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Abstract

We propose a simple and efficient method for exploiting

synthetic images when training a Deep Network to predict

a 3D pose from an image. The ability of using synthetic im-

ages for training a Deep Network is extremely valuable as

it is easy to create a virtually infinite training set made of

such images, while capturing and annotating real images

can be very cumbersome. However, synthetic images do

not resemble real images exactly, and using them for train-

ing can result in suboptimal performance. It was recently

shown that for exemplar-based approaches, it is possible to

learn a mapping from the exemplar representations of real

images to the exemplar representations of synthetic images.

In this paper, we show that this approach is more general,

and that a network can also be applied after the mapping to

infer a 3D pose: At run-time, given a real image of the tar-

get object, we first compute the features for the image, map

them to the feature space of synthetic images, and finally

use the resulting features as input to another network which

predicts the 3D pose. Since this network can be trained very

effectively by using synthetic images, it performs very well

in practice, and inference is faster and more accurate than

with an exemplar-based approach. We demonstrate our ap-

proach on the LINEMOD dataset for 3D object pose estima-

tion from color images, and the NYU dataset for 3D hand

pose estimation from depth maps. We show that it allows us

to outperform the state-of-the-art on both datasets.

1. Introduction

The power of Deep Learning for inference from images

has been clearly demonstrated over the past years, however,

for many Computer Vision problems, inference is effective

only if a large amount of training data is available. Typ-

ically this data is created and labelled manually, which is

a task expensive in terms of both money and time. Com-

pared to 2D problems where the labels can be directly de-

Figure 1: We propose a method for exploiting real and

synthetic images to predict a 3D pose from a real image.

This method allows us to outperform the state-of-the-art

on standard benchmarks. Top: The LINEMOD dataset for

3D object pose estimation from color images, and Bottom:

The NYU dataset for 3D hand pose estimation from depth

maps. Left: Estimated 3D pose using BB8 [37] and Deep-

Prior++ [33] for object and hand, respectively. Right: Esti-

mated pose using the method proposed in this paper. Green

corresponds to ground truth, blue to our predictions. We

obtain the best performances reported so far on these two

datasets. (Best viewed in color)

fined in the training images, the problem is even exacer-

bated for 3D problems where the training images have to be

labelled with 3D data. This 3D data cannot be guessed eas-

ily by the human annotator, and needs to be estimated with

an ad hoc method, for example by using markers [19] or a

semi-automatic approach [45].

Many works therefore aimed at using synthetic images

created with computer graphics methods [1, 17, 25, 26, 42].
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The resulting performances are usually suboptimal, as the

synthetic images do not correspond exactly to real images.

When some real images are available for training, which

is often the case in practice, it is possible to use transfer

learning [2, 30, 36, 38], where a first predictor is trained

on real images and a second one on synthetic images. By

enforcing constraints on the parameters of the two predic-

tors, the first predictor can benefit from a large amount of

synthetic training images. Many works using Generative

Adversarial Networks (GANs) have also been developed

recently [4, 14, 40, 54], in which a first Deep Network is

trained to generate real images and it competes with a sec-

ond Deep Network trained to distinguish synthetic images

from real ones.

However, transfer learning and GANs are two general

approaches. While important by itself, the 3D pose estima-

tion problem has some specificities that are not exploited by

these two approaches. It was shown recently in [29] that,

by synthesizing views of objects under the same pose as in

some available real images, it is possible to learn a map-

ping between the features computed for a real image and

the features computed in a synthetic image corresponding

to the same pose. However, [29] applies this mapping to the

descriptors of exemplars, which are matched using special

layers computing a similarity score with reference exem-

plars. In this paper, we show that this mapping can be used

as input to a general network. We therefore train a network

jointly with the feature mapping to predict the 3D pose of a

target object from its synthetic images. We can use a virtu-

ally infinite number of training images to train this network,

and it therefore performs very well. At run-time, given a

real input image of a target object, we compute its image

features, map them to the space of features of synthetic im-

ages, to finally predict the 3D pose of the object from the

mapped features.

