
Egocentric Activity Recognition on a Budget

Rafael Possas ∗ Sheila Pinto Caceres ∗

Fabio Ramos

School of Information Technologies

University of Sydney

{rafael.possas, fabio.ramos}@sydney.edu.au, spin3586@uni.sydney.edu.au

Abstract

Recent advances in embedded technology have enabled

more pervasive machine learning. One of the common ap-

plications in this field is Egocentric Activity Recognition

(EAR), where users wearing a device such as a smartphone

or smartglasses are able to receive feedback from the em-

bedded device. Recent research on activity recognition has

mainly focused on improving accuracy by using resource in-

tensive techniques such as multi-stream deep networks. Al-

though this approach has provided state-of-the-art results,

in most cases it neglects the natural resource constraints

(e.g. battery) of wearable devices. We develop a Reinforce-

ment Learning model-free method to learn energy-aware

policies that maximize the use of low-energy cost predic-

tors while keeping competitive accuracy levels. Our results

show that a policy trained on an egocentric dataset is able

use the synergy between motion and vision sensors to effec-

tively tradeoff energy expenditure and accuracy on smart-

glasses operating in realistic, real-world conditions.

1. Introduction

The use of wearable technologies has increased the de-

mand for applications that can efficiently process large

amounts of raw data from motion sensors and videos. Rec-

ognizing an activity is possibly the first step in understand-

ing the context in which a person is embedded. Therefore,

creating robust methods to recognize activities under the

constraints of smart devices becomes one of the main chal-

lenges in the awakening of this technological trend.

Extensive research has been done in EAR. Traditional

vision methods commonly encode prior knowledge of

the egocentric paradigm by using handcrafted features

to build mid-level representations based on the detec-

tion/segmentation of objects [6, 15, 17, 19, 26], hands [15,

16, 17, 19, 23, 37], gaze [15, 16], among others. However,

∗Both authors contributed equally to this work.

the use of these specific representations prevent the gener-

alization to a more realistic set of activities. For example,

hand detection has been widely used in kitchen-related ac-

tivities but would be ineffective in the recognition of the

walking activity. Ideally, learning algorithms should be less

dependent on prior knowledge and instead be able to learn

adequate features from data automatically [3]. Deep learn-

ing methods have shown that they can achieve this task

quite well in several domains. Recent research on Activ-

ity Recognition has used very deep neural networks from

external [1, 4, 9, 24, 30] and egocentric [32] perspectives

achieving encouraging results. These models, however, de-

mand high computing resources and energy which are com-

monly not available in wearable devices hindering their use

in most of real-life applications.

The egocentric domain also entails new challenges.

Cameras often produce shaken and blurred shots due to the

natural movements of the wearer. Unintelligible images can

be produced by real life situations such as dark and rainy en-

vironments. Therefore, alternative sources of information

such as motion sensors can be used to increase the predic-

tion performance at a low power consumption cost. In fact,

the use of sensors such as accelerometers [2, 6] have played

an important role in EAR. Traditionally, these devices were

attached to several parts of the body [2, 12, 43], to exter-

nal objects [14, 40] and to the ambient [12, 43] which often

limited their use to controlled environments which can be

quite different to a real-life setting.

Few approaches [13, 41, 44] have tackled activity recog-

nition while considering the energy constraints on devices

such as smartphones. However, they consider a small group

of simple activities. State-of-the-art performance on more

complex activities comes from recent work [32, 33] that

uses data from both camera and motion sensors to per-

form activity recognition from an egocentric perspective.

Their methods, nevertheless, are extremely energy ineffi-

cient as they rely on both resource intensive multi-stream

Deep Neural Networks and on expensive feature extraction

techniques such as the one from stabilized optical flow.

15967

In this paper, we propose an energy-aware framework for

EAR whose goal is to minimize energy consumption while

maintaining reasonable predictive performance. Specifi-

cally, we make the following contributions:

• We propose a Reinforcement Learning (RL) Policy

Gradient framework that balances energy consumption

and accuracy through a customizable hyper-parameter.

