
MegDet: A Large Mini-Batch Object Detector

Chao Peng∗ Tete Xiao1∗ Zeming Li2∗ Yuning Jiang Xiangyu Zhang Kai Jia Gang Yu Jian Sun
1Peking University, jasonhsiao97@pku.edu.cn

2Tsinghua University, lizm15@mails.tsinghua.edu.cn

Megvii Inc. (Face++), {pengchao, jyn, zhangxiangyu, jiakai, yugang, sunjian}@megvii.com

Abstract

The development of object detection in the era of deep

learning, from R-CNN [11], Fast/Faster R-CNN [10, 31] to

recent Mask R-CNN [14] and RetinaNet [24], mainly come

from novel network, new framework, or loss design. How-

ever, mini-batch size, a key factor for the training of deep

neural networks, has not been well studied for object detec-

tion. In this paper, we propose a Large Mini-Batch Object

Detector (MegDet) to enable the training with a large mini-

batch size up to 256, so that we can effectively utilize at

most 128 GPUs to significantly shorten the training time.

Technically, we suggest a warmup learning rate policy and

Cross-GPU Batch Normalization, which together allow us

to successfully train a large mini-batch detector in much

less time (e.g., from 33 hours to 4 hours), and achieve even

better accuracy. The MegDet is the backbone of our sub-

mission (mmAP 52.5%) to COCO 2017 Challenge, where

we won the 1st place of Detection task.

1. Introduction

Tremendous progresses have been made on CNN-based

object detection, since seminal work of R-CNN [11],

Fast/Faster R-CNN series [10, 31], and recent state-of-the-

art detectors like Mask R-CNN [14] and RetinaNet [24].

Taking COCO [25] dataset as an example, its performance

has been boosted from 19.7 AP in Fast R-CNN [10] to 39.1
AP in RetinaNet [24], in just two years. The improvements

are mainly due to better backbone network [16], new de-

tection framework [31], novel loss design [24], improved

pooling method [5, 14], and so on [19].

A recent trend on CNN-based image classification uses

very large min-batch size to significantly speed up the train-

ing. For example, the training of ResNet-50 can be accom-

plished in an hour [13] or even in 31 minutes [39] , using

mini-batch size 8,192 or 16,000, with little or small sacri-

∗Equal contribution. This work is done when Zeming Li and Tete Xiao

are interns at Megvii Research.

0 5 10 15 20 25 30 35
Time

37.7

36.2

30

25

20

15

40

35

m
m
A
P

Time-Accuracy

16-batch
256-batch

Figure 1: Validation accuracy of the same FPN object de-

tector trained on COCO dataset, with mini-batch size 16

(on 8 GPUs) and mini-batch size 256 (on 128 GPUs). The

large mini-batch detector is more accurate and its training

is nearly an order-of-magnitude faster.

fice on the accuracy. In contract, the mini-batch size re-

mains very small (e.g., 2-16) in object detection literatures.

Therefore in this paper, we study the problem of mini-batch

size in object detection and present a technical solution to

successfully train a large mini-batch size object detector.

What is wrong with the small mini-batch size? Origi-

nating from the object detector R-CNN series, a mini-batch

involving only 2 images is widely adopted in popular de-

tectors like Faster R-CNN and R-FCN. Though in state-of-

the-art detectors like RetinaNet and Mask R-CNN the mini-

batch size is increased to 16, which is still quite small com-

pared with the mini-batch size (e.g., 256) used in current im-

age classification. There are several potential drawbacks as-

sociated with small mini-batch size. First, the training time

is notoriously lengthy. For example, the training of ResNet-

152 on COCO takes 3 days, using the mini-bath size 16 on

a machine with 8 Titian XP GPUs. Second, training with

16181

small mini-batch size fails to provide accurate statistics for

batch normalization [20] (BN). In order to obtain a good

batch normalization statistics, the mini-batch size for Ima-

geNet classification network is usually set to 256, which is

significantly larger than the mini-batch size used in current

object detector setting.

