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Abstract

We investigate omni-supervised learning, a special

regime of semi-supervised learning in which the learner ex-

ploits all available labeled data plus internet-scale sources

of unlabeled data. Omni-supervised learning is lower-

bounded by performance on existing labeled datasets, of-

fering the potential to surpass state-of-the-art fully super-

vised methods. To exploit the omni-supervised setting, we

propose data distillation, a method that ensembles predic-

tions from multiple transformations of unlabeled data, us-

ing a single model, to automatically generate new training

annotations. We argue that visual recognition models have

recently become accurate enough that it is now possible to

apply classic ideas about self-training to challenging real-

world data. Our experimental results show that in the cases

of human keypoint detection and general object detection,

state-of-the-art models trained with data distillation sur-

pass the performance of using labeled data from the COCO

dataset alone.

1. Introduction

This paper investigates omni-supervised learning, a

paradigm in which the learner exploits as much well-

annotated data as possible (e.g., ImageNet [6], COCO [24])

and is also provided with potentially unlimited unlabeled

data (e.g., from internet-scale sources). It is a special regime

of semi-supervised learning. However, most research on

semi-supervised learning has simulated labeled/unlabeled

data by splitting a fully annotated dataset and is there-

fore likely to be upper-bounded by fully supervised learn-

ing with all annotations. On the contrary, omni-supervised

learning is lower-bounded by the accuracy of training on

all annotated data, and its success can be evaluated by how

much it surpasses the fully supervised baseline.

To tackle omni-supervised learning, we propose to per-

form knowledge distillation from data, inspired by [3, 18]

which performed knowledge distillation from models. Our

idea is to generate annotations on unlabeled data using a

model trained on large amounts of labeled data, and then

retrain the model using the extra generated annotations.

However, training a model on its own predictions often pro-

vides no meaningful information. We address this problem
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Figure 1. Model Distillation [18] vs. Data Distillation. In data

distillation, ensembled predictions from a single model applied to

multiple transformations of an unlabeled image are used as auto-

matically annotated data for training a student model.

by ensembling the results of a single model run on different

transformations (e.g., flipping and scaling) of an unlabeled

image. Such transformations are widely known to improve

single-model accuracy [20] when applied at test time, indi-

cating that they can provide nontrivial knowledge that is not

captured by a single prediction. In other words, in compar-

ison with [18], which distills knowledge from the predic-

tions of multiple models, we distill the knowledge of a sin-

gle model run on multiple transformed copies of unlabeled

data (see Figure 1).

Data distillation is a simple and natural approach based

on “self-training” (i.e., making predictions on unlabeled

data and using them to update the model), related to which

there have been continuous efforts [36, 48, 43, 33, 22, 46,

5, 21] dating back to the 1960s, if not earlier. However,

our simple data distillation approach can become realistic

largely thanks to the rapid improvement of fully-supervised

models [20, 39, 41, 16, 12, 11, 30, 28, 25, 15] in the past

few years. In particular, we are now equipped with accu-

rate models that may make fewer errors than correct pre-

dictions. This allows us to trust their predictions on unseen
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data and reduces the requirement for developing data clean-

ing heuristics. As a result, data distillation does not require

one to change the underlying recognition model (e.g., no

modification on the loss definitions), and is a scalable solu-

tion for processing large-scale unlabeled data sources.

To test data distillation for omni-supervised learning, we

evaluate it on the human keypoint detection task of the

COCO dataset [24]. We demonstrate promising signals

on this real-world, large-scale application. Specifically, we

train a Mask R-CNN model [15] using data distillation ap-

plied on the original labeled COCO set and another large

unlabeled set (e.g., static frames from Sports-1M [19]). Us-

ing the distilled annotations on the unlabeled set, we have

observed improvement of accuracy on the held-out valida-

tion set: e.g., we show an up to 2 points AP improvement

over the strong Mask R-CNN baseline. As a reference, this

improvement compares favorably to the ∼3 points AP im-

provement gained from training on a similar amount of extra

manually labeled data in [27] (using private annotations).

We further explore our method on COCO object detection

and show gains over fully-supervised baselines.