• We provide a novel egocentric dataset called DataEgo

with continuous activities collected in real conditions

with high variations in illumination, different environ-

ments, and mulitple subjects.

• We achieve higher accuracy over other benchmark,

Multimodal egocentric dataset [32] while using less

energy compared to previous work.

Results from rigorous experiments over the new dataset

DataEgo, and the Multimodal dataset [32] show that our

trained policy is able to optimize the use of energy effec-

tively while maintaining a competitive predictive accuracy.

2. Related Work

Activity recognition from visual information has at-

tracted great attention in the last years. It has been tradi-

tionally tackled using third-person view cameras and then

extended to egocentric cameras. In the external perspec-

tive context, the successful application of deep learning

approaches for image classification [11] has resulted in

their extension to the context of activity recognition over

video [1, 4, 9, 24, 30].

At first, a natural step has been to extend Convolutional

Neural Networks (CNNs) 2D filters that explore spatial in-

formation over images to 3D filters to add temporal infor-

mation over videos as it was done in [7]. In fact, Karpa-

thy et al. [9], explored spatio-temporal schemes using both

2D and 3D convolutions, finding that 3D convolutions over

videos were giving a very short gain in performance in com-

parison with 2D convolutions over images of single frames

of videos. This fact suggests that (CNNs) architectures are

not able to properly learn motion features, due to the non-

existence of sufficiently large video datasets. Simonyan et

al. [30] proposed the use of stacks of dense optical flows to

encode temporal information achieving higher success.

In order to preserve longer temporal information, some

architectures based on Recurrent Neural Networks (RNNs)

have been proposed [1, 4, 24]. Donahue et al. [4] have used

Long Short-Term Memory (LSTM) networks over features

obtained from a CNN applied to single frames of videos. Ng

et al. [24] proposed a similar idea over both single frames

and optical flow. Finally, Ballas et al. [1] suggested the use

of convolutions inside the recurrent units of GRU to better

capture temporal features of the sequence of images.

In the context of EAR, traditional vision methods have

encoded prior knowledge by using handcrafted features

and mid-level representations involving the detection of ob-

jects [6, 15, 17, 19, 26], hands [15, 16, 17, 19, 23, 37],

gaze [15, 16], motion [16, 17, 25, 28, 42], among others.

Object-based techniques presumes that an activity can be

inferred by the group of objects that appear in a video. Thus,

object-based techniques rely on the object recognition do-

main and, therefore, inherit its challenges. Another com-

monly used strategy has involved the use of optical flows

to express motion [32, 42]. Motion-based techniques fo-

cus on the fact that different kind of activities create differ-

ent body motions presenting remarkable robustness to deal

with some of the vision challenges. However, they perform

poorly when dealing with activities that lacks movement

patterns such as sitting, watching TV, and reading.

Most of the aforementioned representations prevents the

learning algorithm from generalizing to a more realistic set

of activities. Ideally, a framework must learn meaningful

features automatically. Recent advances in third-person ac-

tivity recognition have used deep learning to address this

requirement. Simonyan et al. [30] proposed a Two-Streams

CNN approach over spatial (image frames) and temporal

(optical flows) streams and has been taken as a baseline

of other works since it outperformed hand-crafted features

methods [38]. Song et al. [32] extended this approach to the

EAR domain obtaining encouraging results.

Wearable cameras can produce visual information that

is affected by real conditions of the wearer leading to un-

intelligible images. Thus, the use of other sources of in-

formation is needed. Wearable devices have typically been

attached to some parts of the body [2, 12, 43], to external

objects [14, 40] and to the environment [12, 43] and their

use was often limited to controlled experiments, differing

in high degree from a real life application.

Reinforcement Learning (RL) is another technique that

has achieved successful results lately. Successes are wide

ranging, from playing Atari games [21] to teaching a robot

to play soccer [27] or detecting objects in vision tasks [18].