Last but not the least, the number of positive and negative

training examples within a small mini-batch are more likely

imbalanced, which might hurt the final accuracy. Figure 2

gives some examples with imbalanced positive and negative

proposals. And Table 1 compares the statistics of two de-

tectors with different mini-batch sizes, at different training

epochs on COCO dataset.

What is the challenge to simply increase the min-batch

size? As in the image classification problem, the main

dilemma we are facing is: the large min-batch size usually

requires a large learning rate to maintain the accuracy, ac-

cording to “equivalent learning rate rule” [13, 21]. But a

large learning rate in object detection could be very likely

leading to the failure of convergence; if we use a smaller

learning rate to ensure the convergence, an inferior results

are often obtained.

To tackle the above dilemma, we propose a solution as

follows. First, we present a new explanation of linear scal-

ing rule and borrow the “warmup” learning rate policy [13]

to gradually increase the learning rate at the very early

stage. This ensures the convergence of training. Second,

to address the accuracy and convergence issues, we intro-

duce Cross-GPU Batch Normalization (CGBN) for better

BN statistics. CGBN not only improves the accuracy but

also makes the training much more stable. This is signif-

icant because we are able to safely enjoy the rapidly in-

creased computational power from industry.

Our MegDet (ResNet-50 as backbone) can finish COCO

training in 4 hours on 128 GPUs, reaching even higher ac-

curacy. In contrast, the small mini-batch counterpart takes

33 hours with lower accuracy. This means that we can speed

up the innovation cycle by nearly an order-of-magnitude

with even better performance, as shown in Figure 1. Based

on MegDet, we secured 1st place of COCO 2017 Detection

Challenge.

Our technical contributions can be summarized as:

• We give a new interpretation of linear scaling rule, in

the context of object detection, based on an assumption

of maintaining equivalent loss variance.

• We are the first to train BN in the object detec-

tion framework. We demonstrate that our Cross-GPU

Batch Normalization not only benefits the accuracy,

but also makes the training easy to converge, especially

for the large mini-batch size.

• We are the first to finish the COCO training (based on

ResNet-50) in 4 hours, using 128 GPUs, and achieving

higher accuracy.

Epoch Batch Size Ratio(%)

1
16 5.58

256 9.82

6
16 11.77

256 16.11

12
16 16.59

256 16.91

Table 1: Ratio of positive and negative samples in the train-

ing (at epoch 1, 6, 12). The larger mini-batch size makes

the ratio more balanced, especially at the early stage.

(a) (b)

(c) (d)

Figure 2: Example images with positive and negative pro-

posals. (a-b) two examples with imbalanced ratio, (c-d) two

examples with moderate balanced ratio. Note that we sub-

sampled the negative proposals for visualization.

• Our MegDet leads to the winning of COCO 2017 De-

tection Challenge.

2. Related Work

CNN-based detectors have been the mainstream in cur-

rent academia and industry. We can roughly divide exist-

ing CNN-based detectors into two categories: one-stage de-

tectors like SSD [26], YOLO [29, 30] and recent Retina-

Net [24], and two-stage detectors [33, 1] like Faster R-

CNN [31], R-FCN [6] and Mask-RCNN [14].

For two-stage detectors, let us start from the R-CNN

family. R-CNN [11] was first introduced in 2014. It em-

ploys Selective Search [37] to generate a set of region pro-

posals and then classifies the warped patches through a

6182

CNN recognition model. As the computation of the warp

process is intensive, SPPNet [15] improves the R-CNN

by performing classification on the pooled feature maps

based on a spatial pyramid pooling rather than classifying

on the resized raw images. Fast-RCNN [10] simplifies the

Spatial Pyramid Pooling (SPP) to ROIPooling. Although

reasonable performance has been obtained based on Fast-

RCNN, it still replies on traditional methods like selective

search to generate proposals. Faster-RCNN [31] replaces

the traditional region proposal method with the Region Pro-

posal Network (RPN), and proposes an end-to-end detec-

tion framework. The computational cost of Faster-RCNN

will increase dramatically if the number of proposals is

large. In R-FCN [6], position-sensitive pooling is intro-

duced to obtain a speed-accuracy trade-off. Recent works

are more focusing on improving detection performance.