As illustrated in Fig. 1, we demonstrate our approach on

two different problems: 3D object pose estimation from

color images using the LINEMOD dataset [19], and the

NYU dataset [45] for 3D hand pose estimation from depth

maps. Our experiments show that in both cases, we can sig-

nificantly outperform the state-of-the-art, by relying on our

approach to exploit synthetic images. Moreover, pose infer-

ence is very efficient as it is performed by a Deep Network,

in contrast to comparisons of exemplars as was done in [29].

In the remainder of this paper, we discuss work related

to using synthetic images for training Deep Networks, then

present our approach and its evaluation on the LINEMOD

and the NYU datasets.

2. Related Work

A major problem in training Deep Networks is the ac-

quisition of training data, but training data is critical for the

success of Deep Networks [43]. An appealing solution is

to use training samples rendered from 3D models [21, 23].

Such annotated samples are very easy to acquire, due to the

presence of large scale 3D model datasets [7, 52]. How-

ever, using synthetic data requires special measures to pre-

vent the network from overfitting on the synthetic appear-

ance of the data. To prevent overfitting, [21] uses pretrained

feature extractors from image classification networks, such

as VGG [41], together with sophisticated data augmenta-

tion. While this is convenient as no real images are needed,

it was only demonstrated on detection problems. [23] also

uses synthetically generated images from 3D models with

pretrained features, however, they require extensive refine-

ment of the initial network predictions, and we will show

that by combining some real images and many synthetic im-

ages, we can reach better performances.

Synthetic data on one side and real data on the other side

can be seen as two different domains, which gives rise to

domain adaptation methods. However, there can be sig-

nificant differences between the synthetic and real images,

which makes methods trained only on synthetic data per-

form poorly in practice [21]. Domain adaptation techniques

provide a welcome solution to this problem, since it is easy

to get training data in the synthetic domain, and it can be

hard to acquire many training samples in the real domain.

For Deep Networks, fine-tuning is one of the most

prominent and simple domain adaptation methods [13, 35].

This, however, can lead to severe overfitting, if there is only

a small amount of training labels in the target domain avail-

able. Another way to handle the domain shift is to explicitly

align the source and target distributions of the data. This can

be achieved by quantifying the similarity of the two distri-

butions and maximizing the similarity thereof. One pop-

ular metric is Maximum Mean Discrepancy (MMD) [15].

MMD can be either used to align the distributions of target

and source features [22, 47], or by learning a transformation

of the data such that the distributions match in a common

subspace [2, 28, 30, 36]. [12] uses a deep feature extrac-

tor together with an additional classifier that predicts the

domain for each sample. If the learned features are domain-

invariant, such a classifier should exhibit poor performance.

[47] adds an MMD loss to align the source and target data

representations learned by Deep Networks.

However, [51] observed that feature transferability drops

in higher layers of a Deep Network. To leverage this fact,

[27] proposed a novel architecture that has the first few lay-

ers frozen, the mid layers finetuned, and the fully-connected

layers learned for each domain separately. The features of

the fully-connected layers are constrained by MMD. This

works well for discriminative approaches that separate fea-

tures into clusters, but not for regression problems. It also

requires extensive task-specific validation on which layers

to freeze, fine-tune, and transfer.

Very recently, [38] proposed a Siamese Network for do-
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main adaptation, but instead of sharing the weights between

the two streams, their method allows the weights to dif-

fer and only regularizes them to keep them related. This

method is very general as it can learn adaptation between

very different domains. We show in the results section that

our approach outperforms [38], as we can exploit the speci-

ficities of our problem by rendering synthetic images under

the same poses as the real images to learn a mapping.

With the development of Deep Learning, Generative Ad-

versarial Networks (GANs) were also proposed for domain

adaptation [14, 54], where a network is trained to trans-

fer images from one domain to another domain. Although

GANs are able to generate visually similar images in terms

of appearance between different domains [4, 40], the syn-

thesized images lack precision required to train 3D pose es-

timation methods, as our comparisons to [4] in the results

section show. Especially for geometric tasks, such as pose

estimation, this shortcoming can be attributed to the lack

of geometry in GAN models [50, 54]. An alternative to

generating images in order to bridge the domain gap was

presented by [46] and [11], who use a domain discrimina-

tor with adversarial loss to force a network to learn cross-

domain features. Although this works well for discrimina-

tive applications, the features are not well suited for regres-

sion as we will discuss in the results section.

