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Abstract

Variational inference has experienced a recent surge

in popularity owing to stochastic approaches, which have

yielded practical tools for a wide range of model classes. A

key benefit is that stochastic variational inference obviates

the tedious process of deriving analytical expressions for

closed-form variable updates. Instead, one simply needs to

derive the gradient of the log-posterior, which is often much

easier. Yet for certain model classes, the log-posterior itself

is difficult to optimize using standard gradient techniques.

One such example are random field models, where optimiza-

tion based on gradient linearization has proven popular,

since it speeds up convergence significantly and can avoid

poor local optima. In this paper we propose stochastic vari-

ational inference with gradient linearization (SVIGL). It is

similarly convenient as standard stochastic variational in-

ference – all that is required is a local linearization of the

energy gradient. Its benefit over stochastic variational in-

ference with conventional gradient methods is a clear im-

provement in convergence speed, while yielding compara-

ble or even better variational approximations in terms of KL

divergence. We demonstrate the benefits of SVIGL in three

applications: Optical flow estimation, Poisson-Gaussian

denoising, and 3D surface reconstruction.

1. Introduction

Computer vision algorithms increasingly become build-

ing blocks in ever more complex systems, prompting for

ways of assessing the reliability of each component. Prob-

ability distributions allow for a natural way of quantify-

ing predictive uncertainty. Here, variational inference (VI,

see [43] for an extensive introduction) is one of the main

computational workhorses. Stochastic approaches to varia-

tional inference [17, 21, 31, 33] have recently rejuvenated

the interest in this family of approximate inference methods.

Part of their popularity stems from their making variational

inference applicable to large-scale models, thus enabling

practical systems [40]. Another benefit, which should not

be underestimated, is that they allow to apply variational
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inference in a black-box fashion [31, 40], since it is no

longer required to carry out tedious and moreover model-

specific derivations of the update equations. This allows

practitioners to apply variational inference to new model

classes very quickly. The only required model specifics are

gradients of the log-posterior w.r.t. its unknowns, which are

typically much easier to derive than variational update equa-

tions. Moreover, automatic differentiation [4] can be used

to further reduce manual intervention.

While this makes stochastic variational inference tech-

niques attractive from the user’s perspective, there are some

caveats. In this paper we specifically focus on the limita-

tions of gradient-based optimization techniques in the con-

text of certain highly nonlinear model classes. One such

category are random field models [6], which often arise in

dense prediction tasks in vision. Let us take optical flow

[8, 32] as an illustrative example. The data model is highly

multimodal and the prior frequently relies on non-convex

potentials, which complicate inference [5]. Gradient-based

optimization is severely challenged by the multi-modal en-

ergy function. Hence, approaches based on energy mini-

mization [8, 32, 42] often rely on a optimization technique

called gradient linearization [29], which proceeds by iter-

atively linearizing the gradient at the current estimate and

then solving the resulting system of linear equations to ob-

tain the next iterate. Our starting point is the following ques-

tion: If gradient linearization is beneficial for maximum a-

posteriori (MAP) estimation in certain model classes, would

not stochastic variational inference benefit similarly?

In this paper, we derive stochastic variational infer-

ence with gradient linearization (SVIGL) – a general opti-

mization algorithm for stochastic variational inference that

only hinges on the availability of linearized gradients of

the underlying energy function. In each iteration, SVIGL

linearizes a stochastic gradient estimate of the Kullback-

Leibler (KL) divergence and solves for the root of the lin-

earization. We show that each step of this procedure op-

timizes a sound objective. Furthermore, we make interest-

ing experimental findings for challenging models from opti-

cal flow estimation and Poisson-Gaussian denoising. First,

we observe that SVIGL leads to faster convergence of the

variational objective function than gradient-based stochas-
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Figure 1. Example application of SVIGL to optical flow estimation: Ground truth (top), flow predictions (middle), and uncertainty estimates

(bottom) on Sintel final [9]. Note that the uncertainties agree well with the flow errors.

tic variational inference (SVI) with the strong optimizers

Adam [20] and stochastic gradient descent (SGD). Second,

we show that SVIGL is more robust w.r.t. its optimization

parameters than standard gradient-based approaches. Fi-

nally, SVIGL enables re-purposing existing well-proven en-

ergy minimization schemes and implementations to obtain

uncertainty estimates while maintaining, or even improving,

application performance. Figure 1 shows exemplary flow

fields and uncertainty predictions of SVIGL. As expected

intuitively, high uncertainty values coincide with errors in

the estimated flow field, e.g. near motion discontinuities. Fi-

nally, we show that SVIGL benefits problems beyond dense

prediction by employing it for 3D surface reconstruction.

2. Related Work

Variational inference. For Bayesian networks, VI w.r.t.

to the exclusive Kullback-Leibler divergence KL (q || p) has

usually been restricted to certain model classes. The para-

metric form of the approximating distribution q is chosen

such that update equations for the variational parameters

of q are analytically tractable. Here, conjugate-exponential

models [47] are very common as they often arise in the con-

text of topic modeling, e.g. in the LDA model [7, 38].

In other application areas, e.g. in computer vision,

Markov random field (MRF) models are more common.

