
PieAPP: Perceptual Image-Error Assessment through Pairwise Preference

Ekta Prashnani∗ Hong Cai∗ Yasamin Mostofi Pradeep Sen

University of California, Santa Barbara

{ekta,hcai,ymostofi,psen}@ece.ucsb.edu

Abstract
The ability to estimate the perceptual error between im-

ages is an important problem in computer vision with many

applications. Although it has been studied extensively, how-

ever, no method currently exists that can robustly predict

visual differences like humans. Some previous approaches

used hand-coded models, but they fail to model the complex-

ity of the human visual system. Others used machine learn-

ing to train models on human-labeled datasets, but creating

large, high-quality datasets is difficult because people are

unable to assign consistent error labels to distorted images.

In this paper, we present a new learning-based method that

is the first to predict perceptual image error like human ob-

servers. Since it is much easier for people to compare two

given images and identify the one more similar to a refer-

ence than to assign quality scores to each, we propose a

new, large-scale dataset labeled with the probability that

humans will prefer one image over another. We then train

a deep-learning model using a novel, pairwise-learning

framework to predict the preference of one distorted im-

age over the other. Our key observation is that our trained

network can then be used separately with only one distorted

image and a reference to predict its perceptual error, with-

out ever being trained on explicit human perceptual-error

labels. The perceptual error estimated by our new metric,

PieAPP, is well-correlated with human opinion. Further-

more, it significantly outperforms existing algorithms, beat-

ing the state-of-the-art by almost 3× on our test set in terms

of binary error rate, while also generalizing to new kinds of

distortions, unlike previous learning-based methods.

1 Introduction
One of the major goals of computer vision is to enable com-

puters to “see” like humans. To this end, a key problem is

the automatic computation of the perceptual error (or “dis-

tance”) of a distorted image with respect to a corresponding

reference in a way that is consistent with human observers.

A successful solution to this problem would have many

applications, including image compression/coding, restora-

tion, and adaptive reconstruction.
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Because of its importance, this problem, also known

as full-reference image-quality assessment (FR-IQA) [58],

has received significant research attention in the past few

decades [5, 11, 23, 29, 30, 32]. The naı̈ve approaches do this

by simply computing mathematical distances between the

images based on norms such as L2 or L1, but these are

well-known to be perceptually inaccurate [52]. Others have

proposed metrics that try to exploit known aspects of the hu-

man visual system (HVS) such as contrast sensitivity [22],

high-level structural acuity [52], and masking [48, 51], or

use other statistics/features [3,4,14,15,38,44–46,53,54,57].

However, such hand-coded models are fundamentally lim-

ited by the difficulty of accurately modeling the complexity

of the HVS and therefore do not work well in practice.

To address these limitations, some have proposed IQA

methods based on machine learning to learn more sophisti-

cated models [19]. Although many learning-based methods

use hand-crafted image features [8, 10, 18, 20, 21, 31, 33, 35,

40], recent methods (including ours) apply deep-learning

to FR-IQA to learn features automatically [7, 17, 25]. How-

ever, the accuracy of all existing learning-based methods

depends on the size and quality of the datasets they are

trained on, and existing IQA datasets are small and noisy.

For instance, many datasets [16, 26, 27, 34, 47, 49, 55] are

labeled using a mean opinion score (MOS) where each user

gives the distorted image a subjective quality rating (e.g.,

0 = “bad”, 10 = “excellent”). These individual scores are

then averaged in an attempt to reduce noise. Unfortunately,

creating a good IQA dataset in this fashion is difficult be-

cause humans cannot assign quality or error labels to a dis-

torted image consistently, even when comparing to a refer-

ence (e.g., try rating the images in Fig.1 from 0 to 10!).

Other datasets (e.g., TID2008 [43] and TID2013 [42])

leverage the fact that it is much easier for people to select

which image from a distorted pair is closer to the reference

than to assign them quality scores. To translate user pref-

erences into quality scores, they then take a set of distorted

images and use a Swiss tournament [1] to assign scores to

each. However, this approach has the fundamental problem

that the same distorted image could have varying scores in

different sets (see supplementary for examples in TID2008

and TID2013). Moreover, the number of images and dis-

tortion types in all of these datasets is very limited. The
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image A reference image R image B

METHOD A B

Humans 0.120 0.880

MAE 8.764 16.723

RMSE 15.511 28.941

SSIM 0.692 0.502

MS-SSIM 0.940 0.707

PSNR-HMA 27.795 19.763

FSIMc 0.757 0.720

SFF 0.952 0.803

GMSD 0.101 0.176

VSI 0.952 0.941

SCQI 0.996 0.996

Lukin et al. [35] 3.213 1.504

Bosse et al. [7] 31.360 36.192

Kim et al. [25] 0.414 0.283

PieAPP (error) 2.541 0.520

PieAPP (prob.) 0.117 0.883

Figure 1: Which image, A or B, is more similar to the reference R? This is an example of a pairwise image comparison where most people

have no difficulty determining which image is closer. In this case, according to our Amazon Mechanical Turk (MTurk) experiments, 88%

of people prefer image B. Despite this simple visual task, 13 image quality assessment (IQA) methods–including both popular and state-

of-the-art approaches–fail to predict the image that is visually closer to the reference. On the other hand, our proposed PieAPP error metric

correctly predicts that B is better with a preference probability of 88.3% (or equivalently, an error of 2.541 for A and 0.520 for B, with the

reference having an error of 0). Note that neither the reference image nor the distortion types present were available in our training set.