Another approach for domain adaptation is introduced in

[6], which casts domain adaptation as an assignment prob-

lem, where samples from the target domain are assigned

predefined classes from the source domain. This, however,

strongly depends on the initialization of the features to ob-

tain a semantically meaningful mapping, and for regression

problems the undefined number of classes would make the

problem intractable.

[29] proposed the method most related to ours, as they

also learn a mapping from the real to synthetic domain.

However, they consider an exemplar-based approach for 3D

pose retrieval, and the mapping is applied to the exemplar

representations. Relying on exemplars requires a discretiza-

tion of the pose space in order to create the exemplars, and a

nearest neighbor search. A fine discretization thus improves

the accuracy of the estimated pose, but also slows down the

nearest neighbor search. We show in this paper that it is

possible to learn a similar mapping jointly with a network

inferring the 3D pose after feature mapping. As our experi-

ments show, our approach of retrieving the pose is thus both

fast and accurate.

3. Approach

Since it is easy to create synthetic images, our goal is to

exploit such images to guide learning, when training a Deep

Network to predict a 3D pose from a real image. This real

image can be a color image or a depth map.

R
eL

U

F
C

F
C

R
es

id
u
al

 B
lo

ck

+ 

Residual Block

Mapping Network  g 

F
ea

tu
re

 E
x
tr

ac
to

r 
 f

 

P
o
se

 P
re

d
ic

to
r 
	h

 

Input Image Predicted Pose

Figure 2: Our model architecture is made of a feature ex-

tractor f (blue), a pose predictor h (red), and a network

g to map features extracted from a real image to the fea-

ture space of synthetic images (green). We apply g only to

the features from real images, not on the features from syn-

thetic images. We can thus train the pose predictor on syn-

thetic images, and apply it to real images at run-time with-

out being affected by the domain gap. Within the mapping

network, FC denotes a fully-connected layer, and ReLU a

rectified linear unit.

3.1. Training

We use synthetic images to train a feature extractor

f(x; θf ) together with a 3D pose predictor h(f ; θh), which

predicts a 3D pose given features f extracted from a given

image x. θf and θh denote the parameters for networks

f and h, respectively. However, synthetic images do not

resemble real images, and their features also vary signifi-

cantly. Although this might not harm easier tasks such as

object detection or object recognition, it is very important

for accurate 3D pose prediction.

We therefore train a network g(f ; θg) with parameters θg
to map features of the real images into the synthetic feature

space, before they are used as input to the h network that

predicts the 3D pose from image features. Fig. 2 shows the

three networks and how they are connected.

Network g is trained using pairs of images, each pair is

made of one of the available real images and of one syn-

thetic image of the target object rendered under the same

3D pose as in the real image. During training, we minimize

the distance between the features extracted from the syn-

thetic images and the features extracted from the real image

after mapping by g. In the case of 3D pose estimation for

color images, given a real image, we render the object’s 3D

model over the real image to obtain the corresponding syn-

thetic images. The first row of Fig. 3 shows an example. In

the case of pose estimation from depth maps, we directly

generate a depth map of the 3D model under the same pose.

More exactly, we train the three networks f , h, and g

jointly on the training set T = T S ∪ T R where T S =
{(xS

i ,y
S
i )}i denotes a training set of synthetic images and

their corresponding 3D labels, and T R = {(xR
i ,yR

i )}i is

made of real images and their 3D labels. We also use a train-

ing set TM made of the real images xR
i in T R, each paired
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to a synthetic image generated under the same pose as men-

tioned above. Jointly training f , h, and g helps learning to

extract image features such that they are transferable from

the real domain to the synthetic domain.

We optimize the following loss function over the param-

eters of the three networks:

L(θf , θh, θg; T
S , T R, TM) = LhS

+ βLhR
+ γLg . (1)

β and γ are meta-parameters to control the interaction of

the losses.

