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Abstract

Raindrops adhered to a glass window or camera lens can

severely hamper the visibility of a background scene and

degrade an image considerably. In this paper, we address

the problem by visually removing raindrops, and thus trans-

forming a raindrop degraded image into a clean one. The

problem is intractable, since first the regions occluded by

raindrops are not given. Second, the information about the

background scene of the occluded regions is completely lost

for most part. To resolve the problem, we apply an attentive

generative network using adversarial training. Our main

idea is to inject visual attention into both the generative and

discriminative networks. During the training, our visual at-

tention learns about raindrop regions and their surround-

ings. Hence, by injecting this information, the generative

network will pay more attention to the raindrop regions and

the surrounding structures, and the discriminative network

will be able to assess the local consistency of the restored

regions. This injection of visual attention to both genera-

tive and discriminative networks is the main contribution of

this paper. Our experiments show the effectiveness of our

approach, which outperforms the state of the art methods

quantitatively and qualitatively.

1. Introduction

Raindrops attached to a glass window, windscreen or

lens can hamper the visibility of a background scene and

degrade an image. Principally, the degradation occurs be-

cause raindrop regions contain different imageries from

those without raindrops. Unlike non-raindrop regions, rain-

drop regions are formed by rays of reflected light from a
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Figure 1. Demonstration of our raindrop removal method. Left:

input images degraded by raindrops. Right: our results, where

most raindrops are removed and structural details are restored.

Zooming-in the figure will provide a better look at the restoration

quality.

wider environment, due to the shape of raindrops, which is

similar to that of a fish-eye lens. Moreover, in most cases,

the focus of the camera is on the background scene, making

the appearance of raindrops blur.

In this paper, we address this visibility degradation prob-

lem. Given an image impaired by raindrops, our goal is to

remove the raindrops and produce a clean background as

shown in Fig. 1. Our method is fully automatic. We con-

sider that it will benefit image processing and computer vi-

sion applications, particularly for those suffering from rain-

drops, dirt, or similar artifacts.

A few methods have been proposed to tackle the rain-

drop detection and removal problems. Methods such as

[17, 18, 12] are dedicated to detecting raindrops but not
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removing them. Other methods are introduced to detect

and remove raindrops using stereo [20], video [22, 25], or

specifically designed optical shutter [6], and thus are not

applicable for a single input image taken by a normal cam-

era. A method by Eigen et al. [1] has a similar setup to

ours. It attempts to remove raindrops or dirt using a single

image via deep learning method. However, it can only han-

dle small raindrops, and produce blurry outputs [25]. In our

experimental results (Sec. 6), we will find that the method

fails to handle relatively large and dense raindrops.

In contrast to [1], we intend to deal with substantial pres-

ence of raindrops, like the ones shown in Fig. 1. Generally,

the raindrop-removal problem is intractable, since first the

regions which are occluded by raindrops are not given. Sec-

ond, the information about the background scene of the oc-

cluded regions is completely lost for most part. The prob-

lem gets worse when the raindrops are relatively large and

distributed densely across the input image. To resolve the

problem, we use a generative adversarial network, where

our generated outputs will be assessed by our discriminative

network to ensure that our outputs look like real images. To

deal with the complexity of the problem, our generative net-

work first attempts to produce an attention map. This atten-

tion map is the most critical part of our network, since it will

guide the next process in the generative network to focus

on raindrop regions. This map is produced by a recurrent

network consisting of deep residual networks (ResNets) [8]

combined with a convolutional LSTM [21] and a few stan-

dard convolutional layers. We call this attentive-recurrent

network.

The second part of our generative network is an autoen-

coder, which takes both the input image and the attention

map as the input. To obtain wider contextual information,

in the decoder side of the autoencoder, we apply multi-scale

losses. Each of these losses compares the difference be-

tween the output of the convolutional layers and the cor-

responding ground truth that has been downscaled accord-

ingly. The input of the convolutional layers is the features

from a decoder layer. Besides these losses, for the final out-

put of the autoencoder, we apply a perceptual loss to obtain

a more global similarity to the ground truth. This final out-

put is also the output of our generative network.

Having obtained the generative image output, our dis-

criminative network will check if it is real enough. Like

in a few inpainting methods (e.g. [9, 13]), our discrimina-

tive network validates the image both globally and locally.