Deformable ConvNets [7] uses the learned offsets to con-

volve different locations of feature maps, and forces the net-

works to focus on the objects. FPN [23] introduces the fea-

ture pyramid technique and makes significant progress on

small object detection. As FPN provides a good trade-off

between accuracy and implementation, we use it as the de-

fault detection framework. To address the alignment issue,

Mask R-CNN [14] introduces the ROIAlign and achieves

state-of-the-art results for both object detection and instance

segmentation.

Different from two-stage detectors, which involve a pro-

posal and refining step, one-stage detectors usually run

faster. In YOLO [29, 30], a convolutional network is fol-

lowed with a fully connected layer to obtain classification

and regression results based on a 7 × 7 grid. SSD [26]

presents a fully convolutional network with different fea-

ture layers targeting different anchor scales. Recently, Reti-

naNet is introduced in [24] based on the focal loss, which

can significantly reduce false positives in one-stage detec-

tors.

Large mini-batch training has been an active research

topic in image classification. In [13], imagenet training

based on ResNet50 can be finished in one hour. [39]

presents a training setting which can finish the ResNet50

training in 31 minutes without losing classification accu-

racy. Besides the training speed, [17] investigates the gen-

eralization gap between large mini-batch and small mini-

batch, and propose the novel model and algorithm to elimi-

nate the gap. However, the topic of large mini-batch training

for object detection is rarely discussed so far.

3. Approach

In this section, we present our Large Mini-Batch De-

tector (MegDet), to finish the training in less time while

achieving higher accuracy.

3.1. Problems with Small Mini­Batch Size

The early generation of CNN-based detectors use very

small mini-batch size like 2 in Faster-RCNN and R-FCN.

Even in state-of-the-art detectors like RetinaNet and Mask

R-CNN, the batch size is set as 16. There exist a few prob-

lems when training with a small mini-batch size. First, we

have to pay much longer training time if a small mini-batch

size is utilized for training. As shown in Figure 1, the train-

ing of a ResNet-50 detector based on a mini-batch size of

16 takes more than 30 hours. With the original mini-batch

size 2, the training time could be more than one week. Sec-

ond, in the training of detector, we usually fix the statistics

of Batch Normalization and use the pre-computed values on

ImageNet dataset, since the small mini-batch size is not ap-

plicable to re-train the BN layers. It is a sub-optimal trade-

off since the two datasets, COCO and ImageNet, are much

different. Last but not the least, the ratio of positive and

negative samples could be very imbalanced. In Table 1, we

provide the statistics for the ratio of positive and negative

training examples. We can see that a small mini-batch size

leads to more imbalanced training examples, especially at

the initial stage. This imbalance may affect the overall de-

tection performance.

As we discussed in the introduction, simply increasing

the mini-batch size has to deal with the tradeoff between

convergence and accuracy. To address this issue, we first

discuss the learning rate policy for the large mini-batch.

3.2. Learning Rate for Large Mini­Batch

The learning rate policy is strongly related to the SGD

algorithm. Therefore, we start the discussion by first re-

viewing the structure of loss for object detection network,

L(x,w) =
1

N

N
∑

i=1

l(xi, w) +
λ

2
||w||22

= l(x,w) + l(w),

(1)

where N is the min-batch size, l(x,w) is the task spe-

cific loss and l(w) is the regularization loss. For Faster R-

CNN [31] framework and its variants [6, 23, 14], l(xi, w)
consists of RPN prediction loss, RPN bounding-box regres-

sion loss, prediction loss, and bounding box regression loss.

According to the definition of mini-batch SGD, the train-

ing system needs to compute the gradients with respect to

weights w, and updates them after every iteration. When

the size of mini-batch changes, such as N̂ ← k ·N , we ex-

pect that the learning rate r should also be adapted to main-

tain the efficiency of training. Previous works [21, 13, 39]

use Linear Scaling Rule, which changes the new learning

rate to r̂ ← k · r. Since one step in large mini-batch N̂

should match the effectiveness of k accumulative steps in

small mini-batch N , the learning rate r should be also mul-

tiplied by the same ratio k to counteract the scaling factor

6183

in loss. This is based on a gradient equivalence assump-

tion [13] in the SGD updates. This rule of thumb has been

well-verified in image classification, and we find it is still

applicable for object detection. However, the interpretation

is is different for a weaker and better assumption.