2. Related Work

Ensembling [14] multiple models has been a successful

method for improving accuracy. Model compression [3] is

proposed to improve test-time efficiency of ensembling by

compressing an ensemble of models into a single student

model. This method is extended in knowledge distillation

[18], which uses soft predictions as the student’s target.

The idea of distillation has been adopted in various sce-

narios. FitNet [32] adopts a shallow and wide teacher mod-

els to train a deep and thin student model. Cross modal

distillation [13] is proposed to address the problem of lim-

ited labels in a certain modality. In [26] distillation is uni-

fied with privileged information [44]. To avoid explicitly

training multiple models, Laine and Aila [21] exploit mul-

tiple checkpoints during training to generate the ensemble

predictions. Following the success of these existing works,

our approach distills knowledge from a lightweight ensem-

ble formed by multiple data transformations.

There is a great volume of work on semi-supervised

learning, and comprehensive surveys can be found in [49,

4, 50]. Among semi-supervised methods, our method is

most related to self-training, a strategy in which a model’s

predictions on unlabeled data are used to train itself [36,

48, 43, 33, 22, 46, 5, 21]. Closely related to our work

on keypoint/object detection, Rosenberg et al. [33] demon-

strate that self-training can be used for training object detec-

tors. Compared to prior efforts, our method is substantially

simpler. Once the predicted annotations are generated, our

method leverages them as if they were true labels; it does

not require any modifications to the optimization problem

or model structure.

Multiple views or perturbations of the data can pro-

vide useful signal for semi-supervised learning. In the co-

training framework [2], different views of the data are used

to learn two distinct classifiers that are then used to train

one another over unlabeled data. Reed et al. [29] use a re-

construction consistency term for training classification and

detection models. Bachman et al. [1] employ the pseudo-

ensemble regularization term to train models robust on in-

put perturbations. Sajjadi et al. [35] enforce consistency

between outputs computed for different transformations of

input examples. Simon et al. [38] utilize multi-view geom-

etry to generate hand keypoint labels from multiple cameras

and retrain the detector. In an auto-encoder scenario, Hinton

et al. [17] propose to use multiple “capsules” to model mul-

tiple geometric transformations. Our method is also based

on multiple geometric transformations, but it does not re-

quire to modify network structures or impose consistency

by adding any extra loss terms.

Regarding the large-scale regime, Fergus et al. [9] inves-

tigate semi-supervised learning on 80 millions tiny images.

A Never Ending Image Learner (NEIL) [5] employs self-

training to perform semi-supervised learning from web-

scale image data. These methods were developed before the

recent renaissance of deep learning. In contrast, our method

is evaluated with strong deep neural network baselines, and

can be applied to structured prediction problems beyond

image-level classification (e.g., keypoints and boxes).

3. Data Distillation

We propose data distillation, a general method for omni-

supervised learning that distills knowledge from unlabeled

data without the requirement of training a large set of mod-

els. Data distillation involves four steps: (1) training a

model on manually labeled data (just as in normal super-

vised learning); (2) applying the trained model to multiple

transformations of unlabeled data; (3) converting the pre-

dictions on the unlabeled data into labels by ensembling the

multiple predictions; and (4) retraining the model on the

union of the manually labeled data and automatically la-

beled data. We describe steps 2-4 in more detail below.

Multi-transform inference. A common strategy for boost-

ing the accuracy of a visual recognition model is to apply

the same model to multiple transformations of the input and

then to aggregate the results. Examples of this strategy in-

clude using multiple crops of an input image (e.g., [20, 42])

or applying a detection model to multiple image scales and

merging the detections (e.g., [45, 8, 7, 37]). We refer to

the general application of inference to multiple transforma-

tions of a data point with a single model as multi-transform

inference. In data distillation, we apply multi-transform in-

ference to a potentially massive set of unlabeled data.
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Figure 2. Ensembling keypoint predictions from multiple data transformations can yield a single superior (automatic) annotation.

For visualization purposes all images and keypoint predictions are transformed back to their original coordinate frame.

Generating labels on unlabeled data. By aggregating the

results of multi-transform inference, it is often possible to

obtain a single prediction that is superior to any of the

model’s predictions under a single transform (e.g., see Fig-

ure 2). Our observation is that the aggregated prediction

generates new knowledge and in principle the model can use

this information to learn from itself by generating labels.