In the context of budget-restricted prediction, Karayev et

al. [8] applied RL to determine the order of computation

of handcrafted features. Although budget awareness is de-

sirable, handcrafted features increments the complexity and

could prevent generalization to new domains as described

before. To the best of our knowledge, there is no current

application of RL on the EAR problem.

Energy awareness has been greatly overlooked in all re-

cent multi-stream activity recognition work. This factor can

not be ignored anymore if we desire to use these methods

in a realistic setting which has major constraints such as

battery consumption. Despite all previous work, there have

been no/few attempts to balance computational resources

and other constraints with the overall accuracy on activity

5968

recognition tasks. Therefore we propose a Reinforcement

Learning framework that makes use of policy learning in

order to balance two different activity predictors using data

from motion and vision sensors.

3. Method

The goal of the method introduced in this section is to

perform decision making in the EAR context using a RL

approach that balances energy consumption and accuracy

on resource constrained devices.

3.1. Overview

We consider tasks in which a wearable device receives

data from motion sensors and uses a policy πθ(at|st) to take

actions a ∈ (α, β), where action α means motion predictor

is used while action β means the vision predictor is used to

recognize the activity. At each time-step t we give a reward

rt that reflects the accuracy and energy consumption of the

selected action. The long-term return Rt =
∑

∞

k=0
γkrt+k

is the total accumulated reward from time step t with dis-

count factor γ ∈ (0, 1]. We also define a training dataset

D = {xt, yt}
N
t=1 with xt = {It, acct, gyrt} where It is a

sequence of images from the device’s camera, and acct and

gyrt is a sequence of accelerometer/gyroscope x,y,z val-

ues. The class labels for the 20 activities are denoted by

yt ∈ {y
1, ..., y20}.

Our framework is shown in Figure 1. We learn a pol-

icy for energy optimization through a LSTM [5], mapping

accelerometer and gyroscope data to actions. The network

outputs a probability distribution over actions a ∈ (α, β)
that attempts to select actions with higher average rewards.

The model’s actions define whether the final prediction

should come from a motion predictor, defined by ρm(xt), or

vision predictor, defined by ρv(xt). These are represented

by a separate LSTM and LRCN Network [4] respectively.

3.2. LSTM (Motion) Predictor

For predictions of sensor data we use a LSTM network.

This is a specific Recurrent Neural Network (RNN) archi-

tecture that has been widely used to solve problems where

data has an intrinsic temporal structure. Its main idea is to

regulate the flow of information through neurons’ specific

gates. They control how much information should be re-

membered or whether the network should forget or keep a

memory. LSTMs were designed to solve the problem of

long-term dependencies on vanilla RNNs, where data with

long temporal dependencies caused the gradient of the net-

work to vanish or explode. Our motion predictor archi-

tecture is composed of one layer with 64 neurons unrolled

through time and is optimized using RMSProp with learn-

ing rate of 0.001. The main advantage of using motion data

for prediction is that it has a very low energy profile as mo-

bile devices require minimum energy to capture their val-

ues. Its predictive strength concentrates on activities with

high body movement patterns such as running, walking and

cycling. On the other hand, the network often performs

poorly for activities where there is no such pattern and/or

limited movement. For this reason, we also use a vision

predictor that helps to increase accuracy in these scenarios.

3.3. LRCN (Vision) Predictor

CNNs have dominated recent image recognition tasks.

However, these models are not very effective on tasks in-

volving sequences of images. Our vision predictor uses a

mix of CNNs and RNNs called Long-term Recurrent Con-

volutional Networks (LRCN) [4]. The model’s first layer

uses an Inception V3 [36] pre-trained on Imagenet [11] fol-

lowed by a LSTM with 512 neurons and a softmax on the

last layer. The CNN acts as a feature extractor while the

LSTM captures the temporal structure of the data. All train-

ing happens end-to-end where we first freeze the inception

layers and train only the LSTM for 10 epochs. Then, we

unfreeze the 3 last blocks of the CNN and train again for 20

more epochs. The model receives a sequence of images and

outputs a vector of activity probabilities. Even though the

accuracy of vision methods have shown higher overall ac-

curacy on previous works [31, 33, 32], it still is very energy

inefficient model. For instance, we evaluated the camera’s

consumption on a Vuzix M300 smartglasses, and it takes on

average three times more energy than only motion sensor

measurements. Our aim is to optimize the overall accuracy

by balancing our predictors usage appropriately.