In image classification, every image has only one anno-

tation and l(x,w) is a simple form of cross-entropy. As for

object detection, every image has different number of box

annotations, resulting in different ground-truth distribution

among images. Considering the differences between two

tasks, the assumption of gradient equivalence between dif-

ferent mini-batch sizes might be less likely to be hold in ob-

ject detection. So, we introduce another explanation based

on the following variance analysis.

Variance Equivalence. Different from the gradient equiv-

alence assumption, we assume that the variance of gradient

remain the same during k steps. Given the mini-batch size

N , if the gradient of each sample ∇l(xi, w) obeying i.i.d.,

the variance of gradient on l(x,w) is:

Var(∇l(x,wt)) =
1

N2

N
∑

i=1

Var(
∂l(xi, wt)

∂wt

)

=
1

N2
×

(

N · σ2
l

)

=
1

N
σ2
l .

(2)

Similarly, for the large mini-batch N̂ = k · N , we can get

the following expression:

Var(∇l
N̂
(x,wt)) =

1

kN
σ2
l . (3)

Instead of expecting equivalence on weight update, here we

want to maintain the variance of one update in large mini-

batch N̂ equal to k accumulative steps in small mini-batch

N . To achieve this, we have:

Var(r ·
k

∑

t=1

(∇ltN (x,w))) = r2 · k · Var(∇lN (x,w))

≈ r̂2Var(∇l
N̂
(x,w))

(4)

Within Equation (2) and (3), the above equality holds if and

only if r̂ = k · r, which gives the same linear scaling rule

for r̂.

Although the final scaling rule is the same, our variance

equivalence assumption on Equation (4) is weaker because

we just expect that the large mini-batch training can main-

tain equivalent statistics on the gradients. We hope the vari-

ance analysis here can shed light on deeper understanding

of learning rate in wider applications.

Warmup Strategy. As discussed in [13], the linear scaling

rule may not be applicable at the initial stage of the training,

because the weights changing are dramatic. To address this

Dev	1 Dev	2 Dev	n

!ℬ

	$% 	$& 	$'

Dev	1 Dev	2 Dev	n

	(% 	(& 	('

)ℬ
&

Dev	1 Dev	2 Dev	n

		*% 		*& 		*'

Figure 3: Implementation of Cross-GPU Batch Normaliza-

tion. The gray ellipse depicts the synchronization over de-

vices, while the rounded boxes represents paralleled com-

putation of multiple devices.

practical issue, we borrow Linear Gradual Warmup in [13].

That is, we set up the learning rate small enough at the be-

ginning, such as r. Then, we increase the learning rate with

a constant speed after every iteration, until to r̂.

The warmup strategy can help the convergence. But as

we demonstrated in the experiments later, it is not enough

for larger mini-batch size, e.g., 128 or 256. Next, we in-

troduce the Cross-GPU Batch Normalization, which is the

main workhorse of large mini-batch training.

3.3. Cross­GPU Batch Normalization

Batch Normalization [20] is an important technique for

training a very deep convolutional neural network. Without

batch normalization, training such a deep network will con-

sume much more time or even fail to converge. However,

previous object detection frameworks, such as FPN [23],

initialize models with an ImageNet pre-trained model, af-

ter which the batch normalization layer is fixed during the

whole fine-tuning procedure. In this work, we make an at-

tempt to perform batch normalization for object detection.

It is worth noting that the input image of classification

network is often 224 × 224 or 299 × 299, and a single

NVIDIA TITAN Xp GPU with 12 Gigabytes memory is

enough for 32 or more images. In this way, batch normal-

ization can be computed on each device alone. However,

for object detection, a detector needs to handle objects of

various scales, thus higher resolution images are needed as

its input. In [23], input of size 800 × 800 is used, signifi-

6184

cantly limiting the number of possible samples on one de-

vice. Thus, we have to perform batch normalization cross-

ing multiple GPUs to collect sufficient statistics from more

samples.

