element aj . Once found, EIE broadcasts aj
along with its index j to the processing elements (PEs) which

1539



hold the weight tensor in the CSC format. Then weights col-

umn Wj with the corresponding index j in all PEs will be

multiplied by aj and the results will be summed into the

corresponding row accumulator. These accumulators finally

output the resulting vector b.

Since the multiplication between matrix and matrix can

be decomposed into several matrix-vector multiplication

processes, by decomposing the input tensor to several dy-

namically sparse vectors, we embed the EIE to our RRM

framework conveniently.

4. Experiments
In this section, we first verify that our recurrent residual

module can consistently improve the sparsity of the input

tensor to each layer in Sec. 4.1 across different network

architectures. We measure the overall sparsity of the whole

network to estimate the improvement. The overall sparsity

is calculated as the ratio of zero-value elements in the inputs

of all linear layers, which is:

S =

∑

i sciWciHciC
in
ci
Cout

ci
wFhF +

∑

j sfjC
in
fj
Cout

fj
∑

i WciHciC
in
ci
Cout

ci
wFhF +

∑

j C
in
fj
Cout

fj

,

(9)
where sci and sfi are the sparsity of the input tensor to the

convolution layer Mci and the FC layer Mfj respectively.

Then, we show the speed and accuracy trade-off in our RRM

framework. After that, we combine our RRM framework

with some classical model acceleration techniques such as

the XNOR-Net [43] and the Deep Compression models [23]

to further accelerate the model inference. Finally, we demon-

strate that we can accelerate several off-the-shelf CNN-based

models, here we take the detectors in the field of pose esti-

mation and object detection for examples. In this section, we

provide a theoretical speedup ratio by computing the theoret-

ical computational time of the EIE [22], which is calculated

by dividing the total workload GOPs by the peak throughput.

The actual computation time is around 10% more than the

theoretical time due to the load imbalance. Yet, this bias will

not affect our speedup ratio. For an uncompressed model,

EIE has an impressive processing power of 3 TOP/s. We

utilize its feature that it can exploit the dynamic sparsity

of the activations. When both are equipped with EIE, the

speedup ratio η of the model accelerated by RRM compared

to the original model can be calculated as:

η =

∑

i ρciWciHciC
in
ci
Cout

ci
wFhF +

∑

j ρfjC
in
fj
Cout

fj
∑

i ρ̂ciWciHciC
in
ci
Cout

ci
wFhF +

∑

j ρ̂fjC
in
fj
Cout

fj

,

(10)
where ρ̂ci and ρ̂fi are the density of the input tensor in our

RRM.

4.1. Results on the sparsity

To show that our RRM framework is able to generally im-

prove the overall sparsity, we evaluate our method on three

different real-time video benchmark datasets: Charades [50],

Model Charades UCF-101 MERL

AlexNet [35] 35.7% 35.4% 34.8%

AlexNet + RRM 57.5% 60.1% 71.8%

Improvement 21.8% 24.7% 37.0%

Speedup ratio 146% 154% 211%

VGG-16 [51] 50.4% 51.3% 53.2%

VGG-16 + RRM 66.4% 70.1% 75.2%

Improvement 16.0% 18.8% 22.0%

Speedup ratio 124% 128% 136%

ResNet-18 [27] 40.5% 40.4% 40.0%

ResNet-18 + RRM 58.0% 58.4% 73.6%

Improvement 17.5% 18.0% 33.6%

Speedup ratio 126% 130% 191%

Table 2: Overall sparsity improvement and the speedup ra-

tio of each model evaluated on three benchmark datasets.

Model plus RRM means that we apply our recurrent residual

module to the original baseline model. RRM clearly brings

significant improvement over the baselines.

UCF-101 [53], MERL [52], and choose three classical deep

networks: AlexNet [35], VGG-16 [51], ResNet-18 [27] to

be our base networks. In order to formulate the real-time

analysis on videos, we sample the video frames at 24 FPS,

which is the original frame rate in Charades, and then per-

form inference that extracts the deep features of these video

frames. We measure the overall sparsity improvement of

each network when performing inference with our RRM on

these three datasets, during which the threshold ǫ in RRM

(as is illustrated in Sec. 3.4) is set to be 10−2. And the results

are recorded in Table 2. It can be seen that our RRM frame-

work can generally improve the overall sparsity of the input

feature maps in DNNs and deliver a speedup as calculated

by Eq. 10. This sparsity improvement comparison between

datasets indicates that the similarity property of video frames

is efficiently exploited by our RRM framework.

