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Abstract

One approach to improve the accuracy and robustness

of vision-aided inertial navigation systems (VINS) that em-

ploy low-cost inertial sensors, is to obtain scale information

from stereoscopic vision. Processing images from two cam-

eras, however, is computationally expensive and increases

latency. To address this limitation, in this work, a novel

two-camera alternating-stereo VINS is presented. Specif-

ically, the proposed system triggers the left-right cameras

in an alternating fashion, estimates the poses correspond-

ing to the left camera only, and introduces a linear inter-

polation model for processing the alternating right camera

measurements. Although not a regular stereo system, the

alternating visual observations when employing the pro-

posed interpolation scheme, still provide scale informa-

tion, as shown by analyzing the observability properties of

the vision-only corresponding system. Finally, the perfor-

mance gain, of the proposed algorithm over its monocular

and stereo counterparts is assessed using various datasets.

1. Introduction and Related Work

With the advent of augmented (AR) and virtual real-

ity (VR), the application of vision-aided inertial naviga-

tion systems (VINS) on mobile devices is becoming in-

creasingly popular. As a result, the research focus in

VINS is gradually shifting towards finding accurate, yet ef-

ficient, real-time solutions on resource-constrained devices.

Moreover, due to recent improvements in mobile proces-

sors (e.g., [3, 4]), and the availability of multiple cam-

eras in certain smart-phones (e.g., [5]) and AR-VR headsets

(e.g., [1, 2]), the interest in more robust multi-camera VINS

is also increasing.

Most existing tightly-coupled (i.e., jointly optimizing

over visual and inertial cost terms) VINS approaches focus

on monocular systems (e.g., [7, 10, 20, 22, 23]). Although

scale is observable in monocular VINS from the inertial

measurement unit (IMU)’s accelerometer, it is typically im-

precise as it requires accurately subtracting the dominant

Figure 1. Alternating-stereo VINS.

gravity vector from the noisy acceleration measurements.

Thus, additional scale information from stereo vision is key

to achieving higher accuracy. To this end, Manderson et

al. [18] propose an extension of PTAM [14] where the track-

ing and mapping pipelines are decoupled. On the other

hand, Leutenegger et al. [16] employ a keyframe-based si-

multaneous localization and mapping (SLAM) algorithm

that performs nonlinear optimization. Both [18] and [16],

however, operate in real-time only on desktop CPUs. To

the best of our knowledge, Paul et al. [21] presents the only

tightly coupled stereo VINS that operates in real-time on

a mobile processor. In particular, [21] extends the inverse

square-root sliding-window filter of [23] to two-camera sys-

tems and shows that the additional scale information ob-

tained from the stereo visual observations is a key factor

in improving accuracy and robustness. Due to the addi-

tional image-processing requirements for the second cam-

era, however, [21] is able to process key-frames at up to

10 Hz, which is not sufficient for tracking fast motions in

low-latency demanding applications such as VR and AR.

To address the limitations of existing stereo systems,

in this paper we present a novel alternating-stereo VINS

which has CPU requirements and latency comparable to

monocular VINS, yet provides scale information from the

visual observations, hence achieving accuracy and robust-

ness comparable to stereo VINS. In the proposed stereo

system, the left-right cameras are triggered in an alternat-

ing fashion (see Fig. 1), while estimating the poses of the

camera frame only when the left camera is active (i.e., ev-

ery other image of the pair). Since, the observations from

the right cameras do not correspond to any cloned frames,1

1By cloning we refer to the stochastic cloning as in the MSCKF [20]
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a linear interpolation-based motion model is introduced to

relate them to their temporally neighbouring cloned frames.

By doing so, we are able to prove based on the observabil-

ity analysis that the visual observations, in conjunction with

the motion model, provide scale information. Additionally,

we show that our system operates in real-time on mobile

processors.

In summary, our main contributions are:

• We present the first alternating-stereo VINS, that com-

bines the low-latency of a monocular VINS with the

accuracy and robustness (from the visual scale infor-

mation) of a stereo system. This is achieved by in-

troducing an interpolation-based camera measurement

model to process the alternating-camera observations.

• We analyze the observability properties of the pro-

posed alternating-stereo system when employing the

interpolation scheme and show that the scale becomes

observable with only visual observations.

• We perform a detailed comparison between the pro-

posed system and its monocular and stereo counter-

parts, to assess its accuracy and robustness.

The rest of this paper is structured as follows: In Sec. 2,

we briefly review the key components of the proposed

VINS, highlighting the interpolation-based camera mea-

surement model for the alternating observations. Sec. 3 de-

scribes the image-processing front-end, and Sec. 4 presents

an overview of the estimation algorithm. In Sec. 5 we

present the observability properties of the proposed system,

in a vision-only setup, and show that scale becomes observ-

able when employing the proposed interpolation scheme.