Traditionally, VI has only been applied to specific model

classes with closed-form updates, e.g. [11, 23, 24, 27, 36].

Miskin and MacKay [27] pioneered the use of VI for

Bayesian blind deconvolution, but made the restrictive as-

sumption that the prior is fully factorized. Levin et al. [23]

use a mixture of Gaussian prior on the image derivatives.

However, this more powerful prior comes at the cost of

additionally maintaining a variational approximation of all

mixture components. Krähenbühl and Koltun [22] con-

sider fully-connected conditional random fields (CRF) with

Gaussian edge potentials. In this special case mean-field in-

ference can be done efficiently through filtering. Schelten

and Roth [36] apply VI to high-order random fields.

In all of the previously mentioned works the variational

inference algorithm is closely tied to the probabilistic model

at hand and oftentimes requires tedious derivations of ana-

lytical update equations. In this paper, we aim to make VI

more practical as the only interaction with the probabilistic

model is through the linearized gradient of its log proba-

bility density function, thus allowing for easy variational

inference for a rich class of graphical models.

Stochastic variational optimization. Recently, it was

shown that the KL divergence is amenable to stochastic

optimization if the approximating distribution q can be re-

parameterized in terms of a base distribution that does not

or only weakly depend on the parameters of q [21, 33, 35].

While SVI was originally proposed for learning deep la-

tent variable models, such as variational auto-encoders, it

is also applicable more generally to graphical models. Re-

parameterization allows for deriving efficient stochastic es-

timators of the gradient of the KL divergence [21, 28].

Only the unnormalized log-density and its gradient w.r.t. the

hidden variables are required, thus enabling black-box VI

[19, 31, 40]. Note that by stochastic variational inference

we do not just refer to the method of Hoffman et al. [17],

which, in contrast, requires the true posterior to be from

the conjugate-exponential family. Instead, we use the term

more generally to describe VI using stochastic optimization.

Having access to a gradient estimator, stochastic algo-

rithms [34] are employed to do the actual optimization.

Nowadays, one of the default choices is Adam [20], but

other approaches are in use as well, e.g. RMSprop [39],

AdaGrad [13], or L-BFGS-SGVI [14]. These algorithms

each implement a gradient descent method that is tuned with

the recent history of gradient evaluations. In contrast, we as-

sume that we observe a linearization of the gradient and use

the information contained therein to modify the direction of
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the parameter updates. This can be seen as a gradient de-

scent with a special preconditioner [29], see supplemental.

Applications of uncertainties. Aside from being a pop-

ular inference tool in many areas of computer vision, e.g.

[22, 23], VI yields an assessment of the uncertainty, which

can be exploited to post-process point estimates, e.g. with

the fast bilateral solver [3]. When used as input for higher-

level tasks, optical flow uncertainties allow to discard unre-

liable estimates and avoid error propagation [45], e.g. in im-

age segmentation [30] or tracking [46]. Uncertainties in im-

age restoration can be beneficial in video restoration, where

estimates are fused over several frames [12].

3. Preliminaries

Variational inference [43] generally aims to approximate

an intractable distribution p with a tractable distribution q.

Since our applications are based on CRFs, we will specif-

ically look at finding approximations to a posterior distri-

bution p(x | y). Note, however, that our approach can be

applied to marginal and joint distributions as well. We as-

sume that p is a density function over continuous variables,

and can be expressed as a Gibbs distribution with its energy

function E(x,y) and partition function Z(y) as

p(x | y) =
1

Z(y)
exp

{

− E(x,y)
}

. (1)

To ease notation, we assume the temperature parameter to

be subsumed into E(x,y), which we furthermore assume to

be differentiable. The approximating distribution q is cho-

sen to be a member of some parameterized family of dis-

tributions with parameter θ, usually from the exponential

family [43]. To determine q, variational inference then aims

to find variational parameters θ̂ that minimize the exclusive

Kullback-Leibler divergence KL (q || p), i.e.

θ̂ = argmin
θ

KL (q || p) (2a)

= argmin
θ

− Eq(x;θ)[log p(x | y)] + Eq(x;θ)[log q(x;θ)]

(2b)

= argmin
θ

− Eq(x;θ)[log p(x | y)]−H(q), (2c)

where H(q) = H
(

q(x;θ)
)

denotes the entropy of q.

Gradient linearization. We now take a step back and first

look at MAP estimation for the energy E(x,y) in Eq. (1),

i.e. the problem of finding

x̂ = argmax
x

log p(x | y) = argmin
x

E(x,y). (3)

Assuming that E is differentiable, we could now apply a

standard gradient method, but this may lead to slow con-

vergence. On the other hand, second-order methods may

be difficult to apply as the Hessian can be tedious to obtain

and/or too dense. For many large-scale prediction problems

in computer vision, e.g. estimating optical flow [8, 32], de-

noising [41], or deblurring [42], this has been addressed

through iterative gradient linearization (GL). In this pro-

cedure, given a current estimate x(t), the gradient of the

energy function E w.r.t. x is linearized around x(t) as

∇xE(x,y) ≈ ∇̄xE
(

x;x(t)
)

= Ax

(

x(t)
)

x+ bx

(

x(t)
)

.
(4)

For notational brevity, we omit y here and in the following.