largest dataset we know of (TID2013) has only 25 images

and 24 distortions, which hardly qualifies as “big-data” for

machine learning. Thus, methods trained on these datasets

have limited generalizability to new distortions, as we will

show later. Because of these limitations, no method cur-

rently exists that can predict perceptual error like human

observers, even for easy examples such as the one in Fig. 1.

Here, although the answer is obvious to most people, all ex-

isting FR-IQA methods give the wrong answer, confirming

that this problem is clearly far from solved.

In this paper, we make critical strides towards solving

this problem by proposing a novel framework for learn-

ing perceptual image error as well as a new, correspond-

ing dataset that is larger and of higher quality than previous

ones. We first describe the dataset, since it motivates our

framework. Rather than asking people to label images with

a subjective quality score, we exploit the fact that it is much

easier for humans to select which of two images is closer to

a reference. However, unlike the TID datasets [42, 43], we

do not explicitly convert this preference into a quality score,

since approaches such as Swiss tournaments introduce er-

rors and do not scale. Instead, we simply label the pairs

by the percentage of people who preferred image A over B

(e.g., a value of 50% indicates that both images are equally

“distant” from the reference). By using this pairwise prob-

ability of preference as ground-truth labels, our dataset can

be larger and more robust than previous IQA datasets.

Next, our proposed pairwise-learning framework trains

an error-estimation function using the probability labels in

our dataset. To do this, we input the distorted images (A,B)

and the corresponding reference, R, into a pair of identi-

cal error-estimation functions which output the perceptual-

error scores for A and B. The choice for the error-estimation

function is flexible, and in this paper we propose a new deep

convolutional neural network (DCNN) for it. The errors of

A and B are then used to compute the predicted probability

of preference for the image pair. Once our system, which

we call PieAPP, is trained using the pairwise probabilities,

we can use the learned error-estimation function on a single

image A and a reference R to compute the perceptual error

of A with respect to R. This trick allows us to quantify the

perceived error of a distorted image with respect to a refer-

ence, even though our system was never explicitly trained

with hand-labeled, perceptual-error scores.

The combination of our novel, pairwise-learning frame-

work and new dataset results in a significant improvement

in perceptual image-error assessment, and can also be used

to further improve existing learning-based IQA methods.

Interested readers can find our code, trained models, and

datasets at https://doi.org/10.7919/F4GX48M7.

2 Pairwise learning of perceptual image error
Existing IQA datasets (e.g., LIVE [47], TID2008 [43],

CSIQ [26], and TID2013 [42]) suffer from either the unre-

liable human rating of image quality or the set-dependence

of Swiss tournaments. Unlike these previous datasets, our

proposed dataset focuses exclusively on the probability of

pairwise preference. In other words, given two distorted

versions (A and B) of reference image R, subjects are asked

to select the one that looks more similar to R. We then store

the percentage of people who selected image A over B as the

ground-truth label for this pair, which we call the probabil-

ity of preference of A over B (written as pAB). This approach

is more robust because it is easier to identify the closer im-

age than to assign quality scores, and does not suffer from

set-dependency or scalability issues like Swiss tournaments

since we never label the images with quality scores.

The challenge is how to use these probabilistic prefer-

ence labels to estimate the perceptual-error scores of indi-

vidual images compared to the reference. To do this, we

assume, as shown in Fig. 2, that all distorted versions of a
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image error scale

0

Figure 2: Like all IQA methods, we assume distorted images can

be placed on a linear scale based on their underlying perceptual-

error scores (e.g., sA,sB,sC) with respect to the reference. In our

case, we map the reference to have 0 error. We assume the proba-

bility of preferring distorted image A over B can be computed by

applying a function h to their errors, e.g., pAB = h(sA,sB).

reference image can be mapped to a 1-D “perceptual-error”

axis (as is common in IQA), with the reference at the ori-

gin and distorted versions placed at varying distances from

the origin based on their perceptual error (images that are

more perceptually similar to the reference are closer, oth-

ers farther away). Note that since each reference image has

its own quality axis, comparing a distorted version of one

reference to that of another does not make logical sense.