Finally, experimental results over several datasets are shown

in Sec. 6, while Sec. 7 concludes the paper.

2. System Description

The proposed system comprises two forward facing

cameras with overlapping fields of view, where at each

time step only one of the left-right cameras is capturing im-

ages. Specifically, the cameras are triggered in an alternat-

ing fashion (see Fig. 1), while cloning only on the left cam-

era instants. The visual and inertial measurements are then

fused in a tightly coupled manner, following the sliding-

window approach of [23]. The key components of the pro-

posed system (see Fig. 2) are briefly described hereafter.

for maintaining past IMU poses in a sliding window estimator. The cloned

frames are analogous to key-frames in the computer vision literature.

Figure 2. Coordinate frames, where {I}, {CL}, {CR}, and

{G} are the IMU, left camera, right camera, and global frames,

respectively, (IqCL
, IpCL

) and (IqCR
, IpCR

) are the corre-

sponding left and right IMU-camera extrinsic parameters, and

(CLqCR
, CLpCR

) are the left-right camera-to-camera extrinsics.

2.1. System State

At each time step k, the sliding window estimator main-

tains the following state vector:

xk =
[
xT
S xT

F

]T
(1)

with xF =
[
xT
Ck−M+1

· · · xT
Ck

xT
P xT

Ek

]T
(2)

where xS contains the currently estimated SLAM features

and xF comprises all other current states. Here xS =[
C0pT

f1
. . . C0pT

fn

]T
, with C0pfj , for j = 1, . . . , n, de-

noting the position of the feature fj in its first observing

camera frame {C0}. If the feature is, however, first ob-

served by the right camera {CR}, it is represented with re-

spect to the immediately previous left camera frame {CL}.

Next, xCp
, for p = k −M + 1, . . . , k, represents the state

vector corresponding to the IMU poses at time step p, with

M being the sliding-window size. Each pose state is de-

fined as xCp
=

[
IpqT

G

GpT
Ip

]T
, where IpqG is the quater-

nion representing the orientation of the global frame {G}
in the IMU’s frame of reference {Ip}, and GpIp

is the po-

sition of {Ip} in {G}, at time step p. Next, the parameter

state vector is defined as xP =
[
IqT

CL

IpT
CL

]T
, where

(IqCL
, IpCL

) are the extrinsic parameters between {CL}
and {I}. The left-right camera-to-camera extrinsic param-

eters (CLqCR
, CLpCR

) are, however, assumed to be known

and, as shown in Sec. 5, contribute to the system scale. Fi-

nally, xEk
=

[
bT
gk

bT
ak

GvT
Ik

]T
contains gyroscope bgk

and accelerometer bak
biases, as well as the velocity GvIk

of {Ik} in {G}, at time step k.

Lastly, we apply an additive error model for any quan-

tity x as x̃ = x − x̂, where x̃ is the error state and x̂ is

the state estimate employed for linearization. For a quater-

nion q, however, a multiplicative error model is employed

as q̃ = q⊗ q̂−1 ≃
[
1
2δθ

T 1
]T

, where ⊗ indicates quater-

nion multiplication and δθ is a minimal representation of

the attitude error.

4730



2.2. Inertial Measurements and Cost Terms

Given inertial measurements uk,k+1 =
[
ωT

mk
aTmk

]T
,

where ωmk
and amk

are gyroscope and accelerometer mea-

surements, respectively, a constraint between the consecu-

tive inertial states can be imposed (see [23]):

xIk+1
= f(xIk , uk,k+1 −wk,k+1) (3)

where xIk ,
[
xT
Ck

xT
Ek

]T
, and wk,k+1 is the discrete-time

zero-mean white Gaussian noise affecting the IMU mea-

surements with covariance Qk. Linearizing (3) around the

state estimates x̂Ik and x̂Ik+1
yields the inertial cost term:

Cu(x̃Ik , x̃Ik+1
) = ||

[
Φk+1,k −I

] [ x̃Ik

x̃Ik+1

]

− (x̂Ik+1
− f(x̂Ik ,uk,k+1))||

2
Q′

k
(4)

where Q′

k = Gk+1,kQkG
T
k+1,k, with Φk+1,k and Gk+1,k

being the corresponding Jacobians.

2.3. Visual Measurements and Cost Terms

The measurement model for the jth feature in the ith

(i = L : left) camera is

z
i,j
k = π(C

k+t
i pfj ) + n

i,j
k (5)

where π(.) is the camera projection model, C
k+t
i pfj is the

feature position expressed in the ith camera’s frame of ref-

erence at the image-acquisition time k+ t, and n
i,j
k is zero-

mean, white Gaussian noise with covariance σ2I2. Lin-

earizing (5) around the current state estimates yields:

z̃
i,j
k = H

i,j
x,k x̃F +H

i,j
f,k

C0 p̃fj + n
i,j
k (6)

where H
i,j
x,k and H

i,j
f,k are the corresponding Jacobians.