Note that the linearized gradient ∇̄xE
(

x;x(t)
)

is exact at

x = x(t). To obtain the next iterate x(t+1), we set ∇̄xE to

zero and solve the resulting linear system of equations

x(t+1) = −A−1
x

(

x(t)
)

bx

(

x(t)
)

(5)

using an exact or approximate standard solver. Like in any

iterative optimization, an initial guess x(0) is required.

Iterative GL is also known by various other names.

Nikolova and Chan [29] showed it to be equivalent to mul-

tiplicative half-quadratic minimization [16] for Gaussian

likelihoods. Moreover, it is closely related to iteratively

reweighted least squares through their equivalence to half-

quadratic approaches [18]. Finally, GL can be seen as pre-

conditioned gradient descent using A−1
x as preconditioner

[29], c.f . supplemental. In comparison to Newton’s method

no second-order derivatives are required – a benefit that is

shared with other quasi-Newton methods, such as the pop-

ular L-BFGS [10]. However, every regular gradient step

couples variables only within a local spatial neighborhood.

In contrast, one iteration of GL (Eq. 5) causes a joint up-

date of all variables leading to faster convergence in highly

non-linear objectives (see Fig. 2 for an example).

4. Stochastic Variational Inference with Gradi-

ent Linearization (SVIGL)

We now aim to leverage the advantages of GL in the con-

text of stochastic variational inference. To that end, we as-

sume access to a linearized gradient, given by Ax and bx in

Eq. (4). By applying the re-parameterization trick [21, 33],

we can rewrite the KL divergence of Eq. (2) as

θ̂ = argmin
θ

− Ez∼G

[

log p
(

x(z) | y
)

]

−H(q), (6)

where x(z) ≡ x(z;θ), and z is distributed following a base

distribution G independent of θ. In the following, we ap-

proximate the full expectation over z with a finite set of

samples Z = {zi}. Using the approximation to the true

gradient given by Ax and bx, we can then easily derive a

stochastic approximation of the gradient of the KL diver-
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gence in Eq. (6) with respect to the parameters θ:

∇θ KL (q || p)

(6)
= − Ez∼G

[

∇x log p
(

x(z) | y
)

· ∇θ x(z)
]

−∇θ H(q)

(7a)

≈ −
1

|Z|

∑

zi∈Z

∇x log p
(

x(zi) | y
)

· ∇θ x(zi)−∇θ H(q)

(7b)

(4)
≈

1

|Z|

∑

zi∈Z

(

Ax

(

x(zi)
)

x(zi) + bx

(

x(zi)
)

)

· ∇θ x(zi)

−∇θ H(q) (7c)

≡∇̄θ KL (q || p) . (7d)

Gaussian mean field inference. To illustrate the use of

this approximation, we now apply the common naive mean-

field framework [11, 21, 23] and assume that the variational

distribution q factorizes along all elements of x =
(

xl

)

l
for

l = 1, . . . , L. Moreover, q is modeled as an uncorrelated

Gaussian distribution with θ = {µ,σ}:

q(x) =

L
∏

l=1

N (xl | µl, σ
2
l ). (8)

Following [21], z is thus chosen to be standard normally

distributed, i.e. z ∼ N (0, I), and we set x(z) = z · σ + µ

with element-wise operations.

For the case of a fully-factorized Gaussian q, it is now

possible to express ∇̄θ KL (q || p) again in the form of a

linearized gradient. To do this, we consider the individual

parameter gradients w.r.t. µ and σ. For the gradient with

respect to µ, we exploit that the entropy of a Gaussian dis-

tribution does not depend on its mean. Hence, we arrive at

∇̄µ KL (q || p)

=
1

|Z|

∑

zi∈Z

(

Ax

(

x(zi)
)

x(zi) + bx(x(zi))
)

· ∇µ x(zi)

−∇µ H(q) (9a)

=
1

|Z|

∑

zi∈Z

Ax

(

x(zi)
)(

zi · σ + µ
)

+ bx

(

x(zi)
)

(9b)

=

[

1

|Z|

∑

zi∈Z

Ax

(

x(zi)
)

]

µ

+

[

1

|Z|

∑

zi∈Z

Ax

(

x(zi)
)

D(zi)

]

σ

+

[

1

|Z|

∑

zi∈Z

bx

(

x(zi)
)

]

(9c)

≡Aµ,µ(θ) µ+Aµ,σ(θ) σ + bµ(θ), (9d)

where D(zi) denotes a diagonal matrix comprised of the el-

ements of zi. The gradient w.r.t. σ involves the derivative of

the Gaussian entropy, i.e. ∇σH(q) = ∇σ(logσ + const),
which can be linearized in several ways. We opt for using

the element-wise second-order Taylor expansion of the log-

arithm around the current estimate: σ(t):

logσ ≈ logσ(t) +
1

σ(t)

(

σ−σ(t)
)

−
1

(

σ(t)
)2

(

σ−σ(t)
)2

(10a)

=
1

σ(t)
σ −

1
(

σ(t)
)2

(

σ − σ(t)
)2

+ const. (10b)

With that we can derive our stochastic approximation to

the linearized gradient of the KL divergence w.r.t. σ as

∇̄σ KL (q || p)