Given this axis, we assume there is a function h which

takes the perceptual-error scores of A and B (denoted by sA

and sB, respectively), and computes the probability of pre-

ferring A over B: pAB = h(sA,sB). In this paper, we use the

Bradley-Terry (BT) sigmoid model [9] for h, since it has

successfully modeled human responses for pairwise com-

parisons in other applications [13, 39]:1

pAB = h(sA,sB) =
1

1+ esA−sB
. (1)

Unlike the standard BT model, the exponent here is negated

so that lower scores are assigned to images visually closer

to the reference. Given this, our goal is then to learn a func-

tion f that maps a distorted image to its perceptual error

with respect to the reference, constrained by the observed

probabilities of preference. More specifically, we propose a

general optimization framework to train f as follows:

θ̂ = argmin
θ

1

T

T

∑
i=1

‖h( f (Ai,Ri;θ), f (Bi,Ri;θ))− pAB,i‖
2
2, (2)

where θ denotes the parameters of the image error-

estimation function f , pAB,i is the ground-truth probability

of preference based on human responses, and T is the total

number of training pairs. If the training data is fitted cor-

rectly and is sufficient in terms of images and distortions,

Eq. 2 will train f to estimate the underlying perceptual-error

scores for every image so that their relative spacing on the

image quality scale will match their pairwise probabilities

(enforced by Eq. 1), with images that are closer to the refer-

ence having smaller numbers. These underlying perceptual

1We empirically verify that BT is consistent with our collected human

responses in Sec. 5.1.
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Figure 3: Our pairwise-learning framework consists of error- and

probability-estimation blocks. In our implementation, the error-

estimation function f has two weight-shared feature-extraction

(FE) networks that take in reference R and a distorted input (A or

B), and a score-computation (SC) network that uses the extracted

features from each image to compute the perceptual-error score

(see Fig. 4 for more details). Note that the FE block for R is shared

between f (A,R;θ) and f (B,R;θ). The computed perceptual-error

scores for A and B (sA and sB) are then passed to the probability-

estimation function h, which implements the Bradley-Terry (BT)

model (Eq. 1) and outputs the probability of preferring A over B.

errors are estimated up to an additive constant, as only the

relative distances between images are constrained by Eq. 1.

We discuss how to account for this constant by setting the

error of the reference with itself to 0 in Sec. 3.

To learn the error-estimation function f , we propose a

novel pairwise-learning framework, shown in Fig. 3. The

inputs to our system are sets of three images (A, B, and R),

and the output is the probability of preferring A over B with

respect to R. Our framework has two main learning blocks,

f (A,R;θ) and f (B,R;θ), that compute the perceptual er-

ror of each image. The estimated errors sA and sB are then

subtracted and fed through a sigmoid that implements the

BT model in Eq. 1 (function h) to predict the probability of

preferring A over B. The entire system can then be trained

by backpropagating the squared L2 error between the pre-

dicted probabilities and the ground-truth human preference

labels to minimize Eq. 2.

At this point, we simply need to make sure we have an

expressive computational model for f as well as a large

dataset with a rich variety of images and distortion types.

To model f , we propose a new DCNN-based architecture

which we describe in Sec. 3. For the dataset, we propose a

new large-scale image distortion dataset with probabilistic

pairwise human comparison labels as discussed in Sec. 4.

3 New DCNN for image-error assessment

Before describing our implementation for function f , we

note that our pairwise-learning framework is general and

can by used to train any learning model for error com-

putation by simply replacing f (A,R;θ) and f (B,R;θ). In

fact, we show in Sec. 5.4 how the performance of Bosse et

al. [7]’s and Kim et al. [25]’s architectures is considerably
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Figure 4: Our DCNN implementation of the error-estimation

function f . (a) The feature-extraction (FE) subnet of f has 11

convolutional (CONV) layers with skip connections to compute

the features for an input patch Am. The number after “CONV” in-

dicates the number of feature maps. Each layer has 3×3 filters and

a non-linear ReLU, with 2×2 max-pooling after every even layer.

(b) The score-computation (SC) subnet uses two fully-connected

(FC) networks (each with 1 hidden layer with 512 neurons) to

compute patch-wise weights and errors, followed by weighted av-

eraging over all patches to compute the final image score.

improved when integrated into our framework. Further-

more, once trained on our framework, the error-estimation

function f can be used by itself to compute the percep-

tual error of individual images with respect to a refer-

ence. Indeed, this is how we get all the results in the paper.

In our implementation, the error-estimation block f con-

sists of two kinds of subnetworks (subnets, for short).

There are three identical, weight-shared feature-extraction

(FE) subnets (one for each input image), and two weight-

shared score-computation (SC) subnets that compute the

perceptual-error scores for A and B. Together, two FE and

one SC subnets comprise the error-estimation function f .

As is common in other IQA algorithms [7,56,57], we com-

pute errors on a patchwise basis by feeding corresponding

patches from A, B, and R through the FE and SC subnets,

and aggregate them to obtain the overall errors, sA and sB.

Figure 4 shows the details of our implementation of

function f . The three (weight-shared) FE subnets each con-

sist of 11 convolutional (CONV) layers (Fig. 4a). For each

set of input patches (Am, Bm, and Rm, where m is the patch

index), the corresponding feature maps from the FE CONV

layers at different depths are flattened and concatenated into

feature vectors xm
A , xm

B , and xm
R . Using features from mul-

tiple layers has two advantages: 1) multiple CONV layers

contain features from different scales of the input image,

thereby leveraging both high-level and low-level features

for error score computation, and 2) skip connections enable

better gradient backpropagation through the network.