However, unlike the case of inpainting, in our problem and

particularly in the testing stage, the target raindrop regions

are not given. Thus, there is no information on the local

regions that the discriminative network can focus on. To

address this problem, we utilize our attention map to guide

the discriminative network toward local target regions.

Overall, besides introducing a novel method of raindrop

removal, our other main contribution is the injection of the

attention map into both generative and discriminative net-

works, which is novel and works effectively in removing

raindrops, as shown in our experiments in Sec. 6. We will

release our code and dataset.

The rest of the paper is organized as follows. Section 2

discusses the related work in the fields of raindrop detec-

tion and removal, and in the fields of the CNN-based image

inpainting. Section 3 explains the raindrop model in an im-

age, which is the basis of our method. Section 4 describes

our method, which is based on the generative adversarial

network. Section 5 discusses how we obtain our synthetic

and real images used for training our network. Section 6

shows our evaluations quantitatively and qualitatively. Fi-

nally, Section 7 concludes our paper.

2. Related Work

There are a few papers dealing with bad weather visi-

bility enhancement, which mostly tackle haze or fog (e.g.

[19, 7, 16]), and rain streaks (e.g. [3, 2, 14, 24]). Unfortu-

nately, we cannot apply these methods directly to raindrop

removal, since the image formation and the constraints of

raindrops attached to a glass window or lens are different

from haze, fog, or rain streaks.

A number of methods have been proposed to detect rain-

drops. Kurihata et al.’s [12] learns the shape of raindrops us-

ing PCA, and attempts to match a region in the test image,

with those of the learned raindrops. However, since rain-

drops are transparent and have various shapes, it is unclear

how large the number of raindrops needs to be learned, how

to guarantee that PCA can model the various appearance of

raindrops, and how to prevent other regions locally similar

to raindrops to be detected as raindrops. Roser and Geiger’s

[17] proposes a method that compares a synthetically gen-

erated raindrop with a patch that potentially has a raindrop.

The synthetic raindrops are assumed to be a sphere section,

and later assumed to be inclined sphere sections [18]. These

assumptions might work in some cases, yet cannot be gen-

eralized to handle all raindrops, since raindrops can have

various shapes and sizes.

Yamashita et al.’s [23] uses a stereo system to detect and

remove raindrops. It detects raindrops by comparing the

disparities measured by the stereo with the distance between

the stereo cameras and glass surface. It then removes rain-

drops by replacing the raindrop regions with the textures of

the corresponding image regions, assuming the other image

does not have raindrops that occlude the same background

scene. A similar method using an image sequence, instead

of stereo, is proposed in Yamashita et al.’s [22]. Recently,

You et al.’s [25] introduces a motion based method for de-

tecting raindrops, and video completion to remove detected

raindrops. While these methods work in removing rain-

drops to some extent, they cannot be applied directly to a
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single image.

Eigen et al.’s [1] tackles single-image raindrop removal,

which to our knowledge, is the only method in the literature

dedicated to the problem. The basic idea of the method is to

train a convolutional neural network with pairs of raindrop-

degraded images and the corresponding raindrop-free im-

ages. Its CNN consists of 3 layers, where each has 512 neu-

rons. While the method works, particularly for relatively

sparse and small droplets as well as dirt, it cannot produce

clean results for large and dense raindrops. Moreover, the

output images are somehow blur. We suspect that all these

are due to the limited capacity of the network and the de-

ficiency in providing enough constraints through its losses.

Sec. 6 shows the comparison between our results with this

method’s.

In our method, we utilize a GAN [4] as the backbone

of our network, which is recently popular in dealing with

the image inpainting or completion problem (e.g. [9, 13]).

Like in our method, [9] uses global and local assessment

in its discriminative network. However, in contrast to our

method, in the image inpainting, the target regions are

given, so that the local assessment (whether local regions

are sufficiently real) can be carried out. Hence, we can-

not apply the existing image inpainting methods directly to

our problem. Another similar architecture is Pix2Pix [10],

which translates one image to another image. It proposes

a conditional GAN that not only learns the mapping from

input image to output image, but also learns a loss function

to the train the mapping. This method is a general map-

ping, and not proposed specifically to handle raindrop re-

moval. In Sec. 6, we will show some evaluations between

our method and Pix2Pix.