Given an unlabeled image and a set of predictions from

multi-transform inference, there are multiple ways one

could automatically generate labels on the image. For ex-

ample, in the case of a classification problem the image

could be labeled with the average of the class probabilities

[18]. This strategy, however, has two problems. First, it

generates a “soft” label (a probability vector, not a cate-

gorical label) that may not be straightforward to use when

retraining the model. The training loss, for example, may

need to be altered such that its compatible with soft labels.

Second, for problems with structured output spaces, like ob-

ject detection or human pose estimation, it does not make

sense to average the output as care must be taken to respect

the structure of the output space.

Given these considerations, we simply ensemble (or ag-

gregate) the predictions from multi-transform inference in a

way that generates “hard” labels of the same structure and

type of those found in the manually annotated data. Gener-

ating hard labels typically requires a small amount of task-

specific logic that addresses the structure of the problem

(e.g., merging multiple sets of boxes by non-maximum sup-

pression). Once such labels are generated, they can be used

to retrain the model in a simple plug-and-play fashion, as if

they were authentic ground-truth labels.

Finally, we note that while this procedure requires run-

ning inference multiple times, it is actually efficient be-

cause it is generally substantially less expensive than train-

ing multiple models from scratch, as is required by model

distillation [3, 18].

Knowledge distillation. The new knowledge generated

from unlabeled data can be used to improve the model. To

do this, a student model (which can be the same as the orig-

inal model or different) is trained on the union set of the

original supervised data and the unlabeled data with auto-

matically generated labels.

Training on the union set is straightforward and requires

no change to the loss function. However, we do take two

factors into considerations. First, we ensure that each train-

ing minibatch contains a mixture of manually labeled data

and automatically labeled data. This ensures that every

minibatch has a certain percentage of ground-truth labels,

which results in better gradient estimates. Second, since

more data is available, the training schedule must be length-

ened to take full advantage of it. We discuss these issues in

more detail in the context of the experiments.

4. Data Distillation for Keypoint Detection

This section describes an instantiation of data distillation

for the application of multi-person keypoint detection.

Mask R-CNN. Our teacher and student models are the

Mask R-CNN [15] keypoint detection variant. Mask R-

CNN is a two-stage model. The first stage is a Region Pro-

posal Network (RPN) [30]. The second stage consists of

three heads for bounding box classification, regression, and

keypoint prediction on each Region of Interest (RoI). The

keypoint head outputs a heatmap that is trained to predict a

one-hot mask for each keypoint type. We use ResNet [16]

and ResNeXt [47] with Feature Pyramid Networks (FPN)

[23] as backbones for Mask R-CNN. All implementations

follow [15], unless specified.

Data transformations. This paper opts for geometric

transformations for multi-transform inference, though other

transformations such as color jittering [20] are possible.

The only requirement is that it must be possible to ensemble

the resulting predictions. For geometric transformations, if

the prediction is a geometric quantity (e.g., coordinates of a

keypoint), then the inverse transformation must be applied

to each prediction before they are merged.

We use two popular transformations: scaling and hor-

izontal flipping. We resize the unlabeled image to a pre-

defined set of scales (denoted by the shorter side of an

image): [400, 1200] pixels with a stepsize of 100, which

was selected by measuring the keypoint AP for the teacher

model when applying these transformations on the vali-

dation set. The selected transformations can improve the

model by a good margin, e.g. for ResNet-50 from 65.1 to

67.8 AP, which is then used as the teacher. Note that unless

stated, we do not apply these transformation at test time for

all baseline/distilled models.
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Figure 3. Random examples of annotations generated on static Sports-1M [19] frames using a ResNet-50 teacher. The generated

annotations have reasonably high quality, though as expected there are mistakes like inverted keypoints (top right).

Figure 3 shows some examples of the generated annota-

tions on Sport-1M. They have reasonably high quality.

Ensembling. One could ensemble the multi-transform in-

ference results from each stage and each head of Mask

R-CNN. In our experiments, however, for simplicity we

only apply multi-transform inference to the keypoint head;

the outputs from the other stage (i.e., RPN) and heads

(i.e., bounding box classification and regression) are from

a single-scale without any transformations.