To implement batch normalization across GPUs, we

need to compute the aggregated mean/variance statistics

over all devices. Most existing deep learning frameworks

utilize the BN implementation in cuDNN [4] that only pro-

vides a high-level API without permitting modification of

internal statistics. Therefore we need to implement BN in

terms of preliminary mathematical expressions and use an

“AllReduce” operation to aggregate the statistics. These

fine-grained expressions usually cause significant runtime

overhead and the AllReduce operation is missing in most

frameworks.

Our implementation of Cross-GPU Batch Normalization

is sketched in Figure 3. Given n GPU devices in total, sum

value sk is first computed based on the training examples

assigned to the device k. By averaging the sum values from

all devices, we obtain the mean value µB for current mini-

batch. This step requires an AllReduce operation. Then we

calculate the variance for each device and get σ2
B

. After

broadcasting σ2
B

to each device, we can perform the stan-

dard normalization by y = γ x−µB√
σ2

B
+ǫ

+β. Algorithm 1 gives

the detailed flow. In our implementation, we use NVIDIA

Collective Communication Library (NCCL) to efficiently

perform AllReduce operation for receiving and broadcast-

ing.

Note that we only perform BN across GPUs on the same

machine. So, we can calculate BN statistics on 16 images if

each GPU can hold 2 images. To perform BN on 32 or 64

images, we apply sub-linear memory [3] to save the GPU

memory consumption by slightly compromising the train-

ing speed.

In next section, our experimental results will demon-

strate the great impacts of CGBN on both accuracy and con-

vergence.

4. Experiments

We conduct experiments on COCO Detection

Dataset [25], which is split into train, validation, and

test, containing 80 categories and over 250, 000 images.

We use ResNet-50 [16] pre-trained on ImageNet [8] as

the backbone network and Feature Pyramid Network

(FPN) [23] as the detection framework. We train the

detectors over 118,000 training images and evaluate on

5000 validation images. We use the SGD optimizer with

momentum 0.9, and adopts the weight decay 0.0001. The

base learning rate for mini-batch size 16 is 0.02. For other

settings, the linear scaling rule described in Section 3.2

is applied. As for large mini-batch, we use the sublinear

memory [3] and distributed training to remedy the GPU

Input: Values of input x on multiple devices

in a minibatch: B =
⋃n

i=1
Bi, Bi = {xi1...in}

BN parameters: γ, β

Output: y = CGBN(x)
1: for i = 1, . . . , n do

2: compute the device sum si over set Bi

3: end for

4: reduce the set s1,...,n to minibatch mean µB

5: broadcast µB to each device

6: for i = 1, . . . , n do

7: compute the device variance sum vi over set Bi

8: end for

9: reduce the set v1,...,n to minibatch variance σ2
B

10: broadcast σ2
B

to each device

11: compute the output: y = γ x−µB√
σ2

B
+ǫ

+ β over devices

Algorithm 1: Cross-GPU Batch Normalization over a mini-

batch B.

memory constraints.

We have two training policies in following: 1) normal,

decreasing the learning rate at epoch 8 and 10 by multiply-

ing scale 0.1, and ending at epoch 11; 2) long, decreasing

the learning rate at epoch 11 and 14 by multiplying scale

0.1, halving the learning rate at epoch 17, and ending at

epoch 18. Unless specified, we use the normal policy.

4.1. Large mini­batch size, no BN

We start our study through the different mini-batch size

settings, without batch normalization. We conduct the ex-

periments with mini-batch size 16, 32, 64, and 128. For

mini-batch sizes 32, we observed that the training has some

chances to fail, even we use the warmup strategy. For mini-

batch size 64, we are not able to manage the training to

converge even with the warmup. We have to lower the

learning rate by half to make the training to converge. For

mini-batch size 128, the training failed with both warmup

and half learning rate. The results on COCO validation set

are shown in Table 2. We can observe that: 1) mini-batch

size 32 achieved a nearly linear acceleration, without loss

of accuracy, compared with the baseline using 16; 2) lower

learning rate (in mini-batch size 64) results in noticeable

accuracy loss; 3) the training is harder or even impossible

when the mini-batch size and learning rate are larger, even

with the warmup strategy.