LhS
is the loss for predicting the poses for synthetic im-

ages:

LhS
=

∑

(xs,ys)∈T S

‖h(f(xs; θf ); θh)− ys‖
2 . (2)

Note that we compose network f that extracts image fea-

tures from image x and network h that predicts a 3D pose

from these features.

In practice, for parameterizing the 3D pose y of rigid ob-

jects, we use the representation proposed in [37], that is the

2D reprojections of the 3D corners of the object’s bounding

box, which allows us to use the Euclidean norm in Eq. (2).

This representation was shown to be easy to predict by a

Deep Network from a color image. Moreover, the 3D pose

can be accurately computed from these reprojections using

a PnP algorithm. In the case of the hand pose estimation,

y is simply a vector made of the 3D locations of the hand

joints normalized as in [31].

LhR
is a loss function equivalent to LhS

but for the real

images:

LhR
=

∑

(xr,yr)∈T R

‖h(g(f(xr; θf ); θg); θh)− yr‖
2 , (3)

where we compose f , g, and h together, to first extract im-

age features, then map them to the space of image features

for synthetic images, and finally predict the 3D pose from

these mapped features.

Lg is the loss to learn the mapping between the features

extracted from the real images to the features extracted from

the synthetic images:

Lg =
∑

(xr,xs)∈T M

‖g(f(xr; θf ); θg)− f(xs; θf )‖
2 . (4)

3.2. Effect of the Learned Mapping

To understand better the effect of the learned mapping,

we computed the distributions of the absolute differences

between the synthetic feature vectors and real feature vec-

tors, as computed by network f , before and after mapping

of the real feature vectors by network g. The distributions

remain surprisingly close, as their means and standard de-

viations are (µ1 = 1.60, σ1 = 1.64) and (µ2 = 1.30, σ2 =
1.50) respectively.
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Figure 3: The effect of the mapping learned by network

g using a real image (a) and the corresponding synthetic

image (b). The second row shows the absolute differences

between the synthetic and real feature vectors (reshaped to

images for better visualization) before (c) and after mapping

(d). The mapping mostly removes the large differences.

However, considering distributions can only provide a

limited view. To get a finer insight, we took a pair of real

and synthetic images under the same pose, and we plotted

the absolute differences between the coefficients of their

feature vectors, first without mapping, then after mapping

of the real feature vector by network g. The differences are

shown in Fig. 3(c) and Fig. 3(d). Blue corresponds to small

differences, and red to large differences. It appears that

the mapping mostly removes the large differences without

changing the smaller differences. We repeated this experi-

ment on other image pairs and observed a similar behavior.

Our interpretation is that for each pair, only a few feature

coefficients are responsible for the domain gap, and they

can be attenuated by the mapping.

3.3. Pose Prediction

At run-time, given a real image x, we predict the corre-

sponding 3D pose y by composing the three networks to-

gether:

y← h(g(f(x; θ̂f ); θ̂g); θ̂h) ,

where (θ̂f , θ̂g, θ̂h) are the networks’ parameters found dur-

ing training. Note that this composition of the three net-

works can be implemented as a single network to improve

efficiency.
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3.4. Network Details

As shown in Fig. 2, we use two Residual blocks [18]

for network g to map feature vectors of size 1024. Each

fully-connected layer within the Residual block has 1024

neurons.

The network architectures of f and h depend on the ap-

plication. In the case of 3D object pose estimation from

color images, we use the VGG-16 network [41] for ini-

tializing f , where we use the first 10 convolutional layers

as feature extractor, and we add two fully-connected lay-

ers with 1024 neurons, as in [37]. For h we use a single

fully-connected layer with 16 outputs—2 coordinates for

each corner of the bounding box.

In the case of 3D hand pose estimation from depth maps,

we use an architecture similar to the one of [31, 33] for the

feature extraction network f : It is similar to the 50-layer

Residual Network [18] with 4 residual modules. We re-

move the Global Average Pooling [18], which we experi-

enced during our experiments significantly reduces local-

ization accuracy of the joints, and add two fully-connected

layers with 1024 neurons each. f is trained from scratch.

We use a single fully-connected layer with 42 outputs—3

for each of the 14 joints—for the pose prediction network

h.