3.4. Reinforcement Learning

Until recently, RL methods were constrained to discrete

state spaces and actions. However, the use of deep networks

as function approximators have extended their use to con-

tinuous inputs and outputs. While in supervised learning the

main goal is to only map inputs to outputs, in RL the choice

of what to approximate is what makes current methods to

differ from each other. One could optimize policies, value

functions, dynamic models or some combination thereof. In

fact, there are mainly two perpendicular choices to be made:

what kind of objective to optimize (e.g. policy, value func-

tion or dynamics) and what kind of function approximators

to use. In these lines, our framework can be fully defined

by the tuple < S,O,A, r, λ, γ >, with:

• S: Set of states {s1, ..., sn} where st := (ot, yt)
where,

ot: Sensor observation at time-step t,
yt: True activity label at time-step t.

• O: Set of observations {o1, ..., on} where ot :=
(acct, gyrt) and,

acct: 3D accelerometer values at time-step t,
gyrt: 3D gyroscope values at time-step t.

5969

Figure 1: (Left): Our smartglasses capture data from different sources; motion sensors and camera. (Middle): Policy

Function approximator represented by a LSTM Neural Network. (Right): Activity predictors pre-trained on an activity

recognition dataset.

• A: Set of actions {a1, ..., an}where at ∈ [α, β] where,

α: Motion (LSTM) is used for prediction,

β: Vision (LRCN) is used for prediction.

• r: S × A → {1 + λ,−1 − λ, 1,−1, λ} is a reward

function with five possible outputs, corresponding to

executing an action at in state st.

• λ ∈ [0, 1]: Parameter that limits the rewards given to

high energy consumption actions.

• γ ∈ (0, 1]: is the discount factor on future rewards.

Further, we denote the LSTM policy network by

πθ(at|st) which is parametrized by θ. Through the RL

framework, we select actions that give the highest average

reward for every hidden representation of the input state st.
The network architecture is composed of a layer with 256

neurons followed by a softmax with one neuron for each

action. The policy πθ(at|st) chooses between two different

actions: predict yt (the activity label) from the motion pre-

dictor ρm(xt) or predict yt from the vision predictor ρv(xt).
Since our state is partially represented by the accelerometer

and gyroscope readings, these are required to be turned on

in the device at all times.

Reward Function: The design of the reward function is

one of the most important parts of any RL framework. Its

outputs should be able to increase or decrease the likelihood

of selecting an action in order to provide a better behavior

for the entire system. Positive rewards increases the prob-

ability of an action through gradient ascent, while negative

rewards will decrease it through gradient descent. In our

case, we have a lower accuracy but more energy efficient

motion predictor and a more energy demanding/accurate vi-

sion predictor. The goal is to only use vision methods when

low-energy motion predictions are incapable of providing

the right outcome. In order to determine the reward, we use

a training dataset where we have access to the correct labels

for all given inputs. We evaluate the results on both motion

and vision predictors calculating the advantage of choosing

one predictor over the other and updating our policy accord-

ingly. For instance, we give only λ reward for choosing the

LRCN model for prediction using vision when we observe

that the LSTM is also able to provide a correct outcome

using motion sensors. The function gives constant rewards

rt ∈ [−1, 1] for choosing the motion predictor while giving

λ controlled rewards to vision predictor actions. The formal

definition of the reward rt(s, a) is as follows,































1 πθ(at|st) = α, ρm(xt) = yt

1 + λ πθ(at|st) = β, ρm(xt) 6= yt, ρ
v(xt) = yt

λ πθ(at|st) = β, ρm(xt) = yt, ρ
v(xt) = yt

−1− λ πθ(at|st) = β, ρm(xt) = yt, ρ
v(xt) 6= yt

−1 otherwise.