Thanks to the above simplification, it is easy for us to

have a consistent set of detection boxes serving as the RoIs

for all transformations (scales/flipping). On a single RoI,

we extract the keypoint heatmaps from all transformations,

and although they are from different geometric transforma-

tions, these heatmaps are with reference to the local coor-

dinate system of the same RoI. So we can directly average

the output (probability) of these heatmaps for ensembling.

We take the argmax position in this ensembling result and

generate the predicted keypoint location.

Selecting predictions. We expect the predicted boxes and

keypoints to be reliable enough for generating good train-

ing labels. Nevertheless, the predictions will contain false

positives that we hope to identify and discard. We use the

predicted detection score as a proxy for prediction quality

and generate annotations only from the predictions that are

above a certain score threshold. In practice, we found that a

score threshold works well if it makes “the average number

of annotated instances per unlabeled image” roughly equal

to “the average number of instances per labeled image”. Al-

though this heuristic assumes that the unlabeled and labeled

images follow similar distributions, we found that it is ro-

bust and works well even in cases where the assumption

does not hold.

As a dual consideration to false positives above, there

may be false negatives (i.e., missing detections) in the extra

data, and the annotations generated should not necessarily

be viewed as complete (i.e., absence of an annotation does

not imply true background). However, in our practice we

have tried either to sample or not sample background re-

gions from the extra data for training detectors, and have

observed no difference in accuracy. For simplicity, in all

experiments we view the generated data as complete, so the

extra data are simply treated as if all annotations are correct.

Generating keypoint annotations. Each of the selected

predictions consists of K individual keypoints (e.g., left ear,

nose, etc.). Since many of the object views do not show

all of the keypoint types, the predicted keypoints are likely

to contain false positives as well. As above, we choose a

threshold such that the average numbers of keypoints are

approximately equal in the supervised and generated sets.

Retraining. We train a student model on the union set of

the original supervised images and the images with auto-

matically generated annotations. To maintain supervision

quality at the minibatch level, we use a fixed sampling ratio

for the two kinds of data. Specifically, we randomly sample

images for each minibatch such that the expected ratio of

original images to generated labeled images is 6:4, unless

stated otherwise.

We adopt the learning rate schedule similar to [15] and

increase the total number of iterations to account for extra

images. The learning rate starts from 0.02 and is divided by

10 after 70% and 90% of the total number of iterations. The

impact of the total number of iterations will be discussed in

the next section in context of Table 2.

We use a student model with the same architecture as

the teacher. The student can either be fine-tuned starting

from the teacher model or retrained from the initial weights

(i.e., those pre-trained on ImageNet [34]). We found that

retraining consistently results in better performance, sug-

gesting that the teacher model could have been in a poor

local optimum. We opt for retraining in all experiments.

5. Experiments on Keypoint Detection

We evaluate data distillation on the keypoint detection

task of the COCO dataset [24]. We report keypoint Av-

erage Precision following the COCO definitions, including

AP (COCO’s default, averaged over different IoU thresh-
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Figure 4. Selected results of fully-supervised learning in the original co-115 set (top) vs. data distillation in the co-115 plus

s1m-180 sets (bottom). The results are on the held-out data from COCO test-dev.

olds), AP50, AP75, APM (medium), and APL (large). In

all experiments we report results on the 2017 validation set

that contains 5k images (called val2017, formerly known

as minival).

5.1. Data Splits

Our experiments involve several splits of data:

COCO labeled images. These are the original labeled

COCO images that contain ground-truth person and key-

point annotations. In this paper, we refer to the 80k training

images as co-80, a 35k subset of the 2014 validation im-

ages as co-35, and their union as co-115 (in the 2017

version of COCO, co-115 is the train2017 set). We

do not use the original train/val nomenclature because their

roles may change in different experiments.

COCO unlabeled images. The 2017 version of COCO

provides a collection of 120k unlabeled images, which we

call un-120. These images are expected to have a similar

distribution as the labeled COCO images.

Sports-1M static frames. We will show that our method

can be robust to a dissimilar distribution of unlabeled data.