For the parameters of the loss function in Eq. (1), we use

β = 1, which gives the same weight to the synthetic and

real samples, and γ = 0.2, which gives a good trade-off be-

tween pose loss and feature mapping loss. We optimize the

loss using gradient descent, specifically the ADAM algo-

rithm [24]. In order to improve convergence, we pretrained

the networks with synthetic data only, which in practice

gives better results compared to starting from a random ini-

tialization.

4. Experiments

In this section, we present and discuss the results of our

evaluation on two different applications, i.e. 3D object pose

estimation from RGB images and 3D hand pose estimation

from depth maps.

4.1. 3D Object Pose Estimation

We first compare our method to other domain adaptation

methods: The transfer learning method proposed in [38],

the GRL method of [12], and the ADDA method of [46],

on 3D object pose estimation using the LINEMOD bench-

mark [19]. We also compare to the DDC method [47], de-

signed for classification. We therefore changed the clas-

sification loss to our regression loss on the 3D pose. For

all these methods, we use the VGG-16 network [41] as

described in Section 3.4, which is also the network used

in [37].

Training set creation. For creating the training set T S

of Eq. (2), we generate in total 5M synthetic training images

online during training, from poses randomly sampled on the

upper hemisphere of the object. The in-plane rotation is

randomly sampled within range [−45◦,+45◦], scale within

range [65cm, 115cm]. We use the 3D models provided with

the LINEMOD dataset, and render them over random back-

grounds extracted from images of ImageNet [8]. We do not

simulate lighting as the object textures already exhibit light-

ing effects. Note that this lighting does not correspond to

the lighting of the real images in general. We also do not

add blur, nor Gaussian noise, nor any other techniques of-

ten applied to synthetic images created for training [21, 38].

For generating the training set T R of Eq. (3) we use the

same protocol as in [37]: We slightly rescale the image of

the segmented object, superimpose it on a random back-

ground picked from the ImageNet dataset [8], after a small

random translation from the center of the image window.

Comparison results. Table 1 provides the 2D Projection

metric [5] obtained by these methods using the ground truth

2D object center. Our method significantly outperforms the

other domain adaptation methods on this problem. This il-

lustrates that our feature mapping can generalize better to

the 3D pose estimation problem compared to existing do-

main adaptation techniques.

Table 2 provides the final results obtained after the re-

finement stage of [37] trained with synthetic images using

our feature mapping method. We compare them with the

results obtained by current state-of-the-art methods, i.e. [5],

BB8 with refinement [37], SSD-6D [23]. For our method,

we use the detection technique of [37].

More precisely, Table 2 reports the measures commonly

used on the LINEMOD dataset: The 2D Projection [5], the

6D pose [20], and the 5cm 5◦ [39] metrics for all methods,

except [23] who provides the 6D pose metric only. To the

best of our knowledge, our approach obtains the best results

obtained on LINEMOD from RGB images reported so far.

To appreciate the quality of ours results, we show in Fig. 5

the bounding boxes we retrieve on the same images as in

the third column of Figures 4 and 5 of the supplementary

material of [23] for comparison where they use RGB re-

finement. Note that for the comparison with [37], we use

our reimplementation, which achieves slightly better results

than the numbers reported in [37]. Training [37] on a large

number of synthetic images, together with real images, per-

forms similar to BB8. Training only on synthetic images

performs extremely poorly with a performance of 12% for

the 2D Projection metric.

[4] does not report the metrics mentioned above for its

GAN approach on the LINEMOD dataset. It does report

a mean rotation error of 23.5◦, while our method obtains

a significantly lower error of 3.5◦. This indicates that the
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Figure 5: Qualitative results obtained by our method on the LINEMOD dataset [19]. The green bounding boxes correspond

to the ground truth poses, and the blue bounding boxes to the estimated poses. Our predictions remain always very close to

the ground truth.

Object [38] GRL [12] DDC [47]
BB8 [37]

Ours
w/o ref.