=
1

|Z|

∑

zi∈Z

(

Ax

(

x(zi)
)

x(zi) + bx

(

x(zi)
)

)

· ∇σx(zi)

−∇σ H(q) (11a)

≈
1

|Z|

∑

zi∈Z

D(zi)
(

Ax

(

x(zi)
)(

zi · σ + µ
)

+ bx

(

x(zi)
)

)

−
3

σ(t)
+

2
(

σ(t)
)2σ (11b)

=

[

1

|Z|

∑

zi∈Z

D(zi)Ax

(

x(zi)
)

]

µ

+

[

1

|Z|

∑

zi∈Z

D(zi)Ax

(

x(zi)
)

D(zi) +
2

(

σ(t)
)2

]

σ

+

[

1

|Z|

∑

zi∈Z

zibx

(

x(zi)
)

−
3

σ(t)

]

(11c)

≡Aσ,µ(θ) µ+Aσ,σ(θ) σ + bσ(θ). (11d)

From Eqs. (9d) and (11d), we now obtain an approximate

linearized gradient of the KL divergence in Eq. (2) with re-

spect to µ and σ. Following the GL procedure, the opti-

mization proceeds by solving the linear system of equations

θ(t+1) = −Aθ

(

θ(t)
)−1

bθ

(

θ(t)
)

(12)

with

Aθ(θ) =

[

Aµ,µ(θ) Aµ,σ(θ)

Aσ,µ(θ) Aσ,σ(θ)

]

, bθ(θ) =

[

bµ(θ)

bσ(θ)

]

. (13)

Note that we can treat the underlying energy E as a black

box. The only interaction with E is through its linearized

gradient. Algorithm 1 summarizes our approach.

Discussion. Each gradient iteration in Eq. (12) can be in-

terpreted as fitting a quadratic function to the Monte Carlo
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approximation of the KL divergence (Eq. 7b), such that the

quadratic approximation and the KL divergence agree on

their first-order derivatives at θ(t). This alone does not guar-

antee that the extremum θ(t+1) of the quadratic function is

actually a minimum of the approximation. Hence, we now

show that the Hessian of the quadratic approximation Aθ is

positive semi-definite, thus ensuring that θ(t+1) minimizes

the approximated KL divergence.

Proposition 1. Aθ

(

θ(t)
)

is positive semi-definite, i.e.

θTAθ

(

θ(t)
)

θ ≥ 0, ∀θ,θ(t) ∈ R
2L, if the matrix Ax

(

x(z)
)

of the energy GL is positive semi-definite for all x(z).

Proof. Let us first assume that we just draw a single sam-

ple z. To simplify notation let Ax ≡ Ax

(

x(z)
)

and

Aθ ≡ Aθ

(

θ(t)
)

. Now, for θ = [µ,σ]T we have that

θTAθ θ

= µTAµ,µ µ+ σTAσ,µ µ+ µTAµ,σ σ + σTAσ,σ σ

(14a)

= µTAxµ+ σTD(z)TAxµ+ µTAxD(z)σ (14b)

+ σTD(z)T
(

Ax +D
(

2/
(

σ(i)
)2
))

D(z)σ

=
(

µ+D(z)σ
)T

Ax

(

µ+D(z)σ
)

(14c)

+
(

D(z)σ
)T

D
(

2/
(

σ(i)
)2
)

(

D(z)σ
)

≥ 0, (14d)

where we inserted the definition of the individual matrices

(Eqs. 9d and 11d). For the last step, we used our assump-

tion that Ax is positive semi-definite. The case of multiple

samples zi can be shown analogously by expanding each of

the four terms in Eq. (14a) into a sum.

To put the above proposition into perspective, we now

give two mild conditions on the energy function such that

the corresponding matrix Ax is positive semi-definite.

Proposition 2. An energy function can be linearized with a

positive semi-definite matrix Ax if it is composed of a sum

of energy terms ρi(wi) that fulfill the following conditions:

1. Each penalty function ρi(·) is symmetric and

ρ′i(wi) ≥ 0 for all wi ≥ 0. (⋆)

2. Each penalty function ρi(·) is applied element-wise on

wi, which is of the form wi = Kix+gi(y), with filter

matrix Ki and function gi not depending on x. (⋆⋆)

Proof. See supplemental material.

The above assumptions of Proposition 2 are not very re-

strictive but met by many MRF/CRF potentials [6], includ-

ing the smoothness term used in optical flow and Poisson-

Gaussian denoising, as well as the data term of our flow

Algorithm 1 Gaussian mean field inference with SVIGL

Require: θ(0): Initial variational parameters

Ax, bx: Gradient linearization of the model energy

for t = 0, . . . , T − 1 do

Generate samples zi
xi ← σ · zi + µ

Compute Ax

(

xi

)

and bx

(

xi

)

Compute Aθ

(

θ(t)
)

and bθ

(

θ(t)
)

as in Eq. (13)

θ(t+1) ←−Aθ

(

θ(t)
)−1

bθ

(

θ(t)
)

end for

return θ(T )

energy, c.f . Sec. 5.1 and 5.2. Moreover, positive semi-

definiteness of Ax can also be shown for more complex

energy formulations such as the data term of Poisson-

Gaussian denoising used in our experiments.