Stacking together all Nj observations to this feature yields:

z̃j = Hj
xx̃F +H

j
f

C0 p̃fj + nj (7)

The corresponding linearized cost term becomes:

Czj (x̃F ,
C0 p̃fj ) = ||Hj

xx̃F +H
j

f

C0 p̃fj − z̃
j ||2σ2I2Nj

(8)

2.3.1 Interpolation-based Camera Jacobians

In the proposed system, the left-right cameras are triggered

in an alternating fashion, while cloning only when the left

camera is active. Thus, the Jacobians for the left camera

measurements are the same as those of a monocular system

(see [13] and (7)). On the other hand, since the poses corre-

sponding to the right camera time instants are not included

in the state vector, a motion model is needed to relate these

measurements to its adjacent cloned poses. For the motion

model, we choose not to involve the IMU measurements

since it requires including the accelerations and rotational

velocities in the state vector, consequently increasing the

memory and processing requirements. Instead, we employ

an interpolation-based model that avoids such issues, while

maintaining indistinguishable performance.

Specifically, assuming the sensor-pair moves on approx-

imately a straight line segment during the very small time

interval between two consecutive clones (∼ 60 msec), the

position of the IMU frame at the right camera time instant

k+ t is linearly interpolated from its two temporally neigh-

boring clone positions:

GpIk+t
= (1− λ)Gp

Ik
+ λGp

Ik+1
(9)

where λ is the interpolation ratio. The IMU rotation from

time instant k to k+1 is defined as C(θk+1,k) =
Ik+1

G C
Ik
G CT .

Similarly, assuming a constant axis of rotation, the orien-

tation of {Ik+t} is then equivalent to rotating {Ik} about

λθk+1,k, i.e.,

Ik+t

G C =
Ik+t

Ik
C

Ik
G C = C(λθk+1,k)

Ik
G C (10)

By employing (9) and (10), we can express the right camera

measurements as:

z
R,j
k = π(C

k+t
R pfj ) + n

R,j
k

= π(
C

k+t
R

C0
CC0pfj −

I

CR
CT IpCR

−
C

k+t
R

G C(GpIk+t
− GpI0

) +
C

k+t
R

I0
CIpCL

) + n
R,j
k

= π(I
CR

CTC(λθk+1,k)
Ik
G C(I0

G
CT I

CL
CC0pfj

− (1− λ)Gp
Ik

− λGp
Ik+1

+ GpI0

+ I0
G
CT IpCL

)− I

CR
CT IpCR

) + n
R,j
k (11)

where I

CR
C , I

CL
C

CL
CR

C and IpCR
, IpCL

+ I

CL
CCLpCR

.

Linearizing (11), the measurement model corresponding to

the right camera feature observations becomes:2

z̃
R,j
k = Hj,k

π

(
H

j,k
f

C0 p̃fj +
[
Hj,k

pk+1
H

j,k
θk+1

] [Gp̃Ik+1

Ik+1 θ̃G

]

+
[
Hj,k

pk
H

j,k
θk

] [Gp̃Ik

Ik θ̃G

]
+
[
Hj,k

p0
H

j,k
θ0

] [Gp̃I0

I0 θ̃G

]

+
[
Hj,k

px
H

j,k
θx

] [Ip̃CL

I θ̃CL

])
+ n

R,j
k (12)

= H
R,j
x,k x̃F +H

R,j
f,k

C0 p̃fj + n
R,j
k (13)

where

Hj,k
π =

1

γ2
j

[
γj 0 −αj

0 γj −βj

]
, C

k+t
R pfj ,



αj

βj

γj




Hj,k
p0

= M , I

CR
CTC(λθ)

Ik
G C

H
j,k
θ0

= −MI0
G
CT ⌊I

CL
CC0pfj +

IpCL
⌋

Hj,k
pk+1

= −λM, Hj,k
pk

= (λ− 1)M

2We use IMU integration to find the linearization point as it provides a

higher accuracy state estimate as compared to interpolation.
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H
j,k
θk+1

= Hθ , λI

CR
CT ⌊C(λθ)

Ik
G Cξ⌋

H
j,k
θk

= −Hθ

Ik+1

G C
Ik
G CT + I

CR
CTC(λθ)⌊

Ik
G Cξ⌋

Hj,k
px

= MI0
G
CT − I

CR
CT

H
j,k
θx

= MI0
G
CT ⌊I

CL
CC0pfj⌋ −

I

CR
CT ⌊

Ik+t

G Cξ − IpCL
⌋

H
j,k
f = MI0

G
CT I

CL
C (14)

with ⌊.⌋ denoting the skew-symmetric matrix, θ , θk+1,k,

and ξ ,
I0
G CT I

CL
CC0pfj −

Gp
Ik+t

+ GpI0
+ I0

G CT IpCL
.