3. Raindrop Image Formation

We model a raindrop degraded image as the combination

of a background image and effect of the raindrops:

I = (1−M)⊙B+R (1)

where I is the colored input image and M is the binary

mask. In the mask, M(x) = 1 means the pixel x is part

of a raindrop region, and otherwise means it is part of back-

ground regions. B is the background image and R is the

effect brought by the raindrops, representing the complex

mixture of the background information and the light re-

flected by the environment and passing through the rain-

drops adhered to a lens or windscreen. Operator ⊙ means

element-wise multiplication.

Raindrops are in fact transparent. However, due to their

shapes and refractive index, a pixel in a raindrop region is

not only influenced by one point in the real world but by

the whole environment [25], making most part of raindrops

seem to have their own imagery different from the back-

ground scene. Moreover, since our camera is assumed to

focus on the background scene, this imagery inside a rain-

drop region is mostly blur. Some parts of the raindrops,

particularly at the periphery and transparent regions, convey

some information about the background. We notice that the

information can be revealed and used by our network.

Based on the model (Eq. (1)), our goal is to obtain the

background image B from a given input I. To accomplish

this, we create an attention map guided by the binary mask

M. Note that, for our training data, as shown in Fig. 5, to

obtain the mask we simply subtract the image degraded by

raindrops I with its corresponding clean image B. We use a

threshold to determine whether a pixel is part of a raindrop

region. In practice, we set the threshold to 30 for all images

in our training dataset. This simple thresholding is sufficient

for our purpose of generating the attention map.

4. Raindrop Removal using Attentive GAN

Fig. 2 shows the overall architecture of our proposed net-

work. Following the idea of generative adversarial networks

[4], there are two main parts in our network: the gener-

ative and discriminative networks. Given an input image

degraded by raindrops, our generative network attempts to

produce an image as real as possible and free from rain-

drops. The discriminative network will validate whether the

image produced by the generative network looks real.

Our generative adversarial loss can be expressed as:

min
G

max
D

ER∼pclean
[log(D(R))]

+ EI∼praindrop
[log(1−D(G(I)))]

(2)

where G represents the generative network, and D repre-

sents the discriminative network. I is a sample drawn from

our pool of images degraded by raindrops, which is the in-

put of our generative network. R is a sample from a pool of

clean natural images.

4.1. Generative Network

As shown in Fig. 2, our generative network consists

of two sub-networks: an attentive-recurrent network and

a contextual autoencoder. The purpose of the attentive-

recurrent network is to find regions in the input image that

need to get attention. These regions are mainly the raindrop

regions and their surrounding structures that are necessary

for the contextual autoencoder to focus on, so that it can

generate better local image restoration, and for the discrim-

inative network to focus the assessment on.

Attentive-Recurrent Network. Visual attention models

have been applied to localizing targeted regions in an image

to capture features of the regions. The idea has been utilized

for visual recognition and classification (e.g. [26, 15, 5]).

In a similar way, we consider visual attention to be impor-

tant for generating raindrop-free background images, since
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Figure 2. The architecture of our proposed attentive GAN.The generator consists of an attentive-recurrent network and a contextual autoen-

coder with skip connections. The discriminator is formed by a series of convolution layers and guided by the attention map. Best viewed

in color.

it allows the network to know where the removal/restoration

should be focused on. As shown in our architecture in

Fig. 2, we employ a recurrent network to generate our vi-

sual attention. Each block (of each time step) in our recur-

rent network comprises of five layers of ResNet [8] that help

extract features from the input image and the mask of the

previous block, a convolutional LSTM unit [21] and convo-

lutional layers for generating the 2D attention maps.

Our attention map, which is learned at each time step, is

a matrix ranging from 0 to 1, where the greater the value,

the greater attention it suggests, as shown in the visualiza-

tion in Fig. 3. Unlike the binary mask, M, the attention map

is a non-binary map, and represents the increasing attention

from non-raindrop regions to raindrop regions, and the val-

ues vary even inside raindrop regions. This increasing at-

tention makes sense to have, since the surrounding regions

of raindrops also needs the attention, and the transparency

of a raindrop area in fact varies (some parts do not totally

occlude the background, and thus convey some background

information).