Implementation details. Solving the linear system of

equations of Eq. (12) exactly is too costly for many large-

scale problems, which may involve millions of variables.

Hence, we consistently apply 100 iterations of successive

over-relaxation [48] with a relaxation factor of 1.95 and the

current estimate θ(t) as initialization. We also experimented

with a conjugate gradient optimizer, but found convergence

to be too slow, probably due to the need of an effective pre-

conditioner. One limitation of our method is that we cannot

guarantee that σ stays positive after each optimization step.

Therefore, we replace each new iterate σ(t+1) with its abso-

lute value. In practice, however, we found that usually the

entropy term is enough to force σ to stay positive. Since

the gradient of the KL divergence cannot be expressed con-

veniently as linear in logσ, we do not use the usual trick of

optimizing for logσ to directly enforce positivity of σ.

5. Experiments

We now demonstrate that SVIGL provides a convenient

and efficient way of obtaining accurate variational approxi-

mations for popular energy functions of diverse computer

vision problems, yielding uncertainty estimates that cor-

relate well with estimation errors. Specifically, we quan-

titatively evaluate on the tasks of optical flow estimation

and Poisson-Gaussian denoising. We compare SVIGL

against gradient-based optimization of the KL divergence

with SGD as well as the Adam optimizer [20], the default

choice in the popular Edward library [40]. To assess the

quality of the obtained approximate posterior, we evaluate

the KL divergence KL (q || p) as well as application specific

performance metrics. We always report KL divergences ap-

proximated by sampling (c.f . Eq. 6) and up to the unknown,

but constant log partition function logZ(y).
We conduct several experiments for each application.

We begin by evaluating the robustness of Adam (in the con-
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text of stochastic variational inference) and SVIGL w.r.t. to

their parameters. We first vary the step size α of Adam

while using |Z| = 50 samples per iteration to approxi-

mate the KL divergence gradient. Next, we use the best

step size and vary the size of the sample set |Z| for both

Adam and SVIGL. For a sample set size of 50, 25, and 12,

we set the number of iterations to 100, 200, and 400 for

SVIGL and 1000, 2000, and 4000 for Adam, respectively.

For SGD, we similarly tune the hyperparameters and find

that 4000 iterations with 12 samples and an initial step size

of 10−6, which is cut after each third of iterations by a fac-

tor of ten, works best for both applications. We compare the

best configurations of SVIGL and SVI with SGD and Adam

to a Laplace approximation and MAP estimation baselines.

Runtimes refer to an Intel Xeon E5-2650v4, 2.2 GHz, 12

cores. We furthermore show qualitative results for 3D sur-

face reconstruction to demonstrate the benefit of SVIGL for

non-vision applications.

5.1. Optical flow

We first apply SVIGL to estimate an optical flow field

x, describing the motion between images y = {I1, I2}. We

use the EpicFlow energy of [32] to induce a Gibbs distribu-

tion akin to Eq. (1). Its likelihood encourages the flow to be

consistent with the images and is based on a gradient con-

sistency assumption, whereas the prior assumes small flow

gradients over a 4-neighborhood, i.e.

E(x,y) = λD

L
∑

l=1

ρD

(

∥

∥

∥

(

∇Ĩ2(x)−∇I1
)

l

∥

∥

∥

2

)

(15)

+ λS

J
∑

j=1

L
∑

l=1

ρS

(

∥

∥

∥

(

fj ∗ x
)

l

∥

∥

∥

2

)

.

Here,∇I1 denotes the spatial derivatives of I1, Ĩ2
(

x
)

is the

second image warped by x, and f1, . . . , fJ represent (deriva-

tive) filters. Functions ρD and ρS are robust penalty func-

tions weighted with parameters λD, λS. Following standard

practice, we linearize the likelihood around the current flow.

Setup. As in [45], we initialize our estimates with sparse

FlowFields matches [1], densified with the EpicFlow inter-

polation [32]. Variances are initialized as σ = 10−3. We

use generalized Charbonnier penalties [2] and obtain their

parameters as well as the ratio λD/λS through Bayesian op-

timization [37]. To that end, we evaluate the average end-

point error (AEPE) of MAP estimates on a subset of Sintel

train [9]. The absolute scale of λD and λS is subsequently

calibrated such that the AEPE of the SVIGL estimates re-

mains comparable to the MAP estimates on the training set.

Results. We conduct experiments on a validation set of

104 images randomly chosen from Sintel training (exclud-

ing images used for parameter optimization). We first mo-

tivate the use of gradient linearization by comparing the re-

sults of MAP estimation performed with up to 200 iterations

of L-BFGS to 20 iterations of GL. The results averaged over

the validation set are depicted in Fig. 2. We observe a signif-

icantly faster minimization of the energy using GL, which

highlights its benefits for highly non-linear objectives.

We now compare SVIGL to SVI with Adam. In order

to keep the runtime of Adam manageable, we perform the

evaluation on manually cropped patches of size 100× 100.

In a first setting, we vary the step size α of Adam using

1000 iterations for Adam and 100 iterations for SVIGL.