Episodes and Steps: Each episode contains 15 seconds of

data split in equal time-steps t of 1 second each. Videos on

the Multimodal dataset have 1 single activity per 15 seconds

of footage while on DataEgo, a video has 5 minutes of du-

ration conformed by 4-6 activities. Actions are taken every

second using the readings from both accelerometer and gy-

roscope. A separate buffer of image is kept during training

in order to evaluate the reward function. On real life settings

the camera would need to be turned on in order to provide

data for the LRCN model.

3.5. Policy Learning

We solve the RL problem through the use of a model free

framework. The goal is to optimize a parametrized stochas-

tic policy πθ(at|st) and a value function Vθv
(st) using gra-

dient methods [35]. While policy methods learn a policy di-

rectly, value iteration methods such as Q-Learning focuses

on updating state-value functions using the Bellman equa-

tion [34]. Our method uses an Actor-Critic [10] framework

that combines the benefits of both approaches. The actor

5970

takes actions based on a policy πθ(at|st) and an estimate

of the value function (critic) Vθv
(st) . The value function

Vθv
(st) determines how good a certain state is while follow-

ing a policy πθ. While actor and critic parameters θ and θv
are shown as being separate, we share some of the parame-

ters in practice to improve stability. We use our LSTM pol-

icy network with a softmax output for the policy πθ(at|st)
and one linear output for the value function Vθv

(st).

Algorithm 1 Asynchronous advantage actor-critic (A3C)

1: //global shared parameter vectors = θ and θv
2: //thread-specific parameter vectors = θ′ and θ′v
3: Inputs: πθ, D
4: Outputs: π∗

θ

5: t← 1
6: repeat

7: dθ, dθv,← 0
8: θ′ ← θ
9: θ′v ← θv

10: tstart ← t
11: repeat //run episode and save batches until tmax

12: at ← πθ′(at|st)
13: Caculate rt(st, at)
14: st ← st+1

15: t← t+ 1
16: T ← T + 1
17: until terminal st or t− tstart == tmax

18: if st == terminal, R = 0 else R = Vθv
(st)

19: for i ∈ {t− 1, ..., tstart} do

20: R← ri + γR
21: dg ← ∇θ′ log πθ′(at|st)A(st, at, θ

′

v)
22: dh← ∇θ′H(πθ′(at|st))
23: dθ ← dθ′ + dg + dh
24: dθv ← dθ′v + ∂(R− Vθ′

v

(st))
2/∂θ′v

25: end for

26: θ ← θ + dθ′ //asynchronous update

27: θv ← θv + dθ′v //asynchronous update

28: until T > Tmax

Policy learning is performed through infinitesimal up-

dates in both θ and θv . The sign and magnitude of our re-

ward determines if we are making an action more or less

probable as it performs gradient ascent and descent respec-

tively. For the policy update, we calculate the gradient over

an expectation using a score function estimator as shown in

the work of Sutton et al. [35]. The value function is updated

using a squared loss between the discounted reward and the

estimate of the value under parameters θv . Optimization is a

two-step process where we first train our predictors ρm(xt)
and ρv(xt) on the training dataset and then we use their pre-

dictions to optimize both the policy θ parameters and value

function θv parameters.

The main benefit of the actor-critic method is to use an

advantage function instead of discounted rewards in the up-

date rule. As rewards have high variance during learning,

the use of an estimated value speeds up the process while

reducing variance on updates. The advantage function

A(st, at, θv) is an estimate of the advantage and is given

by A(st, at, θv) =
∑k−1

i=0
γirt+i + γkVθv

(st+k)− Vθv
(st).

We also added entropy regularization to our policy up-

dates as proposed by Williams and Peng [39]. The idea is to

have a term in the objective function that discourages pre-

mature convergence to suboptimal deterministic policies.