Here we also want to clarify the threshold setting. In fact,

it makes no difference to treat such small-value elements as

zero elements. The L2 distance between the feature extracted

under this setting and the original feature is generally around

10−6. This is a trivial deviation for that, in contrast, translat-

ing the cropped image by one pixel can result in an L2 error

around 10−2. As shown in Fig. 2, features extracted under

this threshold setting have no difference with the original

features.

4.2. Tradeoff between accuracy and speedup

In Sec. 3.4, we introduced a sparsity enhancement

scheme, which truncates some small values into zero. It

can further accelerate the model, but bring some deviation

between the calculated feature maps and the original feature

1540



Figure 2: We train these features for the action recognition

task on UCF-101 (as is discussed in Sec. 4.2). The blue curve

represents the performance of the feature extracted with an

infinite threshold. We add this ablation curve to show that

precisely-computed features are necessary to obtain a good

performance.

maps. Thus, there naturally exists a trade-off between speed

and accuracy by adjusting the threshold ǫ.

4.0 3.5 3.0 2.5 2.0 1.5 1.0
Log value of the threshold

63.0

63.5

64.0

64.5

65.0

65.5

66.0

66.5

67.0

To
p-

1 
pr

ec
is

io
n 

(%
)

VGG-16 + RRM
VGG-16 + RRM + AECS

Figure 3: We measure the accuracy of features extracted un-

der different threshold settings and validate the effectiveness

of the accumulated error control scheme.

Threshold ǫ 10−2 3× 10−2 5× 10−2 10−1

Speedup ratio 1.3× 1.4× 1.6× 1.8×

Table 3: Different speedup ratios of VGG-16 at different

level of thresholds.

We explore this trade-off by performing the action recog-

nition task on UCF-101 dataset [53]. For each video, we first

extract the VGG-16 feature vectors of its frames. Then, we

perform the average pool on these feature vectors to obtain

a video-level feature vector in 4096 dimensions to repre-

sent this video. With these video-level features, we train a

two-layer MLP to recognize the actions in these videos and

evaluate the top-1 precision. As is shown in Fig. 3, by grad-

ually amplifying the threshold ǫ when extracting the feature,

the speed up ratio increases while the accuracy drops due to

the exploded accumulated error.

0 100 200 300 400
Inference iterations

0.0000

0.0005

0.0010

0.0015

0.0020

A
cc

um
ul

at
ed

 e
rr

or

Without AECS
With AECS

Figure 4: The dynamic accumulated error with the threshold

ǫ set as 3× 10−2.

We then validate the effectiveness of accumulated error

control scheme (AECS), which is introduced in Sec. 3.4.

With the protection of AECS, the precision is maintained as

the ǫ grows up. Dynamic accumulated error during inference

is shown in Fig. 4. We can see that, with a moderate ǫ,

the inference speed will not be affected since the expensive

original inference is rare.

4.3. Speed up deeply compressed models

Model Charades MERL

Deep Compression 41.0% 37.3%

Deep Compression + RRM 59.4% 70.2%

Improvement 18.4% 32.9%

Speedup ratio 145% 210%

XNOR-Net 0.1% 0.1%

XNOR-Net + RRM 83.2% 89.2%

Improvement 83.1% 89.1%

Speedup ratio 598% 927%

Table 4: Comparison of overall sparsity of XNOR-Nets and

deep compression models with RRM.

We examine the performance of RRM on some already-

accelerated models and show that these models can be further

accelerated by our RRM framework on video inference.

Deep compression model. Han et al. [23] proposed

the deep compression model, which effectively reduces the

model size and the energy consumption. There is a three-

stage pipeline that prunes redundant connections between

layers, quantizes parameters and compresses model with

Huffman encoding. Deep compression model can be largely

accelerated in efficient inference engine [22]. Efficient infer-

ence engine is a general methodology that compresses and

accelerates DNNs. We show we can further accelerate the

model when processing video frames.

XNOR-Net. Deep CNN models can be sped up by bina-

rizing the input and the weight of the network. Rastegari

et al. [43] devised the XNOR-Nets which approximated

1541



the original model with binarized input and parameters and

achieved a 58× faster convolution operation. Value of ele-

ments in both the input and the weight of the XNOR-Net is

transformed to +1 or −1 by taking their signs. Consequently,

convolution operation can be implemented with only addi-

tions. The sparsity of feature maps in XNOR-Net is very

poor due to the binarization. With RRM applied, the overall

sparsity is significantly improved. Besides, after skipping

zero-value input elements, the elements remained to be cal-

culated are all +2 or −2, where the advantages of binary

convolution operation can still be maintained by scaling a

factor 0.5.