Once these feature vectors are computed by the FE sub-

net, the differences between the corresponding feature vec-

tors of the distorted and reference patches are fed into the

SC subnet (Fig. 4b). Each SC subnet consists of two fully-

connected (FC) networks. The first FC network takes in

the multi-layer feature difference (i.e., xm
R −xm

A ), and pre-

dicts the patchwise error (sm
A ). These are aggregated using

weighted averaging to compute the overall image error (sA),

where the weight for each patch wm
A is computed using the

second FC network (similar to Bosse et al. [7]). This net-

work uses the feature difference from the last CONV layer

of the FE subnet as input (denoted as ym
R −ym

A for A and R),

since the weight for a patch is akin to the higher-level patch

saliency [7, 56, 57] captured by deeper CONV layers.

Feeding the feature differences to the SC subnet ensures

that when estimating the perceptual error for a reference im-

age (i.e., A = R), the SC block would receive xm
R −xm

R = 0

as input. The system would therefore output a constant

value which is invariant to the reference image, caused by

the bias terms in the fully-connected networks in the SC

subnet. By subtracting this constant from the predicted er-

ror, we ensure that the “origin” of the quality axis is always

positioned at 0 for each reference image.

To train our proposed architecture, we adopt a random

patch-sampling strategy [7], which prevents over-fitting and

improves learning. At every training iteration, we randomly

sample 36 patches of size 64×64 from our training images

which are of size 256×256. The density of our patch sam-

pling ensures that any pixel in the input image is included in

at least one patch with a high probability (0.900). This is in

contrast with earlier approaches [7], where patches are sam-

pled sparsely and there is only a 0.154 probability that a spe-

cific pixel in an image will be in one of the sampled patches.

This makes it harder to learn a good perceptual-error met-

ric.2 At test time, we randomly sample 1,024 patches for

each image to compute the perceptual error. We now de-

scribe our dataset for training the proposed framework.

4 Large-scale image distortion dataset

As discussed earlier, existing IQA datasets [26, 42, 43, 47]

suffer from many problems, such as unreliable quality la-

bels and a limited variety of image contents and distortions.

For example, they do not contain many important distor-

tions that appear in real-world computer vision and image

processing applications, such as artifacts from deblurring or

dehazing. As a result, training high-quality perceptual-error

metrics with these datasets is difficult, if not impossible.

To address these problems (and train our proposed sys-

tem), we have created our own large-scale dataset, labeled

with pairwise probability of preference, that includes a wide

variety of image distortions. Furthermore, we also built a

test set with a large number of images and distortion types

that do not overlap with the training set, allowing a rigorous

evaluation of the generalizability of IQA algorithms.

Table 1 compares our proposed dataset with the four

largest existing IQA datasets.3 Our dataset is substantially

bigger than all these existing IQA datasets combined in

2See supplementary file for a detailed analysis.
3See Chandler et al. [11] for a complete list of existing IQA datasets.
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Dataset Ref. images Distortions Distorted images

LIVE [47] 29 5 779

CSIQ [26] 30 6 866

TID2008 [43] 25 17 1,700

TID2013 [42] 25 24 3,000

Our dataset 200 75 20,280

Table 1: Comparison of the four largest IQA dataset and our pro-

posed dataset, in terms of the number of reference images, the

number of distortions, and the number of distorted images.

terms of the number of reference images, the number of

distortion types, and the total number of distorted images.

We next discuss the composition of our dataset.

Reference images: The proposed dataset contains 200

unique reference images (160 reference images are used

for training and 40 for testing), which are selected from the

Waterloo Exploration Database [36,37] because of its high-

quality images. The selected reference images are represen-

tative of a wide variety of real-world content. Currently, the

image size in our dataset is 256× 256, which is a popular

size in computer vision and image processing applications.

This size also enables crowdsourced workers to evaluate the

images without scrolling the screen. However, we note that

since our architecture samples patches from the images, it

can work on input images of various sizes.

Image distortions: In our proposed dataset, we have in-

cluded a total of 75 distortions, with a total of 44 distortions

in the training set, and 31 in the test set which are distinct

from the training set.4 More specifically, our set of image

distortions spans the following categories: 1) common im-

age artifacts (e.g., additive Gaussian noise, speckle noise);

2) distortions that capture important aspects of the HVS

(e.g., non-eccentricity, contrast sensitivity); and 3) complex

artifacts from computer vision and image processing algo-

rithms (e.g., deblurring, denoising, super-resolution, com-

pression, geometric transformations, color transformations,

and reconstruction). Although recent IQA datasets cover

some of the distortions in categories 1 and 2, they do not

contain many distortions from category 3 even though they

are important to computer vision and image processing. We

refer the readers to the supplementary file for a complete list

of the training and test distortions in our dataset.