4.2. Large mini­batch size, with CGBN

This part of experiments is trained with batch normal-

ization. Our first key observation is that all trainings easily

converge, no matter of the mini-batch size, when we com-

bine the warmup strategy and CGBN. This is remarkable

because we do not have to worry about the possible loss of

6185

Mini-Batch size mmAP Time (h)

16 36.2 33.2

32 36.4 15.1

64 failed –

64 (half learning rate) 36.0 7.5

128 (half learning rate) failed –

Table 2: Comparisons of different mini-batch sizes, without

BN.

accuracy caused by using smaller learning rate.

Batch size BN size # of GPUs mmAP Time(h)

16-base 0 8 36.2 33.2

2 2 2 31.5 131.2

4 4 4 34.9 91.4

8 8 8 35.9 71.5

16 2 8 31.0 45.6

16 16 8 37.0 39.5

32 32 8 37.3 45.5

64 64 8 35.3 40.9

64 32 16 37.1 19.6

64 16 32 37.1 11.2

128 32 32 37.1 11.3

128 16 64 37.0 6.5

256 32 64 37.1 7.2

256 16 128 37.1 4.1

16 (long) 16 8 37.7 65.2

32 (long) 32 8 37.8 60.3

64 (long) 32 16 37.6 30.1

128 (long) 32 32 37.6 15.8

256 (long) 32 64 37.7 9.4

256 (long) 16 128 37.7 5.4

Table 3: Comparisons of training with different mini-batch

sizes, BN sizes (the number of images used for calculat-

ing statistics), GPU numbers, and training policies. “long”

means that we apply the long training policy. When the BN

size≥ 32, the sublinear memory is applied and thus slightly

reduces training speed. Overall, the large mini-batch size

with BN not only speeds up the training, but also improves

the accuracy.

The main results are summarized in Table 3. We have the

following observations. First, within the growth of mini-

batch size, the accuracy almost remains the same level,

which is consistently better than the baseline (16-base). In

the meanwhile, a larger mini-batch size always leads to a

shorter training cycle. For instance, the 256 mini-batch ex-

periment with 128 GPUs finishes the COCO training only

in 4.1 hours, which means a 8× acceleration compared to

the 33.2 hours baseline.

Second, the best BN size (number of images for BN

statistics) is 32. With too less images, e.g. 2, 4, or 8, the

BN statistics are very inaccurate, thus resulting a worse per-

formance. However, when we increase the size to 64, the

accuracy drops. This demonstrates the mismatch between

image classification and object detection tasks.

5 15
Epoch

10

15

20

25

30

35

40

m
m

A
P

Epoch-By-Epoch mmAP

16-batch
256-batch

Figure 4: Validation accuracy of 16 (long) and 256 (long)

detectors, using the long training policy. The BN sizes are

the same in two detectors. The vertical dashed lines indicate

the moments of learning rate decay.

Third, in the last part of Table 3, we investigate the long

training policy. Longer training time slightly boots the ac-

curacy. For example, “32 (long)” is better that its counter-

part (37.8 v.s. 37.3). When the mini-batch size is larger

than 16, the final results are very consist, which indicates

the true convergence.

Last, we draw epoch-by-epoch mmAP curves of 16

(long) and 256 (long) in Figure 4. 256 (long) is worse at

early epochs but catches up 16 (long) at the last stage (after

second learning rate decay). This observation is different

from those in image classification [13, 39], where both the

accuracy curves and convergent scores are very close be-

tween different mini-batch size settings. We leave the un-

derstanding of this phenomenon as the future work.

5. Concluding Remarks

We have presented a large mini-batch size detector,

which achieved better accuracy in much shorter time. This

is remarkable because our research cycle has been greatly

accelerated. As a result, we have obtained 1st place of

COCO 2017 detection challenge. The details are in Ap-

pendix.

6186

Figure 5: Illustrative examples for our MegDet on COCO dataset.