In Fig. 3a, we evaluate the KL divergence plotted against

the runtime. SVIGL reduces the KL divergence two orders

of magnitude faster than Adam on this challenging energy

function. Moreover, the optimization by Adam is highly

dependent on the chosen step size; too small or too large a

value may equally lead to slow convergence. In contrast,

SVIGL does not require the selection of a step size. For

the following experiments we fix the step size for Adam to

α = 0.005. Now, we vary the number of samples and itera-

tions as described above. The results are shown in Fig. 3b.

Again, SVIGL attains a significantly better variational ap-

proximation than SVI with Adam for all examined settings.

Table 1 summarizes the KL divergence and the aver-

age runtime for the best settings of Adam (α = 0.01,

|Z| = 12), SGD, and SVIGL (|Z| = 12). In a similar run-

time, SVIGL achieves a significantly lower KL divergence

than SVI with Adam or SGD. We additionally evaluate the

diagonal Laplace approximation around the MAP estimates

using the Hessian of the linearized energy. SVIGL shows

a moderate improvement over the Laplace approximation.

However, the Laplace method requires second-order deriva-

tives, which are tedious and error-prone to derive. More-

over, the Laplace approximation does not lead to consis-

tently good results, c.f . Sec. 5.2.

Finally, we evaluate SVIGL on the full-size images of

Sintel test. Since SVI with Adam is too slow, we only com-

pare to MAP baselines with 200 iterations of L-BFGS and

20 iterations of GL, respectively. For SVIGL we use 50
samples and also 20 iterations. Both SVIGL and GL yield

an AEPE of 5.74 and therefore outperform the L-BFGS

baseline with an AEPE of 5.81.

Interpretation. The interdependent updates of SVIGL

(Eq. 12) causes information to flow between all variables

Table 1. Unnormalized KL divergence and average runtime on

100× 100 crops from a Sintel validation set.

Method KL[∗107] runtime [s]

Initialization 5.13 –

GL + Laplace 3.83 –

SVI + SGD 4.45 551

SVI + Adam 4.24 1148

SVIGL (ours) 3.78 584
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Figure 2. Optical flow energy vs. runtime

for MAP estimation with L-BFGS and GL.

Values averaged over the validation dataset.

GL is clearly superior to standard L-BFGS.

(a) (b)

Figure 3. Unnormalized KL divergence vs. runtime for SVIGL and SVI with Adam on

optical flow with different step sizes (a) and different numbers of samples and iterations

(b). Values averaged over the validation set.

while a regular gradient step propagates information in a

local spatial neighborhood only. We attribute the observed

performance gain of GL and SVIGL over gradient-based

methods at least partly to this global update.

Uncertainty estimates. Finally, we assess the quality of

the per-pixel uncertainty estimates. To this end, we compare

to the recent strong baseline ProbFlowFields [45]. Specif-

ically, we apply SVIGL to update the continuous variables

of their energy formulation; see supplemental material for

further implementational details. Table 2 shows the met-

rics introduced in [45], averaged over the full-size images

of our validation set. The uncertainty estimates obtained by

SVIGL are competitive with the ones of ProbFlowFields.

More importantly and unlike [45], the application of SVIGL

does not require the tedious derivation of update equations.

Example flow fields and the inferred uncertainty maps are

shown in Fig. 1.

5.2. Poisson­Gaussian denoising

We next apply SVIGL to the problem of removing

Poisson-Gaussian noise [15]. Here, it is assumed that image

noise comes mainly from two sources that inherently affect

any camera sensor. First, the Poissonian arrival process of

photons hitting the pixels, and second an additive Gaussian

component arising from noise in the electronics of the sen-

sor. The Poisson distribution can be well approximated by

a Gaussian [15], giving rise to a Gaussian likelihood with

intensity dependent variance, i.e.

yl ∼ N
(

xl, σ(xl)
2
)

with σ(xl)
2 = β1xl + β2, (16)

where the noise distribution is specified by the parameters

β1 and β2. We specifically set β1 = 0.05 and β2 = 0.0001

Table 2. AEPE, area under curve (AUC) of the sparsification

plots, and Spearman’s rank correlation coefficient for SVIGL and

ProbFlowFields on our validation set, c.f . [45] for further details.
†Difference in AEPE is caused by one outlier image pair.

Method AEPE AUC CC

ProbFlowFields [45] 3.13 0.40 0.56

SVIGL (ours) 3.21† 0.42 0.50

in order to simulate strong noise (Poisson rate 20). Combin-

ing this likelihood with a 4-connected pairwise MRF with

generalized Charbonnier potentials [2] as image prior leads

to the energy

E(x,y) =
λD

2

L
∑

l=1

(xl − yl)
2

σ(xl)2
+ λS

J
∑

j=1

L
∑

l=1

ρS

(

(

fj ∗ x
)

l

)

,

(17)

where the fj denote horizontal and vertical image derivative

filters. The temperature is subsumed by the weights λD, λS.

Setup. We select the relative importance of λD and λS as

well as the exponent of the robust penalty through Bayesian

optimization [37]. To this end, we optimize the peak-signal-

to-noise ratio (PSNR) after 20 steps of GL on a set of 100

images from the BSDS training set [26]. We then calibrate

the posterior for VI by determining the absolute scale of the

weights on the training set. To synthesize noisy images for

parameter tuning and testing, we apply Poisson-Gaussian

noise to clean ground truth images. Afterwards, we rescale

the intensities such that the ground truth lies in [0, 1] and

clip the noisy image to that range. For test time inference,

we initialize µ with the noisy image and σ as 10−3.