4.1 Training set

We select 160 reference images and 44 distortions for train-

ing PieAPP. Each training example is a pairwise compar-

ison consisting of a reference image R, two distorted ver-

sions A and B, along with a label p̃AB, which is the esti-

mated probabilistic human preference based on collected

human data (see Sec. 4.3). For each reference image R, we

4In contrast, most previous learning-based IQA algorithms test on the

same distortions that they train on. Even in the “cross-dataset” tests pre-

sented in previous papers, there is a significant overlap between the train-

ing and test distortions. This makes it impossible to tell whether previous

learning-based algorithms would work for new, unseen distortions.

design two kinds of pairwise comparisons: inter-type and

intra-type. In an inter-type comparison, A and B are gener-

ated by applying two different types of distortions to R. For

each reference image, there are 4 groups of inter-type com-

parisons, each containing 15 distorted images generated us-

ing 15 randomly-sampled distortions.5 On the other hand,

in an intra-type comparison, A and B are generated by ap-

plying the same distortion to R with different parameters.

For each reference image, there are 21 groups of intra-type

comparisons, containing 3 distorted images generated using

the same distortion with different parameter settings. The

exhaustive pairwise comparisons within each group (both

inter-type and intra-type) and the corresponding human la-

bels p̃AB are then used as the training data. Overall, there are

a total of 77,280 pairwise comparisons for training (67,200

inter-type and 10,080 intra-type). Inter-distortion compar-

isons allow us to capture human preference across differ-

ent distortion types and are more challenging than the intra-

distortion comparisons due to a larger variety of pairwise

combinations and the difficulty in comparing images with

different distortion types. We therefore devote a larger pro-

portion of our dataset to inter-distortion comparisons.

4.2 Test set of unseen distortions and images

The test set contains 40 reference images and 31 distortions,

which are representative of a variety of image contents and

visual effects. None of these images and distortions are in

the training set. For each reference image, there are 15 dis-

torted images with randomly-sampled distortions (sampled

to ensure that the test set has both inter and intra-type com-

parisons). Probabilistic labels are assigned to the exhaustive

pairwise comparisons of the 15 distorted images for each

reference. The test set then contains a total of 4,200 dis-

torted image pairs (105 per reference image).

4.3 Amazon Mechanical Turk data collection

We use Amazon Mechanical Turk (MTurk) to collect hu-

man responses for both the training and test pairs. In each

pairwise image comparison, the MTurk user is presented

with distorted images (A and B) and the reference R. The

user is asked to select the image that he/she considers more

similar to the reference.6 However, we need to collect a suf-

ficient number of responses per pair to accurately estimate

pAB. Furthermore, we need to do this for 77,280 training

pairs and 4,200 test pairs, resulting in a large number of

MTurk inquiries and a prohibitive cost. In the next two sec-

tions, we show how to avoid this problem by analyzing the

number of responses needed per image pair to statistically

estimate its pAB accurately, and then showing how to use a

maximum likelihood (ML) estimator to accurately label a

larger set of pairs based on a smaller set of acquired labels.
5The choice of 15 is based on a balance between properly sampling the

training distortions and the cost of obtaining labels in an inter-type group.
6Details on MTurk experiments and interface are in the supplementary.
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4.3.1 Number of responses per comparison

We model the human response as a Bernoulli random vari-

able ν with a success probability pAB, which is the prob-

ability of a person preferring A over B. Given n human

responses νi, i = 1, ...,n, we can estimate pAB by p̃AB =
1
n ∑

n
i=1 νi. We must choose n such that prob(| p̃AB − pAB| ≤

η)≥Ptarget, for a target Ptarget and tolerance η . It can be eas-

ily confirmed (see supplementary) that by choosing n = 40

and η = 0.15, we can achieve a reasonable Ptarget ≥ 0.94.

Therefore, we collect 40 responses for each pairwise com-

parison in the training and test sets.

4.3.2 Statistical estimation of human preference

Collecting 40 MTurk responses for 77,280 pairs of training

images is expensive. Thus, we use statistical modeling to

estimate the missing human labels based on a subset of the

exhaustive pairwise comparison data [50]. To see how, sup-

pose we need to estimate pAB for all possible pairs of N im-

ages (e.g., N = 15 in each inter-type group) with perceptual-

error scores s= [s1, ...,sN ]. We denote the human responses

by a count matrix C = {ci, j}, where ci, j is the number of

times image i is preferred over image j. The scores can

then be obtained by solving an ML estimation problem [50]:

s⋆ = argmax∑i, j ci, j logS(si−s j), where S(.) is the sigmoid

function of the BT model for human responses (see Sec. 2).

We solve this optimization problem via gradient descent.

However, we must query a sufficient number of pairwise

comparisons so that the optimal solution recovers the un-

derlying true scores. It is sufficient to query a subset of

all the possible comparisons as long as each image appears

in at least k comparisons (k < N − 1) presented to the hu-

mans, where k can be determined empirically [39, 59]. Our

empirical analysis reveals that k = 10 is sufficient as the bi-

nary error rate over the estimated part of the subset becomes

0.0006. More details are included in the supplementary file.

ML estimation reduces the number of pairs that need la-

beling considerably, from 81,480 to 62,280 (23.56% reduc-

tion). Note that we only do this for the training set and not

for the test set (we query 40 human responses for each pair-

wise comparison in the test set), which ensures that no test

errors are caused by possible ML estimation errors.