6187

name mmAP mmAR

DANet 45.7 62.7

Trimps-Soushen+QINIU 48.0 65.4

bharat umd 48.1 64.8

FAIR Mask R-CNN [14] 50.3 66.1

MSRA 50.4 69.0

UCenter 51.0 67.9

MegDet (Ensemble) 52.5 69.0

Table 4: Result of (enhanced) MegDet on test-dev of COCO

dataset.

Appendix

Based on our MegDet, we integrate the techniques in-

cluding OHEM [35], atrous convolution [40, 2], stronger

base models [38, 18], large kernel [28], segmentation su-

pervision [27, 34], diverse network structure [12, 32, 36],

contextual modules [22, 9], ROIAlign [14] and multi-scale

training and testing for COCO 2017 Object Detection Chal-

lenge. We obtained 50.5 mmAP on validation set, and 50.6

mmAP on the test-dev. The ensemble of four detectors fi-

nally achieved 52.5. Table 4 summarizes the entries from

the leaderboard of COCO 2017 Challenge. Figure 5 gives

some exemplar results.

References

[1] S. Bell, C. Lawrence Zitnick, K. Bala, and R. Girshick.

Inside-outside net: Detecting objects in context with skip

pooling and recurrent neural networks. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 2874–2883, 2016. 2

[2] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and

A. L. Yuille. Deeplab: Semantic image segmentation with

deep convolutional nets, atrous convolution, and fully con-

nected crfs. arXiv preprint arXiv:1606.00915, 2016. 8

[3] T. Chen, B. Xu, C. Zhang, and C. Guestrin. Training

deep nets with sublinear memory cost. arXiv preprint

arXiv:1604.06174, 2016. 5

[4] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran,

B. Catanzaro, and E. Shelhamer. cudnn: Efficient primitives

for deep learning. arXiv preprint arXiv:1410.0759, 2014. 5

[5] J. Dai, K. He, and J. Sun. Instance-aware semantic segmen-

tation via multi-task network cascades. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 3150–3158, 2016. 1

[6] J. Dai, Y. Li, K. He, and J. Sun. R-fcn: Object detection

via region-based fully convolutional networks. In Advances

in neural information processing systems, pages 379–387,

2016. 2, 3

[7] J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, and

Y. Wei. Deformable convolutional networks. arXiv preprint

arXiv:1703.06211, 2017. 3

[8] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-

Fei. Imagenet: A large-scale hierarchical image database.

In Computer Vision and Pattern Recognition, 2009. CVPR

2009. IEEE Conference on, pages 248–255. IEEE, 2009. 5

[9] S. Gidaris and N. Komodakis. Object detection via a multi-

region and semantic segmentation-aware cnn model. In Pro-

ceedings of the IEEE International Conference on Computer

Vision, pages 1134–1142, 2015. 8

[10] R. Girshick. Fast r-cnn. In Proceedings of the IEEE inter-

national conference on computer vision, pages 1440–1448,

2015. 1, 3

[11] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich fea-

ture hierarchies for accurate object detection and semantic

segmentation. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 580–587,

2014. 1, 2

[12] I. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and

Y. Bengio. Maxout networks. In International Conference

on Machine Learning, pages 1319–1327, 2013. 8

[13] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis,

L. Wesolowski, A. Kyrola, A. Tulloch, Y. Jia, and K. He.

Accurate, large minibatch sgd: Training imagenet in 1 hour.

arXiv preprint arXiv:1706.02677, 2017. 1, 2, 3, 4, 6

[14] K. He, G. Gkioxari, P. Dollar, and R. Girshick. Mask r-cnn.

In The IEEE International Conference on Computer Vision

(ICCV), Oct 2017. 1, 2, 3, 8

[15] K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling

in deep convolutional networks for visual recognition. In

European Conference on Computer Vision, pages 346–361.