We collect these images by using static frames from the

Sports-1M [19] video dataset. We randomly sample 180k

videos from this dataset. Then we randomly sample 1 frame

from each video, noting that we do not exploit any tempo-

ral information even if it is possible. This strategy gives us

180k static images. We call this set s1m-180. We do not

use any available labels from this static image set.

5.2. Main Results

We investigate data distillation in three cases:

(i) Small-scale data as a sanity check: we use co-35 as the

labeled data and treat co-80 as unlabeled.

(ii) Large-scale data with similar distribution: we use

co-115 as the labeled data and un-120 as unlabeled.

(iii) Large-scale data with dissimilar distribution: we use

co-115 as the labeled data and s1m-180 as unlabeled.

The results are in Table 1, discussed as follows:

Small-scale data. As a sanity-check, we evaluate our ap-

proach in the classic semi-supervised setting by simulating

labeled and unlabeled splits from all labeled images.

In Table 1a, we show results of data distillation per-

formed on co-35 as the labeled data and co-80 treated

as unlabeled data. As a comparison, we report supervised

learning results using either co-35 or co-115. This com-

parison shows that data distillation is a successful semi-

supervised learning method: it surpasses the co-35-only

counterpart by 5.3 points of AP by using unlabeled data

(60.2 vs. 54.9). On the other hand, as expected, the semi-

supervised learning result is lower than fully-supervised

learning on co-115 (60.2 vs. 65.1).

This phenomenon on small-scale data has been widely

observed for many semi-supervised learning methods and

datasets: if labels were available for all training data, then

the accuracy of semi-supervised learning would be upper-

bounded by using all labels. In addition, as the simulated

splits are often at smaller scales, there is a relatively large

gap for the semi-supervised method to improve in (e.g.,

from 54.9 to 65.1).

We argue that omni-supervised learning is a real-world

scenario unlike the above simulated semi-supervised set-

ting. Even though one could label many images, there

are always more unlabeled data available (e.g., at internet-

scale). We can thus pursue an accuracy that is lower-

bounded. In addition, when trained with a larger dataset, the

supervised baseline would be much higher (e.g., 65.1), leav-

ing less room for models to gain from the unlabeled data.

Therefore, we argue that the large-scale, high-accuracy

regime is more challenging and of more interest in practice.

We investigate it in the following experiments.

Large-scale, similar-distribution data. Table 1b shows

the scenario of a real-world omni-supervised learning ap-

plication: we have a large-scale source of 120k COCO

(un-120) images on hand, but we do not have labels for

them. Can we improve over our best baseline results using

these unlabeled data?

Table 1b shows the data distillation results on co-115

plus un-120, comparing with the fully-supervised coun-
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labeled unlabeled AP AP50 AP75 APM APL

co-35 54.9 80.5 59.0 50.1 62.8

co-35 co-80 60.2 83.8 65.4 55.2 68.4

co-115 65.1 86.6 70.9 59.9 73.6

(a) Small-scale data. Data distillation is performed on co-35 with la-

bels and co-80 without labels, vs. fully-supervised learning performed on

co-35 and co-115 respectively. The backbone is ResNet-50.

backbone DD AP AP50 AP75 APM APL

ResNet-50 65.1 86.6 70.9 59.9 73.6

ResNet-50 X 67.1 87.9 73.4 62.2 75.1

ResNet-101 66.1 87.7 71.7 60.5 75.0

ResNet-101 X 67.8 88.2 73.8 62.8 76.0

ResNeXt-101-32×4 66.8 87.5 73.0 61.6 75.2

ResNeXt-101-32×4 X 68.7 88.9 75.1 63.9 76.7

ResNeXt-101-64×4 67.3 88.0 73.3 62.2 75.6

ResNeXt-101-64×4 X 69.1 88.9 75.3 64.1 77.1

(b) Large-scale, similar-distribution data. Data distillation (DD) is per-

formed on co-115 with labels and un-120 without labels, comparing

with the supervised counterparts trained on co-115.

backbone DD AP AP50 AP75 APM APL

ResNet-50 65.1 86.6 70.9 59.9 73.6

ResNet-50 X 66.6 87.3 72.6 61.6 75.0

ResNet-101 66.1 87.7 71.7 60.5 75.0

ResNet-101 X 67.5 87.9 73.9 62.4 75.9

ResNeXt-101-32×4 66.8 87.5 73.0 61.6 75.2

ResNeXt-101-32×4 X 68.0 88.1 74.2 63.1 76.2

ResNeXt-101-64×4 67.3 88.0 73.3 62.2 75.6

ResNeXt-101-64×4 X 68.5 88.8 74.9 63.7 76.5

(c) Large-scale, dissimilar-distribution data. Data distillation (DD) is

performed on co-115 with labels and s1m-180 without labels, compar-

ing with the supervised counterparts trained on co-115.