5 Results
We implemented the system presented in Sec. 3 in Ten-

sorFlow [2], and trained it on the training set described

in Sec. 4 for 300K iterations (2 days) on an NVIDIA Ti-

tan X GPU. In this section, we evaluate the performance

of PieAPP and compare it with popular and state-of-the-art

IQA methods on both our proposed test set (Sec. 4.2) and

two existing datasets (CSIQ [26] and TID2013 [42]). Since

there are many recent learning-based algorithms (e.g., [17,

24,28]), in this paper we only compare against the three that

performed the best on established datasets based on their

published results [7, 25]. We show comparisons against

other methods and on other datasets in the supplementary.
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Figure 5: Ground-truth (GT) human-preference probabilities vs.

estimated probabilities. (a) Estimating probabilities based on all

pairwise comparisons with 100 human responses per pair to val-

idate the BT model. (b) Estimating probabilities with only 10

comparisons per image (still 100 human responses each). (c) Esti-

mating probabilities based on only 10 comparisons per image with

only 40 responses per pair. The last two plots show the accuracy of

using ML estimation to fill in the missing labels (see Sec. 4.3.2).

The blue segments near the fitted line indicate the 25th and 75th

percentile of the estimated probabilities within each 0.1 bin of GT

probabilities. The fitted line is close to y = x as shown by the

equations on the bottom-right.

We begin by validating the BT model for our data and

showing that ML estimation can accurately fill in missing

human labels (Sec. 5.1). Next, we compare the performance

of PieAPP on our test set against that of popular and state-

of-the-art IQA methods (Sec. 5.2), with our main results

presented in Table 2. We also test our learning model (given

by the error-estimation block f ) on other datasets by train-

ing it on them (Sec. 5.3, Table 3). Finally, we show that

existing learning-based methods can be improved using our

pairwise-learning framework (Sec. 5.4, Table. 4).

5.1 Consistency of the BT model and the estimation
of probabilistic human preference

We begin by showing the validity of our assumptions that:

1) the Bradley-Terry (BT) model accurately accounts for

human decision-making for pairwise image comparisons,

and 2) ML estimation can be used to accurately fill in the

human preference probability for pairs without human la-

bels. To do these experiments, we first collect exhaustive

pairwise labels for 6 sets of 15 distorted images (total 630

image pairs), with 100 human responses for each compar-

ison, which ensures that the probability labels are highly

reliable (Ptarget = 0.972 and η = 0.11; see Sec. 4.3.1).

To validate the BT model, we estimate the scores for all

images in a set with ML estimation, using the ground-truth

labels of all the pairs.7 Using the estimated scores, we com-

pute the preference probability for each pair based on BT

(Eq. 1), which effectively tests whether the BT scores can

“fit” the measured pairwise probabilities. Indeed, Fig. 5a

shows that the relationship between the ground-truth and

the estimated probabilities is close to identity, which indi-

cates that BT is a good fit for human decision-making.

We then validate the ML estimation when not all pair-

7The is the same estimation as in Sec 4.3.2, but with the ground-truth

labels for all the pairs in each set.
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KRCC
METHOD

p̃AB ∈ [0,1] p̃AB /∈ [0.35,0.65]
PLCC SRCC

MAE 0.252 0.289 0.302 0.302

RMSE 0.289 0.339 0.324 0.351

SSIM 0.272 0.323 0.245 0.316

MS-SSIM 0.275 0.325 0.051 0.321

GMSD 0.250 0.291 0.242 0.297

VSI 0.337 0.395 0.344 0.393

PSNR-HMA 0.245 0.274 0.310 0.281

FSIMc 0.322 0.377 0.481 0.378

SFF 0.258 0.295 0.025 0.305

SCQI 0.303 0.364 0.267 0.360

DOG-SSIMc 0.263 0.320 0.417 0.464

Lukin et al. 0.290 0.396 0.496 0.386

Kim et al. 0.211 0.240 0.172 0.252

Bosse et al. (NR) 0.269 0.353 0.439 0.352

Bosse et al. (FR) 0.414 0.503 0.568 0.537

Our method (PieAPP) 0.668 0.815 0.842 0.831

Table 2: Performance of our approach compared to existing IQA

methods on our test set. PieAPP beats all the state-of-the-art meth-

ods because the test set contains many different (and complex) dis-

tortions not found in standard IQA datasets.

wise comparisons are labeled. We estimate the scores using

10 ground-truth comparisons per image in each set (k = 10;

see Sec. 4.3.2), instead of using all the pairwise compar-

isons like before. Fig. 5b shows that we have a close-to-

identity relationship with a negligible increase of noise, in-

dicating the good accuracy of the ML-estimation process.

Finally, we reduce the number of human responses per

comparison: we again use 10 comparisons per image in

each set, but this time with only 40 responses per compar-

ison (as we did for our entire training set), instead of the

100 responses we used previously. Fig. 5c shows that the

noise has increased slightly but the fit to the ground-truth

labels is still quite good. Hence, this validates the way we

supplemented our hand-labeled data using ML estimation.