Ape 95.7 96.0 94.4 94.0 96.6

Bench Vise 94.6 94.8 91.3 90.0 96.3

Camera 88.6 90.4 84.0 81.7 94.8

Can 95.8 95.7 95.1 94.2 96.6

Cat 96.1 97.0 95.6 94.7 98.0

Driller 75.4 78.0 70.7 64.7 83.3

Duck 94.7 95.2 93.1 94.4 96.3

Egg Box 95.8 95.6 95.1 93.5 96.1

Glue 95.7 95.8 94.8 94.8 96.9

Hole Puncher 91.5 91.9 92.6 87.2 95.7

Iron 87.5 88.8 83.2 81.0 92.3

Lamp 80.5 80.8 77.7 76.2 83.5

Phone 78.3 80.9 76.0 70.6 88.2

Average 90.0 90.8 88.0 85.9 93.4

Table 1: Comparison of different domain adaptation meth-

ods ([38], GRL [12], and DDC [47]) on 3D object pose esti-

mation, using the LINEMOD dataset and the 2D Projection

metric [5]. All methods use the ground truth 2D object cen-

ter and predict the 3D object pose using the 2D projections

of the objects’ 3D bounding box [37]. BB8 w/o ref. [37] de-

notes the results obtained using only the available real im-

ages. Our method outperforms the other domain adaptation

methods on this problem.

images generated by the GAN are too inaccurate to infer an

accurate 3D pose. We also tried the method of [46], which

performed actually more poorly on this problem. This can

be explained by the fact that this method does not guaran-

tee that the learned features carry enough information for

Metric
[5] BB8 [37] SSD-6D [23] Ours

with ref. with ref. with ref. with ref.

2D Projection 73.7 91.8 - 95.4

6D pose 50.2 70.1 76.6 78.7

5cm 5
◦ 40.6 73.3 - 80.1

Table 2: Comparison of our final results to state-of-the-art

methods on the LINEMOD dataset. Here [5] and [23] use

their own pose refinement methods, while we use the same

refinement stage as [37] but trained using our approach, To

the best of our knowledge, our approach obtains the best

results obtained on LINEMOD from RGB images reported

so far.

predicting a pose, as this method was designed for classifi-

cation, not regression.

Influence of the number of real images. Capturing real

data is very cumbersome and time consuming, which moti-

vates the use of synthetic data. On the LINEMOD dataset,

[5, 37] both use 15% of the images for training, which rep-

resents 180 real images per object on average, and the re-

maining images for testing. Fig. 4 shows the influence of the

number of real training images on the final results. Using

our method systematically improves the results compared to

using only real images for training. We require about half

the amount of training images to achieve the same accuracy

as [37].

4.2. 3D Hand Pose Estimation

To show the generality of our approach, we also evaluate

it on 3D hand pose estimation from single view depth maps.
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Figure 4: Influence of the number of real images for 3D

object pose estimation using the 2D Projection metric [5].

BB8 corresponds to the results obtained when only real im-

ages are used for training [37]. When using the same num-

ber of training images, our method systematically improves

the performance. It needs half the number of images to

reach the same performance.

For this experiment, we consider the NYU dataset [45].

This dataset is very challenging as it contains hands from

multiple subjects under a large range of 3D poses. More-

over, as can be seen in Fig. 6, it exhibits severe noise due

to the use of a structured light sensor to capture the depth

maps. The dataset is made of 72k depth maps for training

and 8k for testing. The depth maps are captured from three

different viewpoints and annotated with the 3D joint loca-

tions. We follow the protocol of [45] and predict a subset of

14 joints. We use the pipeline provided by [34] to prepro-

cess the depth maps: It crops a 128× 128 patch around the

hand location, and normalizes its depth values to the range

of [−1,+1].
We compare our method to very recent state-of-the-

art methods: DeepPrior++ [33] integrates a prior on the

3D hand poses into a Deep Network; REN [16] relies

on an ensemble of Deep Networks, each operating on

a region of the input image; Lie-X [49] uses a sophis-

ticated tracking algorithm constrained to the Lie group;

Crossing Nets [48] uses an adversarial training architec-

ture; Neverova et al. [32] proposed a semi-supervised ap-

proach that incorporates a semantic segmentation of the

hand; DeepModel [53] integrates a 3D hand model into a

Deep Network; DISCO [3] learns the posterior distribution

of hand poses; Feedback [34] uses an additional Deep Net-

work to improve results of an initial prediction; Hand3D [9]

uses a volumetric CNN to process a point cloud.