Experiment results can be referred in Table 4. It demon-

strates that our RRM is able to achieve an impressive speedup

ratio on these compressed models.

4.4. Video pose estimation and object detection

In this section, we apply our RRM framework to several

mainstream visual systems to improve the efficiency of their

backbone CNN models. We choose two video recognition

tasks, video pose estimation and video object detection, to

verify the effectiveness of our RRM framework. We set

the threshold ǫ as 10−2 in the experiments. It is a precise

setting which has been validated by preceding experiments

in Sec. 4.1 so that the output features are almost the same as

the original model and the recognition performance will not

be affected. Some qualitative results are shown in Fig. 6.

Model MPII Video Pose BBC Pose

rt-Pose[5] 78.5% 79.6%

rt-Pose + RRM 91.0% 93.3%

Improvement 12.5% 13.7%

Speedup ratio 213.7% 291.2%

Table 5: Comparison of the overall sparsity of pose estimator

rt-Pose with RRM.

Video pose estimation. Real-time video pose estimation

is a rising topic in computer vision. To meet the requirement

of inference speed, our RRM can be applied for accelera-

tion. Currently, the fastest multi-person pose estimator is the

rt-Pose model proposed by Cao et al. [5], which can reach

a speed of 8.8 FPS with one NVIDIA GeForce GTX-1080

GPU. In this part, we apply our RRM framework to further

accelerate the rt-Pose model. We evaluate the models on two

video pose datasets, BBC Pose[7] and MPII-Video-Pose [30].

The BBC Pose dataset consists of 20 TV broadcast videos

(each 0.5h-1.5h in length) while the MPII Video Pose dataset

is composed of 28 sequences which contains some challeng-

ing frames in the MPII dataset [3]. The experiment results

are shown in Table 5, we can see that by applying our RRM,

pose estimation in videos are significantly accelerated.

Video object detection. Majority of the work on object

detection is focused on image rather than videos. Redmon

Model Charades UCF-101 MERL

YOLOv2[46] 2.45% 2.55% 2.46%

YOLOv2 + RRM 50.01% 52.26% 48.21%

Improvement 47.56% 49.71% 45.75%

Speedup ratio 204.9% 200.8% 197.3%

Table 6: Comparison of overall sparsity of object detection

model YOLOv2 with RRM.

et al. [45, 46] created YOLO network, which achieved very

efficient end-to-end training and testing for object detection.

We apply our RRM framework to accelerates the YOLO

network to realize a faster real-time detection in videos. We

evaluate the models on video object detection on Charades,

UCF-101, and MERL. YOLOv2 uses the Leaky-ReLU as

the activation function, thus it prevents the sparsity of the

original model. By applying our RRM, there brings a huge

improvement. As shown in Table 6, the sparsity of original

model ranges between 2% and 3%. With our RRM, the

sparsity increases to 48%-52%. In total, our RRM brings a

speedup ratio around 200%.

OBJECTS mAP KEYPOINTS mAP

YOLOv2 61.2 rt-Pose 46.2

YOLOv2+RRM 61.1 rt-Pose+RRM 46.2

Table 7: Detection and pose estimation performance results.

Recognition accuracy. To prove that our method is able

to maintain performance while greatly accelerate the model

inference, we conduct the detection experiments on the

Youtube-BB dataset using YOLOv2 and the pose estima-

tion experiments on MPII video pose dataset using rt-Pose.

We keep all the training conditions as the same. And the

accuracy results are shown in Table 7.

4.5. Discussion

0.55 0.60 0.65 0.70 0.75 0.80
Sparsity ratio

1.2

1.4

1.6

1.8

2.0

2.2

To
ta

l s
pe

ed
up

 ra
tio

AlexNet
ResNet-18
VGG-16

Figure 5: Trade-off comparison between speedup and spar-

sity ratio. We do experiments on the UCF-101 dataset.