Table 1. Data distillation for COCO keypoint detection. Keypoint

AP is reported on COCO val2017.

terpart on co-115, the largest available annotated set on

hand. Our method is able to improve over the strong base-

lines by 1.7 to 2.0 points AP. Our improvement is observed

regardless of the depth/capacity of the backbone models, in-

cluding ResNet-50/101 and ResNeXt-101.

We argue that these are non-trivial results. Because the

baselines are very high due to using large amounts of su-

pervised data (115k images in co-115), they might leave

less room for further improvement, in contrast to the simu-

lated semi-supervised setting. Actually, in recent work [27]

that exploited an extra 1.5× fully-annotated human key-

point skeletons (contributed by in-house annotators), the

improvement is ∼3 points AP over their baseline. Given

this context, our increase of ∼2 points AP, contributed by a

similar amount of extra unlabeled data, is very promising.

Large-scale, dissimilar-distribution data. Even though

COCO data are images “in the wild”, the co-115 and

un-120 sets are subject to similar data distributions. As

one further step toward omni-supervision in real cases, we

investigate a scenario where the unlabeled images are from

a different distribution.

#iter AP AP50 AP75 APM APL

fully-supervised 90k 64.2 86.4 69.2 59.1 72.6

130k 65.1 86.6 70.9 59.9 73.6

270k 64.7 86.6 70.4 59.7 73.0

data distillation 90k 63.6 85.9 69.2 58.8 71.7

180k 65.8 87.3 71.6 60.8 74.2

270k 66.5 88.0 72.2 61.5 74.6

360k 66.6 87.3 72.6 61.6 75.0

Table 2. Ablation on numbers of training iterations. The models

are trained on co-115 (and plus s1m-180 for data distillation).

The backbone is ResNet-50. In all case, the learning rate is re-

duced by 10 at 70% and 90% of the total number of iterations.

Table 1c shows data distillation results on co-115

plus s1m-180. Comparing with the supervised baselines

trained on co-115, our method shows consistent improve-

ment with different backbones, achieving 1.2 to 1.5 points

of AP increase. Moreover, the improvements in this case

are reasonably close to those in Table 1b, even though the

data distribution in Sport-1M is different. This experiment

shows that our method, in the application of keypoint detec-

tion, is robust to the misaligned distribution of data. This is

a promising signal for real-world omni-supervised learning.

Figure 4 shows some examples of the fully-supervised

results trained in co-115 and the data distillation results

trained in co-115 plus s1m-180.

5.3. Ablation Experiments

In addition to the above main results, we conduct several

ablation experiments as analyzed in the following:

Number of iterations. It is necessary to train for more iter-

ations when given more (labeled or distilled) data. To show

that our method does not simply take advantage of longer

training, we conduct a careful ablation experiment on the

number of iterations in Table 2.

For the fully-supervised baseline, we investigated a total

number of iterations of 90k (as done in [15]), 130k (∼1.5×

longer), and 270k (3× longer). Table 2 (top) shows that

an appropriately long training indeed leads to better results,

and the original schedule of 90k in [15] is suboptimal. How-

ever, without increasing the dataset size, training longer

gives diminishing return and becomes prone to overfitting.

The optimal number of 130k iterations is chosen and used

in Tables 1 for the fully-supervised baselines.