5.2 Performance on our unseen test set
We now compare the performance of our proposed PieAPP

metric to that of other IQA methods on our test set, where

the images and distortion types are completely disjoint from

the training set. This tests the generalizability of the various

approaches to new distortions and image content. We com-

pare the methods using the following evaluation criteria:

1. Accuracy of predicted quality (or perceptual error):

As discussed in Sec. 5.1, we obtain the ground-truth scores

through ML estimation, using the ground-truth preference

labels for all the pairs in the test set. As is typically done

in IQA papers, we compute the Pearson’s linear correla-

tion coefficient (PLCC) to assess the correlation between

the magnitudes of the scores predicted by the IQA method

and the ground-truth scores.8 We also use the Spearman’s

rank correlation coefficient (SRCC) to assess the agreement

of ranking of images based on the predicted scores.

2. Accuracy of predicted pairwise preference: IQA

methods are often used to tell which distorted image, A or

8For existing IQA methods, the PLCC on our test set is computed af-

ter fitting the predicted scores to the ground-truth scores via a nonlinear

regression as is commonly done [47].

CSIQ [26] TID2013 [42]
METHOD

KRCC PLCC SRCC KRCC PLCC SRCC

MAE 0.639 0.644 0.813 0.351 0.294 0.484

RMSE 0.617 0.752 0.783 0.327 0.358 0.453

SSIM 0.691 0.861 0.876 0.464 0.691 0.637

MS-SSIM 0.739 0.899 0.913 0.608 0.833 0.786

GMSD 0.812 0.954 0.957 0.634 0.859 0.804

VSI 0.786 0.928 0.942 0.718 0.900 0.897

PSNR-HMA 0.780 0.888 0.922 0.632 0.802 0.813

FSIMc 0.769 0.919 0.931 0.667 0.877 0.851

SFF 0.828 0.964 0.963 0.658 0.871 0.851

SCQI 0.787 0.927 0.943 0.733 0.907 0.905

DOG-SSIMc 0.813 0.943 0.954 0.768 0.934 0.926

Lukin et al. – – – 0.770 – 0.930

Kim et al. – 0.965 0.961 – 0.947 0.939

Bosse et al. (NR) – – – – 0.787 0.761

Bosse et al. (FR) – – – 0.780 0.946 0.940

Error-estimation f 0.881 0.975 0.973 0.804 0.946 0.945

Table 3: Comparison on two standard IQA datasets (CSIQ [26]

and TID2013 [42]). For all the learning methods, we used the

numbers directly provided by the authors (dashes “–” indicate

numbers were not provided). For a fair comparison, we used only

one error-estimation block of our pairwise-learning framework

(function f ) trained directly on the MOS labels of each dataset.

The performance of PieAPP on these datasets, when trained with

our pairwise-learning framework, is shown in Table 4.

B, is closer to a reference. Therefore, we want to know

the binary error rate (BER), the percentage of test set pairs

predicted incorrectly. We report the Kendall’s rank corre-

lation coefficient (KRCC), which is related to the BER by

KRCC = 1 − 2BER. Since this is less meaningful when

human preference is not strong (i.e., p̃AB ∈ [0.35,0.65]), we

show numbers for both the full range and p̃AB 6∈ [0.35,0.65].

For comparisons, we test against: 1) model-based meth-

ods: Mean Absolute Error (MAE), Root-Mean-Square Er-

ror (RMSE), SSIM [52], MS-SSIM [53], GMSD [54],

VSI [56], PSNR-HMA [41], FSIMc [57], SFF [12],

and SCQI [4], and 2) learning-based methods: DOG-

SSIMc [40], Lukin et al. [35], Kim et al. [25], and Bosse et

al. (both no-reference (NR) and full-reference (FR) versions

of their method) [6,7].9 In all cases, we use the code/models

released by the authors, except for Kim et al. [25], whose

trained model is not publicly available. Therefore, we used

the source code provided by the authors to train their model

as described in their paper, and validated it by getting their

reported results.

As Table 2 shows, our proposed method significantly

outperforms existing state-of-the-art IQA methods. Our

PLCC and SRCC are 0.842 and 0.831, respectively, outper-

forming the second-best method, Bosse et al. (FR) [7], by

48.24% and 54.75%, respectively. This shows that our pre-

dicted perceptual error is considerably more consistent with

the ground-truth scores than state-of-the-art methods. Fur-

thermore, the KRCC of our approach over the entire test set

( p̃AB ∈ [0,1]) is 0.668, and is 0.815 when p̃AB /∈ [0.35,0.65]
(i.e., when there is a stronger preference by humans). This

9See supplementary for brief descriptions of these methods, as well as

comparisons to other IQA methods.
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Our test set CSIQ [26] TID2013 [42]

KRCCOur PLF Modifications:

p̃AB ∈ [0,1] p̃AB /∈ [0.35,0.65] PLCC SRCC KRCC PLCC SRCC KRCC PLCC SRCC

PLF + Kim et al. 0.491 0.608 0.654 0.632 0.708 0.863 0.873 0.649 0.795 0.837

PLF + Bosse et al. (NR) 0.470 0.593 0.590 0.593 0.663 0.809 0.842 0.654 0.781 0.831

PLF + Bosse et al. (FR) 0.588 0.729 0.734 0.748 0.739 0.844 0.898 0.682 0.828 0.859

Our method (PieAPP) 0.668 0.815 0.842 0.831 0.754 0.842 0.907 0.710 0.836 0.875

Table 4: Our novel pairwise-learning framework (PLF) can also be used to improve the quality of existing learning-based IQA methods.