Theoretical vs. Actual speedup. Hardware designing

to evaluate actual speedup is beyond the scope of the current

1542



Figure 6: Qualitative results of the object detection and pose estimation in videos. frames with green border are the original

results evaluated in a frame-by-frame manner and frames with blue border are the results of our RRM framework. The

performance is not affected, and interestingly, we find that our RRM framework sometimes gets a more reliable result than the

original model. It could be that our RRM framework can utilize the temporal context information across consecutive frames.

work, while according to Table III in [22] actual speedup can

be well estimated by the sparsity of weight and activation

on EIE engine. It can be seen from Table III in [22] that the

relationship between density of the layer (Weight%×Act%)

and the speedup of layer inference (FLOP%) is near-linear.

Thus, it can be inferred that, with well-designed hardwares,

there won’t be a significant performance gap between these

theoretical numbers and those in real application.

Batch Normalization. Several studies have shown that

the linear layer calculation only occupied part of total in-

ference time, some other non-linear layers are also time-

consuming, especially the BN layer. Thus, here we compare

the trade-off between total speedup (with all overhead con-

sidered) and sparsity ratio among AlexNet (no BN), VGG-16

(no BN) and ResNet-18 (with BN) in Fig. 5.

5. Conclusion

We proposed the Recurrent Residual Module for fast in-

ference in videos. We have shown that the overall sparsity

of different CNN models can be generally improved by our

RRM framework. Meanwhile, applying our RRM frame-

work to some already-accelerated models, such as XNOR-

Net and Deep Compression Model, they can achieve further

speedup. Experiments showed that the proposed RRM frame-

work speeds up the visual recognition systems YOLOv2 and

rt-Pose for real-time video understanding, delivering impres-

sive speedup without a loss in recognition accuracy.

Acknowledgements. This work is supported in part by the

National Natural Science Foundation of China under Grants

61772332.

1543



References

[1] S. Abu-El-Haija, N. Kothari, J. Lee, P. Natsev, G. Toderici,

B. Varadarajan, and S. Vijayanarasimhan. Youtube-8m: A

large-scale video classification benchmark. arXiv preprint

arXiv:1609.08675, 2016. 1

[2] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger,

and A. Moshovos. Cnvlutin: ineffectual-neuron-free deep

neural network computing. In Computer Architecture (ISCA),

2016 ACM/IEEE 43rd Annual International Symposium on,

pages 1–13. IEEE, 2016. 2

[3] M. Andriluka, L. Pishchulin, P. Gehler, and B. Schiele. 2d

human pose estimation: New benchmark and state of the

art analysis. In IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), June 2014. 7

[4] S. Arora, A. Bhaskara, R. Ge, and T. Ma. Provable bounds

for learning some deep representations. In International Con-

ference on Machine Learning, pages 584–592, 2014. 2

[5] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh. Realtime Multi-

person 2D Pose Estimation Using Part Affinity Fields. In The

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), 2017. 1, 7

[6] S. Changpinyo, M. Sandler, and A. Zhmoginov. The power

of sparsity in convolutional neural networks. arXiv preprint

arXiv:1702.06257, 2017. 2

[7] J. Charles, T. Pfister, M. Everingham, and A. Zisserman. Au-

tomatic and efficient human pose estimation for sign language

videos. International Journal of Computer Vision, 2013. 7

[8] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze. Eyeriss: An

energy-efficient reconfigurable accelerator for deep convolu-

tional neural networks. IEEE Journal of Solid-State Circuits,

52(1):127–138, 2017. 2

[9] M. D. Collins and P. Kohli. Memory bounded deep convo-

lutional networks. arXiv preprint arXiv:1412.1442, 2014.

2

[10] M. Courbariaux, Y. Bengio, and J.-P. David. Binaryconnect:

Training deep neural networks with binary weights during

propagations. In Advances in Neural Information Processing

Systems, pages 3123–3131, 2015. 2

[11] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and

Y. Bengio. Binarized neural networks: Training deep neural

networks with weights and activations constrained to+ 1 or-1.

arXiv preprint arXiv:1602.02830, 2016. 2

[12] A. Dave, O. Russakovsky, and D. Ramanan. Predictive-

corrective networks for action detection. arXiv preprint

arXiv:1704.03615, 2017. 2

[13] E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fer-

gus. Exploiting linear structure within convolutional networks

for efficient evaluation. In Advances in Neural Information

Processing Systems, pages 1269–1277, 2014. 2

[14] X. Dong, J. Huang, Y. Yang, and S. Yan. More is less: A

more complicated network with less inference complexity.

arXiv preprint arXiv:1703.08651, 2017. 2

[15] B. G. Fabian Caba Heilbron, Victor Escorcia and J. C. Niebles.