Note that, despite its more complicated expressions for

the Jacobians, (13) has identical structure to the linearized

measurement model in (6) corresponding to the left camera

feature observations. Thus, it can be employed with any

monocular VINS estimator (e.g., [23]).

2.3.2 Interpolation Ratio Computation

In our experiments, we employ different interpolation fac-

tors for the translation λt and rotation λθ terms, assuming

varying velocities. Specifically, from (9) and (10) we have:

GpIk+t
− GpIk

= λt(
GpIk+1

− GpIk
) (15)

Ik+t

G C = C(λθθk+1,k)
Ik
G C ≈ (I3 − ⌊λθθ⌋)

Ik
G C

⇒ I3 −
Ik+t

G C
Ik
G CT = λθ⌊θ⌋ (16)

where GpIk+t
and

Ik+t

G C are obtained from IMU inte-

gration. Then, λt and λθ are estimated in a least-squares

(LS) sense, i.e., λt =
bT

1 a1

bT
1
b1

and λθ =
bT

2 a2

bT
2
b2

, where

a1 , GpIk+t
− GpIk

,b1 , GpIk+1
− GpIk

,a2 ,
[
A(1,2) A(1,3) A(2,1) A(2,3) A(3,1) A(3,2)

]T
, and

b2 ,
[
B(1,2) B(1,3) B(2,1) B(2,3) B(3,1) B(3,2)

]T
,

with A = I3 −
Ik+t

G C
Ik
G CT and B = ⌊θ⌋.

Note that other higher-order interpolation schemes (e.g.,

B-splines [17], GP interpolation [6]) can also be employed,

but their gain in accuracy is negligible, as compared to lin-

ear interpolation, for short time duration and hence, does

not justify the processing overhead.

3. Image-processing Front-end

The proposed system extracts and tracks point features

on consecutive alternating images (see Fig. 1). The track-

ing algorithm is, however, indifferent to whether the im-

age is provided by the left or the right camera and pro-

cesses the alternating image stream as if they are coming

from a monocular system. Specifically, a descriptor-based

tracking-by-matching strategy (similar to [21]) is employed.

As a first step, a 3D-to-2D matching is performed against

the local SLAM map, followed by a gyro-aided (i.e., us-

ing a rotation-only prediction from the integrated gyroscope

measurements) 2D-to-2D matching to associate the remain-

ing features with the previous 2D feature tracks. Next,

outliers are rejected using the 2-pt RANSAC [15] and the

Mahalanobis distance test. The inlier tracks are then trian-

gulated, using all observations from all viewing cameras,

and processed by the estimator. After triangulation, out-

liers are rejected by checking both the individual and mean

re-projection errors for all observations in a track. Addi-

tionally, when right-camera measurements are present in a

track, if the track’s mean re-projection error is larger than

the corresponding left track error, it is considered to have

erroneous stereo associations and is marked as an outlier.

4. Estimation Algorithm

In what follows, we describe the main steps of the esti-

mation algorithm. At each time step k, the objective is to

minimize the cost term C⊕

k = Ck−1 + Cu + CZ that con-

tains all available information so far, where Cu [see (4)]

represents the cost term arising from the IMU measurement

uk−1,k, CZ from the SLAM visual measurements, and Ck−1

from the prior information obtained from the previous time

step, with Ck−1(x̃k−1) = ‖Rk−1x̃k−1 − rk−1‖
2, where

Rk−1 and rk−1 are the prior information factor matrix and

residual vector, respectively.

At each time step k, the current state vector x̃k−1 is first

propagated by appending a new pose state xIk [see (3)] to

it, as x⊖

k =
[
xT
k−1 xT

Ik

]T
. Following [23], the cost term,

which initially comprised only Ck−1, then becomes

C⊖

k (x̃⊖

k ) = Ck−1(x̃k−1) + Cu(x̃Ik−1
, x̃Ik) (17)

To maintain constant computational complexity, at each

time step k, the oldest clone x̃Ck−M
, and the extra IMU

states x̃Ek−1
from the previous time step are marginalized.

For marginalization, as in [23], a state permutation followed

by a QR factorization [11] is applied, with the resulting cost

term after marginalization being:

CM
k (x̃R

k ) = min
x̃M
k

C⊖

k (x̃M
k , x̃R

k ) =
∥∥RR

k x̃
R
k − rRk

∥∥2 (18)

where x̃M
k are the marginalized states, x̃R

k are the remain-

ing states after marginalization [see (1)], while RR
k and

rRk are the corresponding upper-triangular information fac-

tor and residual, respectively. After marginalization, new

SLAM feature states xN
S are added to the state vector as

xk =
[
xR
k

T

xN
S

T
]T

. The new SLAM feature observations

ZN and re-observations ZR of existing SLAM features are

then used to perform updates.