Here, we replaced the error-estimating f blocks in our pairwise-learning framework (see Fig. 3) with the learning models of Kim et al. [25]

and Bosse et al. [7]. We then trained their architectures using our pairwise-learning process on our training set. As a result, the algorithms

improved considerably on our test set, as can be seen by comparing these results to those of their original versions in Table 2. Furthermore,

we also evaluated these methods on the standard CSIQ [26] and TID13 [42] datasets using the original MOS labels for ground truth.

is a significant improvement over Bosse et al. (FR) [7] of

61.35% and 62.03%, respectively. Translating these to bi-

nary error rate (BER), we see that our method has a BER

of 9.25% when p̃AB /∈ [0.35,0.65], while Bosse et al. has

a BER of 24.85% in the same range. This means that the

best IQA method to date gets almost 25% of the pairwise

comparisons wrong, but our approach offers a 2.7× im-

provement. The fact that we get these results on our test

set (which is disjoint from the training set) indicates that

PieAPP is capable of generalizing to new image distortions

and content much better than existing methods.

5.3 Testing our architecture on other IQA datasets

For completeness, we also compare our architecture against

other IQA methods on two of the largest existing IQA

datasets, CSIQ [26] and TID2013 [42].10 Since these have

MOS labels which are noisy with respect to ground-truth

preferences, we trained our error-estimation function of the

pairwise-learning framework (i.e., f (A,R;θ) in Fig. 3) on

the MOS labels of CSIQ and TID2013, respectively.11 This

allows us to directly compare our DCNN architecture to ex-

isting methods on the datasets they were designed for.

For these experiments, we randomly split the datasets

into 60% training, 20% validation, and 20% test set, and

report the performance averaged over 5 such random splits,

as is usual. The standard deviation of the correlation co-

efficients on the test sets of these five random splits is at

most 0.008 on CSIQ and at most 0.005 on TID2013, indi-

cating that our random splits are representative of the data

and are not outliers. Table 3 shows that our proposed DCNN

architecture outperforms the state-of-the-art in both CSIQ

and TID2013, except for the PLCC on TID2013 where we

are only 0.11% worse than Kim et al. The fact that we

are better than (or comparable to) existing methods on the

standard datasets (which are smaller and have fewer distor-

tions) while significantly outperforming them in our test set

(which contains new distortions) validates our method.

10Comparisons on other datasets can be found in the supplementary file.
11Here, we train our error-estimation function directly on MOS labels

as existing datasets do not provide probabilistic pairwise labels. However,

this does not change our architecture of f or its number of parameters.

5.4 Improving other learning-based IQA methods
As discussed earlier, our pairwise-learning framework is a

better way to learn IQA because it has less noise than either

subjective human quality scores or Swiss tournaments. In

fact, we can use it to improve the performance of existing

learning-based algorithms. We observe that since typical

FR-IQA methods use a distorted image A and a reference

R to compute a quality score, they are effectively an alter-

native to our error-estimation block f in Fig. 3. Hence, we

can replace our implementation of f (A,R;θ) and f (B,R;θ)
with a previous learning-based IQA method, and then use

our pairwise-learning framework to train it with our proba-

bility labels. To do this, we duplicate the block to predict

the scores for inputs A and B, and then subtract the pre-

dicted scores and pass them through a sigmoid (i.e., block

h(sA,sB) in Fig. 3). This estimated probability is then com-

pared to the ground-truth preference for backpropagation.12

This enables us to train the same learning architectures

previously proposed, but with our probabilistic-preference

labels. We show results of experiments to train the methods

of Kim et al. [25] and Bosse et al. [7] (both FR and NR)

in Table 4. By comparing with the corresponding entries in

Table 2, we can see that their performance on our test set

has improved considerably after our training. This makes

sense because probabilistic preference is a better metric and

it also allows us to leverage our large, robust IQA dataset.

Still, however, our proposed DCNN architecture for error-

estimation block f performs better than the existing meth-

ods. Finally, the table also shows the performance of these

architectures trained on our pairwise-preference dataset, but

tested on CSIQ [26] and TID2013 [42], using their MOS

labels as ground-truth. While our modifications have im-

proved existing approaches, PieAPP still performs better.

6 Conclusion
We have presented a novel, perceptual image-error metric

which surpasses existing metrics by leveraging the fact that

pairwise preference is a robust way to create large IQA

datasets and using a new pairwise-learning framework to

train an error-estimation function. Overall, this approach

could open the door for new, improved learning-based IQA

methods in the future.

12All details of the training process can be found in the supplementary.
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