The final update rule for the algorithm takes the form θ ←
θ+∇θ(log πθ(at|st)) A(st, at, θv) + η ∇θH(πθ(at|st)),
where H(πθ(at|st)) is the entropy for our policy and η is

the parameter that controls its relative importance.

3.6. Asynchronous optimization

The availability of multi-core processors justifies the de-

velopment of RL techniques with asynchronous updates.

Recent work [22, 29] have shown that updates in on-line

methods are strongly correlated mainly because the data ob-

served from RL agents is non-stationary [20]. Techniques

like experience replay [22] focuses on storing batches of

experience and then performing gradient updates with ran-

dom samples from each batch. Here, we follow a different

approach to solve the same problem. We use asynchronous

gradient optimization of our controllers that executes multi-

ple workers in parallel on multiple instances of the environ-

ment. This process decorrelates the data into a more station-

ary process. In fact, this simple idea enables a much larger

spectrum of RL algorithms to be executed effectively. The

asynchronous variant of actor-critic methods is the state-of-

the-art method on several RL complex domains as it was

shown by Mnih et al (2016). Algorithm 1 shows the im-

plementation for each actor-learner, which we call Asyn-

chronous advantage actor-critic (A3C). They run indepen-

dently on each CPU core while the central model receives

updates from all workers asynchronously.

4. Experiments

4.1. Datasets

The large majority of previous work on egocentric Ac-

tivity Recognition have used either raw data acquired from

sensors or video data from cameras (not both). One of the

few datasets available was proposed by Song et al. [33]. We

refer to this dataset as Multimodal. Its main limitation is

that videos are split by activity instead of a more natural

setting where there is a flow between different activities.

We present a novel egocentric activity dataset DataEgo

that contains a very natural set of activities developed in

a wide range of scenarios. There are 20 activities per-

formed in different conditions and by different subjects.

Each recording has 5 minutes of footage and contains a se-

5971

Figure 2: Convergence of A3C shows small variance on motion/vision usage and average rewards after 600 episodes for both

Multimodal (top) and DataEgo (bottom) datasets.

quence of 4-6 different activities. Images from the camera

are synchronized with readings from the accelerometer and

gyroscope captured at 15 fps and 15 Hz respectively. In

total, our dataset contains approximately 4 hours of con-

tinuous activity while the multimodal dataset has only 50

minutes of separate activities. We make DataEgo publicly

available in the following link 1.

4.2. Predictors Benchmark

The results for our individual predictors are shown on

Table 1. It can be seen that if we consider methods indi-

vidually without any type of sensor fusion or extra features

such as the ones from optical flow, our methods have the

highest overall accuracy. Our LRCN network has achieved

an accuracy of 78.70% which sits very close to the more re-

source intensive methods from previous work [32, 33]. Our

LSTM also outperforms previous work on motion sensors

[32] by almost 10%. We believe that this result is due to

the stateful approach we used during training. The idea is

to save the hidden states in between batches so as to better

capture the temporal structure within the data.

4.3. Convergence of A3C

Training results of the RL framework are shown on Fig-

ure 2. Convergence was achieved with approximately 600

episodes for each of the actor-learners. The running mean

of rewards presents an exponential increase initially while

stabilizing with fixed small variance at the end. The results

illustrates that our algorithm finds a stable policy for λ =

0.2 while equally balancing usage of low/high energy con-

sumption predictors.

1Dataset link: http://sheilacaceres.com/dataego/

Method Dataset Accuracy (%)

LRCN (vision) Multimodal 78.70%

LSTM (motion) Multimodal 61.24%

LRCN (vision) DataEgo 71%

LSTM (motion) DataEgo 58%

CNN FBF (vision) [32] Multimodal 70%

Multi Max (both) [32] Multimodal 80.5%

Fisher Vector (both) [33] Multimodal 83.7%

LSTM (motion) [32] Multimodal 49%

Table 1: Comparison of motion and vision predictors with

previous work shows higher accuracy when comparing to

single stream methods.