Training set creation. Creating synthetic depth maps for

hand poses is a relatively simple problem. In practice, we

Method Average 3D error

Neverova et al. [32] 14.9mm

Crossing Nets [48] 15.5mm

Lie-X [49] 14.5mm

REN [16] 13.4mm

DeepPrior++ [33] 12.3mm

Feedback [34] 16.2mm

Hand3D [9] 17.6mm

DISCO [3] 20.7mm

DeepModel [53] 16.9mm

Synthetic only 21.1mm

Ours 7.4mm

Table 3: Quantitative evaluation on the NYU dataset [45].

We compare the average Euclidean 3D error of the predicted

poses with state-of-the-art methods on the NYU dataset.

The numbers are reported for the real test images.

use the 3D hand model of [45] to render synthetic views of

a hand. However, it should be noted that the noise present

in real depth maps captured with a structured light sensor

is difficult to simulate, and our synthetic depth maps do not

contain any noise. We use 5M synthetic images of the hand

that are rendered online during training from poses of the

training set perturbed with randomly added articulations.

Comparison results. Table 3 compares the different

methods we consider using the average Euclidean distance

between ground truth and predicted joint 3D locations,

which is a de facto standard for this problem. When train-

ing on synthetic data only, the error on the real test images

is 21mm, which suggests that the network severely over-

fits to the rendered depth maps and cannot generalizes to

real depth maps, which are often very noisy. By using our

feature mapping, we achieve an error of 7.4mm, which im-

proves the state-of-the-art by 4.9mm or almost 40%.

Fig. 6 shows some qualitative results. When only syn-

thetic depth maps are used, the predictions for synthetic

depth maps are typically very good, but the predictions for

real frames are bad. When using our method, the predicted

poses significantly improve, especially in the presence of

noise in the depth maps.

Fig. 7 shows the fraction of frames where all joints of

a frame are within a maximum distance from the ground

truth. This is a very difficult metric since a single erro-

neous joint can deteriorate the result of a frame [34, 44].

We significantly outperform all previous works on this dif-

ficult metric, by almost 40% at an error threshold of 20mm.

4.3. Computation Times

We implemented our approach in Tensorflow [10] and

the code runs on an Intel Core i7 3.30GHz desktop with
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Figure 6: Qualitative results on the NYU dataset [45]. Top row: Predicted poses on synthetic test depth maps, and Middle

row: predicted poses on real test depth maps, when training on synthetic depth maps only. Training only on synthetic depth

maps does not generalize well to real depth maps. Bottom row: Predicted poses when using our method. We plot the 2D

projection of the 3D pose prediction. Blue denotes ground truth annotations, red are our predictions.
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Figure 7: Comparison with state-of-the-art methods on the

NYU dataset [45]. We plot the fraction of frames where all

joints of a frame are within a maximum distance from the

ground truth. A larger area under the curve indicates better

results. Our proposed approach performs best among all

other methods.

a Geforce TITAN X. For 3D object pose estimation, our

reimplementation of [37], on which our approach is built

on, is significantly faster than the original implementa-

tion: It takes 3.2ms for the pose inference including fea-

ture mapping, which requires only a few matrix multipli-

cations in addition to the feature extraction. This corre-

sponds to approximately 300fps. For 3D hand pose estima-

tion, our approach takes 8.6ms, which corresponds to more

than 110fps. These computation times should be compared

to those of the exemplar-based approach of [29], which re-

ports run-times of several seconds per image.

5. Conclusion

We showed that domain transfer between synthetic and

real images can be achieved easily in the case of 3D pose

inference. We presented an approach that learns a map-

ping between the two domains from synthetic images ren-

dered under the same pose as the available real training im-

ages, jointly with feature extraction and pose inference. Our

method is simple to implement, can be easily optimized, is

very efficient at run-time, and allowed us to outperform the

state-of-the-art on popular datasets for 3D object pose and

3D hand pose estimation.
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