C⊕

k (x̃k) = CM
k (x̃R

k ) + CZ(x̃k) = ‖R⊕

k x̃k − r⊕k ‖
2 (19)

where CZ(x̃k) = CZN
(x̃k) + CZR

(x̃R
k ) =

∑NNS
j=1

Czj (x̃k) +∑NR
j=1

Czj (x̃
R
k ), with NNS and NR being the number of new

SLAM features and SLAM re-observations, respectively.
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Figure 3. System setup, where for the ith time step {Ii}, {CLi},

and {CRi} denote the IMU, left camera, and right camera frames,

respectively, and fj , with j = 1, . . . , 5, are the features observed

by the active camera frames {CL1
}, {CR2

}, and {CL3
}, the ob-

servations being L1zj , R2zj , and L3zj .

Finally, (19) is minimized with respect to the error state vec-

tor and the solution for x̃k is used to update the state.

min
x̃k

C⊕

k (x̃k) = min
x̃k

‖R⊕

k x̃k − r⊕k ‖
2 (20)

At the next time step k+1, a new clone pose will be added to

the sliding window and the same process will be repeated,

with x̂⊕

k = x̂k + x̃k and R⊕

k serving as the corresponding

prior state estimate and information factor, respectively.

5. Observability Analysis

In this section, we study the observability properties (i.e.,

gauge freedom analysis) of the linearized vision-only ver-

sion of the proposed system and show that compared to its

monocular counterpart, scale becomes observable. For sim-

plicity, we employ the minimal setup of Fig. 3, depicting 3

consecutive camera frames in a left-right alternating fash-

ion. Since we are considering a vision-only system, for the

purpose of the observability analysis, we address the case

where 5 static features comprise the scene and are detected

by all 3 consecutive camera frames. Furthermore, we as-

sume that the pose of the first camera frame is known and

all other frames are expressed with respect to it. Note that,

the extension of the following analysis to the general case

of m poses and n features is straightforward.

For easiness of presentation, we first study a monocu-

lar system and determine the unobservable direction cor-

responding to the scale. Then, we examine the proposed

alternating-stereo system and prove that the null direction

vanishes.

5.1. Monocular System

In the monocular system, the two left camera measure-

ments for the jth feature can be written as,

L1zj = π(CL1pfj ) + nL1,j (21)

L3zj = π
(
CL3pfj

)
+ nL3,j

= π
(

CL3
CL1

C
(

CL1pfj −
CL1pCL3

))
+ nL3,j (22)

where CL1pfj and CL3pfj are the positions of the jth

feature in the left camera frames {CL1
} and {CL3

}, re-

spectively, nL1,j and nL3,j are zero-mean white Gaussian

noises, and (
CL3
CL1

C, CL1pCL3
) is the pose of {CL3

} with re-

spect to {CL1
}. Linearizing (21) and (22) yields:

L1 z̃j =
L1Πj f̃j + nL1,j (23)

L3 z̃j =
L3Πj

3Cf̃j −
L3Πj

3Cp̃3

+ L3Πj
3C⌊fj − p3⌋

3CT θ̃3 + nL3,j (24)

where L3Πj and L1Πj are the Jacobians of the perspec-

tive projection functions, while we simplified notation, fj ,
CL1pfj , p3 , CL1pCL3

, and 3C ,
CL3
CL1

C = C(CL3θCL1
)

with θ3 , CL3θCL1
. From (23) and (24), the Jacobian cor-

responding to the error state x̃j =
[
p̃T
3 θ̃T

3 f̃Tj

]T
is,

Hj =

[
L1Πj 02x3

02x3
L3Πj

3C

] [
03 03 I3

−I3 ⌊fj − p3⌋
3CT I3

]
(25)

By stacking together the Jacobians for all five fea-

tures, from only the left camera, we get the Jacobian

H = DM corresponding to the error state x̃ =[
p̃T
3 θ̃T

3 f̃T1 f̃T2 f̃T3 f̃T4 f̃T5

]T
, where

D , BlkDiag(L1Π1,
L3Π1

3C, . . . , L1Π5,
L3Π5

3C)

M ,




03 03 I3 . . . 03

−I3 ⌊f1 − p3⌋
3CT I3 . . . 03

...
...

...
. . .

...