Activitynet: A large-scale video benchmark for human activ-

ity understanding. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 961–970,

2015. 1

[16] H.-S. Fang, S. Xie, Y.-W. Tai, and C. Lu. RMPE: Regional

multi-person pose estimation. In ICCV, 2017. 1

[17] R. Girshick. Fast r-cnn. In Proceedings of the IEEE inter-

national conference on computer vision, pages 1440–1448,

2015. 1

[18] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich

feature hierarchies for accurate object detection and semantic

segmentation. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 580–587,

2014. 1

[19] B. Graham. Sparse 3D convolutional neural networks. BMVC,

2015. 2

[20] B. Graham and L. van der Maaten. Submanifold sparse con-

volutional networks. CoRR, abs/1706.01307, 2017. 2

[21] Y. Guo, A. Yao, and Y. Chen. Dynamic network surgery for

efficient dnns. In Advances In Neural Information Processing

Systems, pages 1379–1387, 2016. 2

[22] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz,

and W. J. Dally. Eie: Efficient inference engine on com-

pressed deep neural network. SIGARCH Comput. Archit.

News, 44(3):243–254, June 2016. 2, 3, 4, 5, 6, 8

[23] S. Han, H. Mao, and W. J. Dally. Deep compression: Com-

pressing deep neural networks with pruning, trained quantiza-

tion and huffman coding. arXiv preprint arXiv:1510.00149,

2015. 2, 5, 6

[24] S. Han, J. Pool, J. Tran, and W. Dally. Learning both weights

and connections for efficient neural network. In Advances in

Neural Information Processing Systems, pages 1135–1143,

2015. 2

[25] S. J. Hanson and L. Y. Pratt. Comparing biases for minimal

network construction with back-propagation. In Advances in

neural information processing systems, pages 177–185, 1989.

2

[26] B. Hassibi and D. G. Stork. Second order derivatives for

network pruning: Optimal brain surgeon. In Advances in

neural information processing systems, pages 164–171, 1993.

2

[27] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 770–778,

2016. 5

[28] Y. He, X. Zhang, and J. Sun. Channel pruning for accelerating

very deep neural networks. arXiv preprint arXiv:1707.06168,

2017. 2

[29] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,

T. Weyand, M. Andreetto, and H. Adam. Mobilenets: Effi-

cient convolutional neural networks for mobile vision appli-

cations. arXiv preprint arXiv:1704.04861, 2017. 2

[30] E. Insafutdinov, M. Andriluka, L. Pishchulin, S. Tang,

E. Levinkov, B. Andres, and B. Schiele. ArtTrack: Artic-

ulated Multi-person Tracking in the Wild. In CVPR, 2017.

7

[31] M. Jaderberg, A. Vedaldi, and A. Zisserman. Speeding up con-

volutional neural networks with low rank expansions. arXiv

preprint arXiv:1405.3866, 2014. 2

[32] D. Kang, J. Emmons, F. Abuzaid, P. Bailis, and M. Zaharia.

Optimizing deep cnn-based queries over video streams at

scale. arXiv preprint arXiv:1703.02529, 2017. 1

1544



[33] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar,

and L. Fei-Fei. Large-scale video classification with convolu-

tional neural networks. In CVPR, 2014. 1

[34] W. Kay, J. Carreira, K. Simonyan, B. Zhang, C. Hillier, S. Vi-

jayanarasimhan, F. Viola, T. Green, T. Back, P. Natsev, et al.

The kinetics human action video dataset. arXiv preprint

arXiv:1705.06950, 2017. 1

[35] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger,

editors, Advances in Neural Information Processing Systems

25, pages 1097–1105. Curran Associates, Inc., 2012. 5

[36] Y. LeCun, J. S. Denker, and S. A. Solla. Optimal brain

damage. In D. S. Touretzky, editor, Advances in Neural

Information Processing Systems 2, pages 598–605. Morgan-

Kaufmann, 1990. 2

[37] Z. Li, B. Ni, W. Zhang, X. Yang, and W. Gao. Performance

guaranteed network acceleration via high-order residual quan-

tization. arXiv preprint arXiv:1708.08687, 2017. 2

[38] B. Liu, M. Wang, H. Foroosh, M. Tappen, and M. Pensky.

Sparse convolutional neural networks. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 806–814, 2015. 2

[39] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-

Y. Fu, and A. C. Berg. Ssd: Single shot multibox detector.

In European conference on computer vision, pages 21–37.