Our convolution LSTM unit consists of an input gate it,

a forget gate ft, an output gate ot as well as a cell state

Ct. The interaction between states and gates along time

dimension is defined as follows:

it = σ(Wxi ∗Xt +Whi ∗Ht−1 +Wci ⊙Ct−1 + bi)

ft = σ(Wxf ∗Xt +Whf ∗Ht−1 +Wcf ⊙Ct−1 + bf )

Ct = ft ⊙Ct−1 + it ⊙ tanh(Wxc ∗Xt +Whc ∗Ht−1 + bc)

ot = σ(Wxo ∗Xt +Who ∗Ht−1 +Wco ⊙Ct + bo)

Ht = ot ⊙ tanh(Ct)
(3)

where Xt is the features generated by ResNet. Ct encodes

the cell state that will be fed to the next LSTM. Ht rep-

resents the output features of the LSTM unit. Operator ∗
represents the convolution operation. The LSTM’s output

feature is then fed into the convolutional layers, which gen-

erate a 2D attention map. In the training process, we initial-

ize the values of the attention map to 0.5. In each time step,

we concatenate the current attention map with the input im-

age and then feed them into the next block of our recurrent

network.

In training the generative network, we use pairs of im-

ages with and without raindrops that contain exactly the

same background scene. The loss function in each recurrent

block is defined as the mean squared error (MSE) between

the output attention map at time step t, or At, and the binary

mask, M. We apply this process N time steps. The earlier

attention maps have smaller values and get larger when ap-

proaching the N th time step indicating the increase in con-

fidence. The loss function is expressed as:

LATT ({A},M) =

N∑

t=1

θN−tLMSE(At,M) (4)

where At is the attention map produced by the

attentive-recurrent network at time step t. At =
ATTt(Ft−1,Ht−1,Ct−1), with Ft−1 is the concatenation

of the input image and the attention map from the previ-

ous time step. When t = 1, Ft−1 is the input image con-

catenated with an initial attention map with values of 0.5.

Function ATTt represents the attentive-recurrent network

at time step t. We set N to 4 and θ to 0.8. We expect a

higher N will produce a better attention map, but it also

requires larger memory.

Fig. 3 shows some examples of attention maps gener-

ated by our network in the training procedure. As can be

seen, our network attempts to find not only the raindrop re-

gions but also some structures surrounding the regions. And

Fig. 8 shows the effect of the attentive-recurrent network in

the testing stage. With the increasing of time step, our net-

work focuses more and more on the raindrop regions and

relevant structures.
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(a) Input (b) epoch = 3 (c) epoch = 6

(d) epoch = 9 (e) epoch = 12 (f) epoch = 15

Figure 3. Visualization of the attention map learning process. This

visualization is for the final attention map, AN . Our attentive-

recurrent network shows a greater focus on raindrop regions and

the relevant structures during the training process.
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Figure 4. The architecture of our contextual autoencoder. Multi-

scale loss and perceptual loss are used to help train the autoen-

coder.

Contextual Autoencoder. The purpose of our contextual

autoencoder is to generate an image that is free from rain-

drops. The input of the autoencoder is the concatenation

of the input image and the final attention map from the

attentive-recurrent network. Our deep autoencoder has 16

conv-relu blocks, and skip connections are added to prevent

blurred outputs. Fig. 4 illustrates the architecture of our

contextual autoencoder.

As shown in the figure, there are two loss functions in

our autoencoder: multi-scale losses and perceptual loss. For

the multi-scale losses, we extract features from different de-

coder layers to form outputs in different sizes. By adopting

this, we intend to capture more contextual information from

different scales. This is also the reason why we call it con-

textual autoencoder.

We define the loss function as:

LM ({S}, {T}) =

M∑

i=1

λiLMSE(Si,Ti) (5)

where Si indicates the ith output extracted from the decoder

layers, and Ti indicates the ground truth that has the same

scale as that of Si. {λi}
M

i=1
are the weights for different

scales. We put more weight at the larger scale. To be more

specific, the outputs of the last 1st, 3rd and 5th layers are

used, whose sizes are 1

4
, 1

2
and 1 of the original size, respec-

tively. Smaller layers are not used since the information is

insignificant. We set λ’s to 0.6, 0.8, 1.0.

Aside from the multi-scale losses, which are based on a

pixel-by-pixel operation, we also add a perceptual loss [11]

that measures the global discrepancy between the features

of the autoencoder’s output and those of the corresponding

ground-truth clean image. These features can be extracted

from a well-trained CNN, e.g. VGG16 pretrained on Ima-

geNet dataset. Our perceptual loss function is expressed as:

LP (O,T) = LMSE(V GG(O), V GG(T)) (6)

where V GG is a pretrained CNN, and produces features

from a given input image. O is the output image of the

autoencoder or, in fact, of the whole generative network:

O = G(I). T is the ground-truth image that is free from

raindrops.