03 03 03 . . . I3
−I3 ⌊f5 − p3⌋

3CT 03 . . . I3




(26)

The unobservable direction of the system corresponds to

the nullspace of the Jacobian matrix H. To analyze this

nullspace, we use the fact that the rank of the product of

two matrices D and M is given by (see (4.5) in [19]):

rank(DM) = rank(M)− dim(N (D) ∩R(M)) (27)

where R(.) and N (.) represents the range and nullspace of

a matrix, respectively. Hereafter, we first show that M is of

full column rank, using Gaussian elimination. Specifically,

subtracting every odd row from its next even row and re-

arranging the rows of M yields:

M →




−I3 ⌊f1 − p3⌋
3CT

−I3 ⌊f2 − p3⌋
3CT

−I3 ⌊f3 − p3⌋
3CT 015

−I3 ⌊f4 − p3⌋
3CT

−I3 ⌊f5 − p3⌋
3CT

015x6 I15




(28)
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Then, by negating the first block-row and adding it to the

next 4 block-rows we get,

M →




I3 ⌊p3 − f1⌋
3CT

03 ⌊f2 − f1⌋
3CT

03 ⌊f3 − f1⌋
3CT 015

03 ⌊f4 − f1⌋
3CT

03 ⌊f5 − f1⌋
3CT

015x6 I15




(29)

Now, consider the 6x3 block[
(⌊f4 − f1⌋

3CT )T (⌊f5 − f1⌋
3CT )T

]T
. Here, in general,

each of the two block rows has rank 2, but since the features

f1, f4, and f5 are not colinear, the 2 block rows do not have

a common nullspace. In other words, the matrix formed

by these two blocks has full column rank. Therefore,

after applying appropriate Gaussian-elimination the block

becomes [I3 03]
T ; i.e.,

M →




I3 ⌊p3 − f1⌋
3CT

03 ⌊f2 − f1⌋
3CT

03 ⌊f3 − f1⌋
3CT 015

03 I3
03 03

015x6 I15




(30)

This block is then used in subsequent Gaussian-elimination

to the 2nd column blocks to yield:

M →




I3 03

03 03

03 03 015

03 I3
03 03

015x6 I15



→

[
I21
09x21

]
(31)

Hence, M30x21 is a full column rank matrix of rank 21.

Now, D20x30 is a block diagonal matrix, where each di-

agonal block is of rank 2. So, D has a 10 dimensional

nullspace spanned by η1,j = [01x3 . . . fTj . . . 01x3]
T

and η2,j = [01x3 . . . (fj − p3)
T . . . 01x3]

T , where

j = 1, 2, . . . , 5.

From the expression of M in (26) and the basis

{η1,j ,η2,j}, j = 1, 2, . . . , 5, of the nullspace of D, it

can be shown that (proof omitted due to lack of space)

there exists only one linearly independent direction η in

N (D) ∩R(M), where3

η =

2∑

i=1

5∑

j=1

ηi,j = [fT1 (f1 − p3)
T . . . fT5 (f5 − p3)

T ]T

= M(:,1:3)p3 +M(:,7:9)f1 + . . .+M(:,19:21)f5 (32)

Therefore, rank(H) = rank(M) − dim(η) = 21 − 1 =
20, and H has an one dimensional nullspace N (H) =

3Using MATLAB notations.

span([pT
3 01x3 f

T
1 . . . fT5 ]T ), which is the unobservable di-

rection corresponding to scale (see [24]).

5.2. AlternatingStereo System

In the alternating-stereo system, in addition to the left

camera observations in (21) and (22) for the jth feature, the

right camera also contributes a measurement:

R2zj = π
(
CR2pfj

)
+ nR2,j (33)

with CR2pfj = CRpCL
+

CR2
CL1

C
(

CL1pfj −
CL1pCL2

)
,

where
CR2
CL1

C = CR
CL

C
CL2
CL1

C,
CR2pfj is the position of the

jth feature in the right camera frame {CR2
}, nR2,j is zero-

mean white Gaussian noise, (
CL2
CL1

C,
CL1pCL2

) is the pose of

the corresponding left camera frame {CL2
} with respect to

{CL1
}, and (CR

CL
C,CRpCL

) is the known left-right camera
extrinsics. Now, in the alternating-stereo system only left
camera frames are cloned.4 Hence, we introduce a linear

interpolation model, i.e.,
CL2
CL1

C = C(λθ3),
CL1pCL2

= λp3,

to relate the right camera measurements with the two
adjacent left clones.