4.4. Motion vs Vision Tradeoff

Figure 3 compares the effect of λ on the overall per class

results for the Multimodal dataset. Activities such as or-

ganizing files, riding elevators and others have greatly im-

proved their accuracy by using the vision predictor. This

shows that our policy is in fact learning actions that exploits

the different strengths of our predictors.

Validation for the aforementioned results was perfomed

through an analysis of how actions were being chosen

amongst different activities. We sampled the softmax out-

puts on the multimodal test dataset while using a learned

policy with λ = 0.2. As can be seen on Figure 4, activi-

ties such as organizing files and riding elevators/escalators

presented higher probabilities on using the vision predic-

tor, while running, doing sit-ups and walking up/downstairs

were dominated by the motion predictor. This fact is con-

5972

http://sheilacaceres.com/dataego/

Accuracy comparison for different settings

Figure 3: Individual per-class accuracy on Multimodal

dataset shows that activities with low body movement

seems to benefit the most from vision predictor.

sistent with a real life setting as activities with higher move-

ment patterns are prone to perform better with motion sen-

sor data.

Figure 5 shows the energy consumption trend as we in-

crease the use of vision methods. A vision only approach

would have an energy cost of 450 mAh, while motion based

only costs 150 mAh. As it was mentioned before, motion

methods are three times more energy efficient than vision

methods. For both datasets, λ = 0.2 seems to be the best

tradeoff between accuracy/energy consumption.

Maximum energy efficiency was achieved allowing min-

imum use of the vision predictor by making λ = 0. With

only 8% of vision usage the model achieved 64.02% accu-

racy on the Multimodal dataset as shown on Figure 5. This

represents an increase of almost 4% if we compare with

the motion only predictor. The benefit is that we tradeoff

minimum vision usage for a huge leap in accuracy. This is

only possible due to the optimal decision making behavior

learned by our policy.

Softmax Average per Activity

Figure 4: The softmax average per activity shows synergy

between predictors on a λ = 0.2 policy.

��� ��� ��	 ��
 ���
�' �!���!���#�! ��

	��

	��

��

��

���

��&
�!�

���
"$

� #
���

���
���

��&�!����"$� �

������'!��"���

����!���"���

	�

��

�

��

�"
���

���
���

%
���

"�
�

��

��� ��� ��� ��	 ��

� ������������� ��

���

���

	��

	��

��

���
���

���
���

���
���

���
��

�����������������

�������

�

��

�

��

�

���

���
���

� �
���

��� ��� ��	 ��
 ���
�' �!���!���#�! ��

���

	��

	��

��

��&
�!�

���
"$

� #
���

���
���

��&�!����"$� �

������'!��"���

����!���"���
�

	�

��

�

��

���

�"
���

���
���

%
���

"�
�

��

��� ��� ��� ��	 ��

� ������������� ��

���

���

���

	��

���
���

���
���

���
���

���
��

�����������������

�������

�

��

�

��

�

���

���
���

� �
���

Figure 5: Summary of Accuracy, Energy Consumption

and Sensor/Vision usage for both Multimodal (top) and

DataEgo (bottom) datasets.

The parameter λ allows our method to learn policies with

both low energy profile and with high predictive capacity.

This can be achieved through proper parameter tunning. For

instance, predictive performance is improved as we increase

the value of λ while energy consumption is reduced as we

pick smaller values.

The results on large values of λ have shown promising

results. With 95% of vision usage and only 5% of motion,

the overall accuracy on the Multimodal dataset was 84.84%.

This is the highest accuracy achieved in this dataset to date.

The policy outperforms the vision only model by almost

5%. Not only we outperform previous work [32] but we

also provide a more energy efficient predictor as 5% of all

actions comes from a low energy source. It is worth to note

that the benchmarked methods require the camera to be on

at all times as they rely on its data to make continuous pre-

dictions.

5973