Springer, 2014. 3

[16] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-

ing for image recognition. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages

770–778, 2016. 1, 5

[17] E. Hoffer, I. Hubara, and D. Soudry. Train longer, generalize

better: closing the generalization gap in large batch training

of neural networks. In Advances in Neural Information Pro-

cessing Systems, pages 1729–1739, 2017. 3

[18] J. Hu, L. Shen, and G. Sun. Squeeze-and-excitation net-

works. arXiv preprint arXiv:1709.01507, 2017. 8

[19] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara,

A. Fathi, I. Fischer, Z. Wojna, Y. Song, S. Guadarrama, et al.

Speed/accuracy trade-offs for modern convolutional object

detectors. CVPR, 2017. 1

[20] S. Ioffe and C. Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift. In

International Conference on Machine Learning, pages 448–

456, 2015. 2, 4

[21] A. Krizhevsky. One weird trick for parallelizing convo-

lutional neural networks. arXiv preprint arXiv:1404.5997,

2014. 2, 3

[22] J. Li, Y. Wei, X. Liang, J. Dong, T. Xu, J. Feng, and S. Yan.

Attentive contexts for object detection. IEEE Transactions

on Multimedia, 19(5):944–954, 2017. 8

[23] T.-Y. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, and

S. Belongie. Feature pyramid networks for object detection.

In The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), July 2017. 3, 4, 5

6188

[24] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar. Focal

loss for dense object detection. In The IEEE International

Conference on Computer Vision (ICCV), Oct 2017. 1, 2, 3

[25] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-

manan, P. Dollár, and C. L. Zitnick. Microsoft coco: Com-

mon objects in context. In European conference on computer

vision, pages 740–755. Springer, 2014. 1, 5

[26] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-

Y. Fu, and A. C. Berg. Ssd: Single shot multibox detector.

In European conference on computer vision, pages 21–37.

Springer, 2016. 2, 3

[27] J. Mao, T. Xiao, Y. Jiang, and Z. Cao. What can help pedes-

trian detection? In The IEEE Conference on Computer Vi-

sion and Pattern Recognition (CVPR), July 2017. 8

[28] C. Peng, X. Zhang, G. Yu, G. Luo, and J. Sun. Large kernel

matters – improve semantic segmentation by global convolu-

tional network. In The IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), July 2017. 8

[29] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You

only look once: Unified, real-time object detection. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 779–788, 2016. 2, 3

[30] J. Redmon and A. Farhadi. Yolo9000: better, faster, stronger.

arXiv preprint arXiv:1612.08242, 2016. 2, 3

[31] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards

real-time object detection with region proposal networks. In

Advances in neural information processing systems, pages

91–99, 2015. 1, 2, 3

[32] S. Ren, K. He, R. Girshick, X. Zhang, and J. Sun. Object

detection networks on convolutional feature maps. IEEE

transactions on pattern analysis and machine intelligence,

39(7):1476–1481, 2017. 8

[33] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus,

and Y. LeCun. Overfeat: Integrated recognition, localization

and detection using convolutional networks. ICLR, 2014. 2

[34] A. Shrivastava and A. Gupta. Contextual priming and feed-

back for faster r-cnn. In European Conference on Computer

Vision, pages 330–348. Springer, 2016. 8

[35] A. Shrivastava, A. Gupta, and R. Girshick. Training region-

based object detectors with online hard example mining. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 761–769, 2016. 8

[36] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi.

Inception-v4, inception-resnet and the impact of residual

connections on learning. In AAAI, pages 4278–4284, 2017.

8

[37] J. R. Uijlings, K. E. Van De Sande, T. Gevers, and A. W.

Smeulders. Selective search for object recognition. Inter-

national journal of computer vision, 104(2):154–171, 2013.

2

[38] S. Xie, R. Girshick, P. Dollar, Z. Tu, and K. He. Aggregated

residual transformations for deep neural networks. In The

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), July 2017. 8

[39] Y. You, Z. Zhang, C.-J. Hsieh, J. Demmel, and

K. Keutzer. Imagenet training in minutes. arXiv preprint

arXiv:1709.05011, 2017. 1, 3, 6

[40] F. Yu and V. Koltun. Multi-scale context aggregation by di-

lated convolutions. arXiv preprint arXiv:1511.07122, 2015.

8

6189