R2zj = π(CRpCL
+ CR

CL
CC(λθ3)(fj − λp3)) + nR2,j (34)

Linearizing (34) yields:

R2 z̃j =
R2Πj

2RCf̃j − λR2Πj
2RCp̃3

+ λR2Πj
2RC⌊fj − p2⌋

2CT θ̃3 + nR2,j (35)

where R2Πj is the perspective projection Jacobian, p2 ,
CL1pCL2

, 2RC ,
CR2
CL1

C, and 2C ,
CL2
CL1

C. From (23), (35),

and (24), combining measurements from both left and right

cameras, the Jacobian corresponding to the error state x̃j is:

Hj =




02x3 02x3 D1,j

−λD2,j λD2,j⌊fj − p2⌋
2CT D2,j

−D3,j D3,j⌊fj − p3⌋
3CT D3,j


 (36)

where D1,j , L1Πj , D2,j , R2Πj
2RC, and

D3,j , L3Πj
3C. By stacking together the Jacobians

for all five feature measurements, we get the Jacobian

H = DM corresponding to the error state x̃, where

D , BlkDiag(D1,1,D2,1,D3,1, . . . ,D1,5,D2,5,D3,5)

M ,




03 03 I3 . . . 03

−λI3 λ⌊f1 − p2⌋
2CT I3 . . . 03

−I3 ⌊f1 − p3⌋
3CT I3 . . . 03

...
...

...
. . .

...

03 03 03 I3
−λI3 λ⌊f5 − p2⌋

2CT 03 . . . I3
−I3 ⌊f5 − p3⌋

3CT 03 . . . I3




(37)

4Note that, if we cloned at every frame the alternating scheme will lose

scale. Specifically, it will introduce 2 additional block columns in the M

matrix [see (26)], resulting in dim(N (H)) = dim(N (D)∩R(M) = 1.

4734



Similarly to the monocular system, it can be shown

that M45x21 is a full column rank matrix of rank 21 and

D30x45 has a 15 dimensional nullspace that is spanned by:

η1,j = [01x3 . . . fTj . . . 01x3]
T , η2,j = [01x3 . . . (fj −

p3)
T . . . 01x3]

T , and η3,j = [01x3 . . . (fj − λp3 +

u)T . . . 01x3]
T , where j = 1, 2, . . . , 5 and u ,

2RCT CRpCL
. In this case, it can be shown that there exists

no nonzero vector in N (D)∩R(M), i.e., N (D)∩R(M) =
{045x1}. Therefore, rank(H) = rank(M) − 0 = 21, and

H30x21 has no nullspace. Since H has no null direction,

unlike the monocular system, scale becomes observable in

the proposed interpolation-based alternating-stereo system

with just the visual observations. This can be easily veri-

fied by multiplying the Jacobian H with the scale direction

[pT
3 01x3 f

T
1 . . . fT5 ]T , and confirming that the result is not

zero, due to the fact that N (D) ∩R(M) = {045x1}.

To summarize, processing the alternating visual obser-

vations requires a motion model for describing the cam-

era poses between key-frames. The motion model along

with the stereo constraint allow us to acquire scale infor-

mation, whose accuracy depends on how well the motion

model approximates the device’s actual motion. In practice,

during the short time between frames, the assumptions of

smooth motion and small rotation typically hold and hence

the proposed linear interpolation model is adequate. Fi-

nally, we should note that the scale will be observable for

higher-order models too as the presence of the stereo base-

line CRpCL
in the nullspace η3,j of D, will prevent the ob-

servability matrix from losing rank.

6. Experimental Results

For our experiments, the wide stereo rig depicted

in Fig. 4 was used, which contains two global shutter

Chameleon-2 camera sensors with PT-02118BMP fixed-

focus, 165◦ field of view (FOV), fisheye lenses. The base-

line between the cameras is 19.3 cm and they capture

VGA-resolution images at 25 Hz. A commercial-grade In-

vensense MPU-9250 IMU is used to measure inertial data

at 100 Hz. The cameras are triggered in an alternating fash-

ion, using an Arduino Nano micro-controller, and are time-

synced with the IMU. The full pipeline runs in real-time on

the NVIDIA Jetson TK1 [3] board, which is equipped with

a Tegra TK1 mobile processor, featuring a Kepler GPU and

a quad-core ARM Cortex-A15 CPU.

In what follows, we present our evaluation results on

6 hand-held indoor sequences with varied motion profiles,

captured using the device described above. Furthermore,

we also present results for the 30 Hz EuRoC MAV [9]

datasets, which consist of 11 indoor sequences recorded on-

board a micro-aerial vehicle under various motion profiles

and scene illuminations. For assessing the positioning ac-

curacy, we compute the root mean square error (RMSE) of

Figure 4. Stereo device.

each trajectory against VICON ground-truth.

6.1. Configurations Considered

In Secs. 6.2 and 6.3, we evaluate the accuracy and

computational performance, respectively, of the proposed

alternating-stereo system against its monocular and stereo

counterparts. Since the proposed system performs image-

processing at f Hz (f = 25 Hz and 30 Hz for our and the

EuRoC datasets, respectively) and filter updates at f/2 Hz,

for a thorough comparison, we included monocular and

stereo systems operating at both f/2 Hz and f Hz. The

optimization window size, M is set to 10 for these compar-

isons. For the f Hz cases, however, using the same window

size usually reduces the baseline5 and thus does not always

guarantee better performance over its f/2 Hz counterparts.