Overall, the loss of our generative can be written as:

LG = 10−2LGAN (O) + LATT ({A},M)

+ LM ({S}, {T}) + LP (O,T)
(7)

where LGAN (O) = log(1−D(O)).

4.2. Discriminative Network

To differentiate fake images from real ones, a few GAN-

based methods adopt global and local image-content con-

sistency in the discriminative part (e.g. [9, 13]) . The global

discriminator looks at the whole image to check if there

is any inconsistency, while the local discriminator looks at

small specific regions. The strategy of a local discriminator

is particularly useful if we know the regions that are likely

to be fake (like in the case of image inpainting, where the re-

gions to be restored are given). Unfortunately, in our prob-

lem, particularly in our testing stage, we do not know where

the regions degraded by raindrops and the information is not

given. Hence, the local discriminator must try to find those

regions by itself.

To resolve this problem, our idea is to use an attentive

discriminator. For this, we employ the attention map gen-

erated by our attentive-recurrent network. Specifically, we

extract the features from the interior layers of the discrim-

inator, and feed them to a CNN. We define a loss function

based on the CNN’s output and the attention map. More-

over, we use the CNN’s output and multiply it with the orig-

inal features from the discriminative network, before feed-

ing them into the next layers. Our underlying idea of doing

this is to guide our discriminator to focus on regions indi-

cated by the attention map. Finally, at the end layer we use

a fully connected layer to decide whether the input image is

fake or real. The right part of Fig. 2 illustrates our discrim-

inative architecture.
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The whole loss function of the discriminator can be ex-

pressed as:

LD(O,R,AN ) =− log(D(R))− log(1−D(O))

+ γLmap(O,R,AN )
(8)

where Lmap is the loss between the features extracted from

interior layers of the discriminator and the final attention

map:

Lmap(O,R,AN ) =LMSE(Dmap(O),AN )

+ LMSE(Dmap(R),0)
(9)

where Dmap represents the process of producing a 2D map

by the discriminative network. γ is set to 0.05. R is a sam-

ple image drawn from a pool of real and clean images. 0

represents a map containing only 0 values. Thus, the sec-

ond term of Eq. (9) implies that for R, there is no specific

region necessary to focus on.

Our discriminative network contains 7 convolution lay-

ers with the kernel of (3, 3), a fully connected layer of 1024

and a single neuron with a sigmoid activation function. We

extract the features from the last third convolution layers

and multiply back in element-wise.

5. Raindrop Dataset

Similar to current deep learning methods, our method

requires relatively a large amount of data with groundtruths

for training. However, since there is no such dataset for

raindrops attached to a glass window or lens, we create our

own. For our case, we need a set of image pairs, where

each pair contains exactly the same background scene, yet

one is degraded by raindrops and the other one is free from

raindrops. To obtain this, we use two pieces of exactly the

same glass: one sprayed with water, and the other is left

clean. Using two pieces of glass allows us to avoid mis-

alignment, as glass has a refractive index that is different

from air, and thus refracts light rays. In general, we also

need to manage any other causes of misalignment, such as

camera motion, when taking the two images; and, ensure

that the atmospheric conditions (e.g., sunlight, clouds, etc.)

as well as the background objects to be static during the ac-

quisition process.

In total, we captured 1119 pairs of images, with various

background scenes and raindrops. We used Sony A6000

and Canon EOS 60 for the image acquisition. Our glass

slabs have the thickness of 3 mm and attached to the camera

lens. We set the distance between the glass and the camera

varying from 2 to 5 cm to generate diverse raindrop images,

and to minimize the reflection effect of the glass. Fig. 5

shows some samples of our data.

Figure 5. Samples of our dataset. Top: The images degraded with

raindrops. Bottom: The corresponding ground-truth images.

Method
Metric

PSNR SSIM

Eigen13 [1] 28.59 0.6726

Pix2Pix [10] 30.14 0.8299

A 29.25 0.7853

A + D 30.88 0.8670

A + AD 30.60 0.8710

Ours (AA+AD) 31.57 0.9023

Table 1. Quantitative evaluation results. A is our contextual au-

toencoder alone. A+D is autoencoder plus discriminator. A+AD is

autoencoder plus attentive discriminator. AA+ AD is our complete

architecture: Attentive autoencoder plus attentive discriminator.