Results. In Fig. 4 we plot the unnormalized KL divergence

against runtime for SVIGL and SVI with Adam, using vary-

ing step sizes for Adam and varying sizes of the sample set

Z for both methods. It becomes apparent that the perfor-

mance of Adam highly depends on these two parameters.

Table 3. Unnormalized KL divergences, PSNR values, and SSIM

[44] for SVIGL and baseline methods in denoising.

Method KL [∗106] PSNR [dB] SSIM

Initialization 1.95 17.29 0.287

GL + Laplace 1.57 24.71 0.662

SVI + SGD 1.23 19.49 0.384

SVI + Adam 0.98 24.70 0.680

SVIGL (ours) 0.97 24.77 0.693

MAP + L-BFGS – 23.17 0.605

MAP + GL – 24.71 0.662
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(a) (b)

Figure 4. Runtime vs. unnormalized KL divergence for denoising with SVIGL and

SVI with Adam with different stepsize parameters α (a) and varying sizes of the

sample set |Z| (b). Values averaged over the BSDS test set.

(a) (b)

Figure 5. Noisy input point cloud (a) and

smoothed point cloud (b); colors indicate pos-

terior uncertainty (blue – low, red – high).

Too small a step size slows down convergence, while setting

it too high leads to a KL divergence inferior to the initial-

ization. In contrast, SVIGL does not require setting a step

size and converges faster than Adam with the best step size

α = 0.01. For instance, SVIGL reaches the same KL di-

vergence as Adam in only 1/5 of the time. When looking at

the size of the sample set, we note that smaller sample sets

speed up each iteration and hence lead to faster progress of

the optimization. However, the solution found by Adam de-

teriorates after a certain number of iterations with smaller

sample set sizes, while SVIGL is not affected by this issue.

In summary, SVIGL yields faster convergence while being

robust to the setting of nuisance parameters.

The converged solutions are evaluated in Table 3.

SIVGL (|Z| = 50) not only converges significantly faster

than Adam (α = 0.01, |Z| = 50), but obtains even slightly

improved solutions. SGD performs significantly worse than

SVIGL and Adam. A Laplace approximation around the

mode obtained with 100 iterations of GL provides a poor

fit to the denoising posterior since the dependence of the

variances σ(xl) on the noise-free intensities xl results in a

skewed distribution. Furthermore, we see that SVIGL ob-

tains a better solution in terms of the standard image qual-

ity metrics PSNR and SSIM [44] than the MAP estimation

baselines obtained with GL and L-BFGS, e.g. +1.6 dB in

PSNR compared to L-BFGS. In the supplemental material

we show denoised images obtained by SVIGL along with

their uncertainty estimates.

5.3. 3D surface reconstruction

In order to demonstrate that SVIGL is not limited to low-

level problems in computer vision, we apply it to the task of

reconstructing a smooth point cloud from noisy input data.

Specifically, we use the energy of [25] given as

E(X,P,C) =

|X|
∑

i=1

|P |
∑

j=1

‖xi − pj‖ · h
(

‖ci − pj‖
)

(18)

−

|X|
∑

i=1

|C|
∑

i′=1

λi‖xi − ci′‖ · h
(

‖ci − ci′‖
)

.

Here, pj ∈ P denote the noisy input points; the current and

the new estimate of the smoothed points are given by ci ∈ C

and xi ∈ X , respectively. The contribution of each term is

weighted by a Gaussian kernel h(·). Following Lipman et

al. [25], we use this energy in a fixed point scheme, i.e.

Xt+1 = argmin
X

E(X,P,Xt), (19)

where X0 is an L2 projection of the input points. The sup-

plemental material describes the setup in more detail.

In order to exemplify the use of SVIGL for 3D surface

reconstruction, we synthesize a noisy input point cloud of

the Stanford bunny by adding noise on the positions of ref-

erence points. The noise strength gradually increases from

tail to face. Figure 5 shows both the noisy input point cloud

as well as the variational approximation from SVIGL with

color coded uncertainty σ. It is apparent that the uncertainty

increases with input noise strength, thus reflecting the dif-

ficulty of the reconstruction task. Moreover, at points fur-

ther away from the true surface, the uncertainty is generally

higher, c.f . the outliers at the ears.