Therefore, for fairness, we also included the f Hz monoc-

ular and stereo systems with M = 20 in our comparison.

6.2. Accuracy Comparison

The RMSE results for the aforementioned systems are

summarized in Fig. 5 with a box-and-whisker plot. As

expected, stereo achieves better performance than mono

and estimation accuracy usually improves with higher

image-processing frequency and optimization window size

(M = 20 vs. M = 10). The f Hz systems with M = 10,

however, do not necessarily achieve better accuracy than

their f/2 Hz counterparts, due to the smaller effective

baseline. As evident from Fig. 5, the proposed alternating-

stereo system always performs better than the M = 10
mono, while it either outperforms or is on par with the

M = 20 mono. Interestingly, the proposed system attains

better accuracy than even the f/2 Hz stereo. This is due to

the fact that besides providing scale and spanning the same

key-frames as the f/2 Hz stereo does, the alternating-stereo

has access to typically longer feature tracks (owing to the

f Hz feature tracking) and to additional feature observa-

tions from the alternating frames. The alternating-stereo

also exhibits similar or better performance than the f Hz,

M = 10 stereo, because of having comparable feature

tracks with a longer effective baseline. The M = 20 stereo,

however, performs the best, since it uses every frame as

5Baseline due to motion.
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Figure 5. RMSE comparison between different configurations. f is the cloning frequency and M is the optimization window size.

key-frame, while maintaining similar feature tracks and

temporal span as the alternating-stereo. Note that compared

to the 30 Hz datasets, the 25 Hz datasets demonstrate

relatively lower gain from the interpolation model in the

alternating-stereo scheme. This is to be expected, since in

this case the system needs to interpolate through a longer

time interval (80 msec as compared to 60 msec) and hence

the linear approximation is less often valid.

Lastly, we assessed the impact of our proposed LS-based

interpolation ratio (see Sec. 2.3.2) over the time-based ap-

proach of [8, 12] and found our method to be 0.03 m more

accurate in terms of median RMSE.

6.3. Computational Performance

Table 1 compares the processing times of the proposed

system on the NVIDIA Jetson TK1 [3] with the afore-

mentioned mono and stereo systems. For brevity, only

the timing results from our 25 Hz datasets are shown. As

evident, compared to the mono systems, stereo requires

more than double the CPU to perform image-processing

due to the additional feature extraction, tracking, and

stereo-matching steps. In terms of filter update time, stereo

requires ∼ 1.3 times more CPU than mono, as it needs to

process additional feature observations from the second

camera. Furthermore, since the f Hz systems perform

image-processing and filter updates twice as often com-

pared to the f/2 Hz systems, their processing requirements

are also double. Lastly, doubling the optimization window

size M increases the filter update time by a factor of ∼ 2.8
and the total time by ∼ 1.4 times.

The proposed alternating-stereo system performs feature

extraction and tracking at f Hz and filter updates at f/2 Hz,

resulting in similar filter update time but almost double

image-processing time as compared to the f/2 Hz mono.

Nonetheless, since alternating-stereo does not require an ad-

ditional stereo-matching step, it still performs faster than

the f/2 Hz stereo. Lastly, we note that the proposed system

runs in real-time on the NVIDIA Jetson TK1; in-fact, be-

sides the f/2 Hz mono, it is the only other real-time system

in our comparison.

Table 1. Comparison: Timing Results (msec)

Pipelines
Filter update Image-proc. Total pipeline

(per key-frame) (per key-frame) (per 1 sec data)

M
o
n
o f/2 Hz, M=10 14.06 30.23 666.75

f Hz, M=10 14.32 27.53 1264.20

f Hz, M=20 38.72 21.53 1728.49

S
te

re
o f/2 Hz, M=10 17.81 71.89 1372.41

f Hz, M=10 18.77 67.18 2609.26

f Hz, M=20 52.81 72.99 3710.50

Alternating-stereo 11.16 50.38 977.60

7. Conclusion

In this paper, we present a novel alternating-stereo
VINS which enjoys the low latency of a monocular system,
while acquiring scale information from visual observations
analogously to a stereo system. To do so, we introduce an
alternating cloning strategy along with an interpolation-
based camera measurement model (that can be employed
by any visual-inertial estimator), for efficiently processing
the non-cloned camera observations. Additionally, we
analyze the observability properties of the proposed system
and show that scale becomes observable from the visual
observations under the employed interpolation-based
motion model. Finally, the paper provides accuracy com-
parison of the proposed VINS against its monocular and
stereo counterparts and shows that, in terms of estimation
accuracy, the alternating-stereo system either outperforms
or is on par with the monocular and stereo VINS that have
comparable or higher computational requirements.
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