6. Experimental Results

Quantitative Evaluation. Table 1 shows the quantitative

comparisons between our method and other existing meth-

ods: Eigen13 [1], Pix2Pix [10]. As shown in the table, com-

pared to these two, our PSNR and SSIM values are higher.

This indicates that our method can generate results more

similar to the groundtruths.

We also compare our whole attentive GAN with some

parts of our own network: A (autoencoder alone without the

attention map), A+D (non-attentive autoencoder plus non-

attentive discriminator), A+AD (non-attentive autoencoder

plus attentive discriminator). Our whole attentive GAN is

indicated by AA+AD (attentive autoencoder plus attentive

discriminator). As shown in the evaluation table, AA+AD

performs better than the other possible configurations. This

is the quantitative evidence that the attentive map is needed

by both the generative and discriminative networks.

Qualitative Evaluation. Fig. 6 shows the results of

Eigen13 [1] and Pix2Pix [10] in comparison to our results.

As can be seen, our method is considerably more effective

in removing raindrops compared to Eigen13 and Pix2Pix.

In Fig. 7, we also compare our whole network (AA+AD)

with other possible configurations from our architectures

(A, A+D, A+AD). Although A+D is qualitatively better

than A, and A+AD is better than A+D, our overall network

is more effective than A+AD. This is the qualitative evi-
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(a) Ground truth (b) Raindrop image (c) Eigen[1] (d) Pix2pix-cGAN[10] (e) Our method

Figure 6. Results of comparing a few different methods. From left to right: ground truth, raindrop image (input), Eigen13 [1], Pix2Pix [10]

and our method. Nearly all raindrops are removed by our method despite the diversity of their colors, shapes and transparency.

(a) Input (b) A (c) A+D (d) A+AD (e) AA+AD

Figure 7. Comparing some parts of our network architecture. From left to right: Input, A, A+D, A+AD, our complete architecture

(AA+AD).

(a) Input (b) Time step = 1 (c) Time step = 2 (d) Time step = 3 (e) Time step = 4

Figure 8. Visualization of the attention map generated by our novel attentive-recurrent network. With the increasing of time step, our

network focuses more and more on the raindrop regions and relevant structures.
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(a) Input (b) Pix2pix-cGAN (c) Our method

Figure 9. A closer look at the comparison between our outputs

and Pix2Pix’s outputs. Our outputs have less artifacts and better

restored structures.

dence that, again, the attentive map is needed by both the

generative and discriminative networks.

Fig. 9 provides another comparison between our results

and Pix2Pix’s results. As can be observed, our outputs have

less artifacts and have better restored structures.

Application. To provide further evidence that our

visibility enhancement could be useful for computer

vision applications, we employ Google Vision API

(https://cloud.google.com/vision/) to test whether using our

outputs can improve the recognition performance. The re-

sults are shown in Fig. 10. As can be seen, using our output,

the general recognition is better than without our visibility

enhancement process. Furthermore, we perform evaluation

on our test dataset, and Fig. 11 shows statistically that using

our visibility enhancement outputs significantly outperform

those without visibility enhancement, both in terms of the

average score of identifying the main object in the input

image, and the number of object labels recognized.

7. Conclusion

We have proposed a single-image based raindrop re-

moval method. The method utilizes a generative adversarial

network, where the generative network produces the atten-

tion map via an attentive-recurrent network and applies this

map along with the input image to generate a raindrop-free

image through a contextual autoencoder. Our discrimina-

tive network then assesses the validity of the generated out-

put globally and locally. To be able to validate locally, we

inject the attention map into the network. Our novelty lies

on the use of the attention map in both generative and dis-

criminative network. We also consider that our method is

(a) Recognizing result of original image

(b) Recognizing result of our removal result

Figure 10. A sample of improving the result of Google Vision API.

Our method increases the scores of main object detection as well

as the number of the objects recognized.

(a) Score (b) Number

Figure 11. Summary of improvement based on Google Vision API:

(a) the average score of identifying the main object in the input

image. (b) the number of object labels recognized. Our method

improves the recognization score by 10% and benefit the recall by

100% extra object identification.

the first method that can handle relatively severe presence

of raindrops, which the state of the art methods in raindrop

removal fail to handle.
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