6. Conclusion

Motivated by the success of gradient linearization tech-

niques for MAP estimation in highly multimodal posteri-

ors, we proposed to combine the benefits of gradient lin-

earization with stochastic variational inference. As a re-

sult we obtain SVIGL, an easy-to-use variational infer-

ence scheme that only requires access to a gradient lin-

earization of the posterior energy and allows to simply re-

purpose well-proven energy minimization schemes. We ap-

plied SVIGL to optical flow estimation as well as Poisson-

Gaussian denoising and demonstrated its significantly faster

convergence compared to standard stochastic variational in-

ference. Moreover, we showed that the optimization accu-

racy of SVIGL is robust to the choice of parameters. The

inferred uncertainty estimates are competitive with state-of-

the-art but can be obtained without tedious derivations of

update equations. Finally, we demonstrate that SVIGL is

not restricted to dense 2D prediction tasks by applying it

successfully to the task of 3D surface reconstruction.
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[22] P. Krähenbühl and V. Koltun. Efficient inference in fully con-

nected CRFs with Gaussian edge potentials. In NIPS*2011,

pages 109–117. 2, 3

[23] A. Levin, Y. Weiss, F. Durand, and W. T. Freeman. Efficient

marginal likelihood optimization in blind deconvolution. In

CVPR, pages 2657–2664, 2011. 2, 3, 4

[24] A. C. Likas and N. P. Galatsanos. A variational approach for

Bayesian blind image deconvolution. IEEE T. Signal Pro-

cess., 52(8):2222–2233, Aug. 2004. 2

[25] Y. Lipman, D. Cohen-Or, D. Levin, and H. Tal-Ezer.

Parameterization-free projection for geometry reconstruc-

tion. 26(3):22, 2007. 8

[26] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database

of human segmented natural images and its application to

evaluating segmentation algorithms and measuring ecologi-

cal statistics. In ICCV, volume 2, pages 416–423, 2001. 7

[27] J. Miskin and D. J. C. MacKay. Ensemble learning for blind

image separation and deconvolution. In M. Girolami, editor,

Advances in Independent Component Analysis, Perspectives

in Neural Computing, chapter 7, pages 123–141. Springer

London, 2000. 2

[28] A. Mnih and D. J. Rezende. Variational inference for Monte

Carlo objectives. In ICML, pages 2188–2196, 2016. 2

[29] M. Nikolova and R. H. Chan. The equivalence of half-

quadratic minimization and the gradient linearization itera-

tion. IEEE T. Image Process., 16(6):1623–1627, June 2007.

1, 3

[30] P. Ochs, J. Malik, and T. Brox. Segmentation of moving

objects by long term video analysis. IEEE T. Pattern Anal.

Mach. Intell., 36(6):1187–1200, June 2014. 3

[31] R. Ranganath, S. Gerrish, and D. Blei. Black box variational

inference. In AISTATS, pages 814–822, 2014. 1, 2

[32] J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid.

EpicFlow: Edge-preserving interpolation of correspon-

dences for optical flow. In CVPR, pages 1164–1172, 2015.

1, 3, 6

[33] D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic

backpropagation and approximate inference in deep genera-

tive models. In ICML, pages 1278–1286, 2014. 1, 2, 3

[34] H. Robbins and S. Monro. A stochastic approximation

method. The Annals of Mathematical Statistics, 22(3):400–

407, Mar. 1951. 2

[35] F. R. Ruiz, M. K. Titsias, and D. M. Blei. The generalized

reparameterization gradient. In NIPS*2016, pages 460–468.

2

[36] K. Schelten and S. Roth. Mean field for continuous high-

order MRFs. In DAGM, pages 52–61, 2012. 2

[37] J. Snoek, H. Larochelle, and R. P. Adams. Practical Bayesian

optimization of machine learning algorithms. In NIPS*2012,

pages 2951–2959. 6, 7

1574



[38] Y. W. Teh, K. Kurihara, and M. Welling. Collapsed varia-

tional inference for HDP. In NIPS*2007, pages 1481–1488.

2

[39] T. Tieleman and G. Hinton. Lecture 6.5 – RMSprop: Di-

vide the gradient by a running average of its recent magni-

tude. Technical report, COURSERA: Neural networks for

machine learning, 2012. 2

[40] D. Tran, M. D. Hoffman, R. A. Saurous, E. Brevdo, K. Mur-

phy, and D. M. Blei. Deep probabilistic programming. In

ICLR, 2017. 1, 2, 5

[41] C. R. Vogel and M. E. Oman. Iterative methods for total

variation denoising. SIAM Journal on Scientific Computing,

17(1):227–238, Jan. 1996. 3

[42] C. R. Vogel and M. E. Oman. Fast, robust total variation-

based reconstruction of noisy, blurred images. IEEE T. Image

Process., 7(6):813–824, June 1998. 1, 3

[43] M. J. Wainwright and M. I. Jordan. Graphical models, expo-

nential families, and variational inference. Foundations and

Trends in Machine Learning, 1(1–2):1–305, Jan. 2008. 1, 3

[44] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli.

Image quality assessment: From error visibility to structural

similarity. IEEE T. Image Process., 13(4):600–612, Apr.

2004. 7, 8

[45] A. S. Wannenwetsch, M. Keuper, and S. Roth. ProbFlow:

Joint optical flow and uncertainty estimation. In ICCV, pages

1182 – 1191, 2017. 3, 6, 7

[46] A. Wedel, A. Meißner, C. Rabe, U. Franke, and D. Cre-

mers. Detection and segmentation of independently moving

objects from dense scene flow. In EMMCVPR, pages 14–27,

2009. 3

[47] J. Winn and C. M. Bishop. Variational message passing. J.

Mach. Learn. Res., 6:661–694, Apr. 2005. 2

[48] D. M. Young. Iterative solution of large linear systems. Aca-

demic Press, New York, July 1971. 5

1575