Springer, 2016. 1

[40] J.-H. Luo, J. Wu, and W. Lin. Thinet: A filter level pruning

method for deep neural network compression. arXiv preprint

arXiv:1707.06342, 2017. 2

[41] M. Monfort, B. Zhou, S. A. Bargal, A. Andonian, T. Yan,

K. Ramakrishnan, L. Brown, Q. Fan, D. Gutfruend, C. Von-

drick, et al. Moments in time dataset: one million videos for

event understanding. arXiv preprint arXiv:1801.03150, 2018.

1

[42] V. Nair and G. E. Hinton. Rectified linear units improve re-

stricted boltzmann machines. In J. Frnkranz and T. Joachims,

editors, Proceedings of the 27th International Conference on

Machine Learning (ICML-10), pages 807–814. Omnipress,

2010. 3

[43] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. Xnor-

net: Imagenet classification using binary convolutional neu-

ral networks. In European Conference on Computer Vision,

pages 525–542. Springer, 2016. 2, 5, 6

[44] B. Reagen, P. Whatmough, R. Adolf, S. Rama, H. Lee, S. K.

Lee, J. M. Hernández-Lobato, G.-Y. Wei, and D. Brooks.

Minerva: Enabling low-power, highly-accurate deep neural

network accelerators. In Proceedings of the 43rd International

Symposium on Computer Architecture, pages 267–278. IEEE

Press, 2016. 2

[45] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only

look once: Unified, real-time object detection. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 779–788, 2016. 1, 7

[46] J. Redmon and A. Farhadi. Yolo9000: better, faster, stronger.

arXiv preprint arXiv:1612.08242, 2016. 1, 7

[47] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards

real-time object detection with region proposal networks. In

Advances in neural information processing systems, pages

91–99, 2015. 1

[48] S. Shi and X. Chu. Speeding up Convolutional Neural Net-

works By Exploiting the Sparsity of Rectifier Units. arXiv.org,

Apr. 2017. 2, 4

[49] G. A. Sigurdsson, O. Russakovsky, and A. Gupta. What

actions are needed for understanding human actions in videos?

arXiv preprint arXiv:1708.02696, 2017. 1

[50] G. A. Sigurdsson, G. Varol, X. Wang, A. Farhadi, I. Laptev,

and A. Gupta. Hollywood in homes: Crowdsourcing data

collection for activity understanding. In European Conference

on Computer Vision, 2016. 5

[51] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556, 2014. 5

[52] B. Singh, T. K. Marks, M. Jones, O. Tuzel, and M. Shao.

A multi-stream bi-directional recurrent neural network for

fine-grained action detection. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 1961–1970, 2016. 5

[53] K. Soomro, A. R. Zamir, and M. Shah. Ucf101: A dataset

of 101 human actions classes from videos in the wild. arXiv

preprint arXiv:1212.0402, 2012. 5, 6

[54] D. Soudry, I. Hubara, and R. Meir. Expectation backpropaga-

tion: Parameter-free training of multilayer neural networks

with continuous or discrete weights. In Advances in Neural

Information Processing Systems, pages 963–971, 2014. 2

[55] N. Ström. Phoneme probability estimation with dynamic

sparsely connected artificial neural networks. The Free Speech

Journal, 5:1–41, 1997. 2

[56] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li. Learning

structured sparsity in deep neural networks. In Advances in

Neural Information Processing Systems, pages 2074–2082,

2016. 2

[57] Z. Yang, M. Moczulski, M. Denil, N. de Freitas, A. Smola,

L. Song, and Z. Wang. Deep fried convnets. In Proceedings

of the IEEE International Conference on Computer Vision,

pages 1476–1483, 2015. 2

[58] J. Yue-Hei Ng, M. Hausknecht, S. Vijayanarasimhan,

O. Vinyals, R. Monga, and G. Toderici. Beyond short snippets:

Deep networks for video classification. In The IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

June 2015. 1

[59] S. Zha, F. Luisier, W. Andrews, N. Srivastava, and

R. Salakhutdinov. Exploiting image-trained cnn architec-

tures for unconstrained video classification. arXiv preprint

arXiv:1503.04144, 2015. 1

[60] B. Zhou, A. Andonian, and A. Torralba. Temporal relational

reasoning in videos. arXiv preprint arXiv:1711.08496, 2017.

1

[61] X. Zhu, Y. Xiong, J. Dai, L. Yuan, and Y. Wei. Deep fea-

ture flow for video recognition. In The IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2017. 1

1545