In contrast, our data distillation method continuously im-

proves when the number of iterations is increased from 90k

to 360k as shown in Table 2 (bottom). With a short train-

ing of 90k, our method is inferior to its fully-supervised

counterpart (63.6 vs. 64.2), which is understandable: the

generated labels in the extra data have lower quality than

the ground-truth labels, and the model may not benefit from

them unless ground-truth labels have been sufficiently ex-

ploited. On the other hand, our method starts to show

a healthy gain with sufficient training and surpasses its
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Figure 5. Data distillation applied to co-115 with labels and dif-

ferent fractions of un-120 images without labels, comparing

with the co-115 fully-supervised baseline, using ResNet-50.
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Figure 6. Impact of teacher quality on data distillation. Student

ResNet-50 model is trained using data distillation on co-115 plus

un-120 and compared to its fully-supervised counterpart trained

on co-115. Each data point is from a different teacher whose AP

can vary because of different backbones, number of supervised

training iterations, and transform settings (e.g., scales used).

fully-supervised counterpart. Actually, our method’s per-

formance has not saturated and is likely to improve when

using more iterations. To have manageable experiments,

for all other data distillation results in the paper, our method

uses 360k iterations.

Amount of unlabeled data. To better understand the im-

portance of the amount of unlabeled data, in Figure 5 we

investigate using a subset of the un-120 unlabeled data

for data distillation (the labeled data is co-115).

To have a simpler unified rule for handling the various

sizes of the unlabeled set, for this ablation, we adopt a mini-

batching and iteration strategy different from the above sec-

tions. Given a fraction ρ of un-120 images used, we sam-

ple each minibatch with on average 1:ρ examples from the

labeled and unlabeled data. The iteration number is adap-

tively set as 1+ρ times of that of the supervised baseline

(130k in this figure). As such, the total number of sampled

images from the labeled set is roughly the same regardless

of the fraction ρ. We note that this strategy is suboptimal

comparing with the setting in other tables, but it is a simpli-

fied setting that can apply to all fractions investigated.

Figure 5 shows that for all fractions of unlabeled data,

our method is able to improve over the supervised baseline.

backbone test aug.? AP AP50 AP75 APM APL

ResNet-50 67.1 87.9 73.4 62.2 75.1

ResNet-50 X 68.9 88.8 75.8 64.4 76.4

ResNet-101 67.8 88.2 73.8 62.8 76.0

ResNet-101 X 69.8 89.1 76.0 65.3 77.5

ResNeXt-101-32×4 68.7 88.9 75.1 63.9 76.7

ResNeXt-101-32×4 X 70.6 89.3 77.2 65.7 78.4

ResNeXt-101-64×4 69.1 88.9 75.3 64.1 77.1

ResNeXt-101-64×4 X 70.4 89.3 76.8 65.8 78.1

Table 3. Ablation on test-time augmentation. A data distillation

model is trained on co-115 + un-120, tested without and with

test-time augmentations.

Actually, as can be expected, the supervised baseline be-

comes a lower-bound of accuracy in omni-supervised learn-

ing: the extra unlabeled data, when exploited appropriately

such as in data distillation, should always provide extra in-

formation. Moreover, Figure 5 shows that there is a gen-

eral trend of better results when using more unlabeled data.

A similar trend, in the context of fully-annotated data, has

been observed recently in [40]. However, our trend is ob-

served in unlabeled data and can be more encouraging for

the future study in computer vision.

Impact of teacher quality. To understand the impact of

the teacher quality on data distillation, we produce differ-

ent teacher models with different AP (see Figure 6 caption).

Then we train the same student model on each teacher. Fig-

ure 6 shows the student AP vs. the teacher AP.

As expected, all student models trained by data

distillation surpass the fully-supervised baseline. In addi-

tion, a higher-quality teacher in general results in a bet-

ter student. This demonstrates a nice property of the data

distillation method: one could expect a bigger improvement

if a better teacher will be developed.

Test-time augmentations. Our data distillation method ex-

ploits multi-transform inference to generate labels. Multi-

transform inference can also be applied at test-time to

further improve results, a strategy typically called test-

time augmentation. Table 3 shows the results of apply-

ing test-time augmentations on a data distillation model.

The augmentations are the same as those used to generate

distillation labels. It shows that test-time augmentations can

still improve the results over our data distillation model.

Interestingly, the student model’s 68.9 AP (ResNet-50,

in Table 3) is higher than its corresponding (test-time aug-

mented) teacher’s 67.8 AP. We believe that this is a signal

of our approach being able to learn new knowledge from

the extra unlabeled data, instead of simply learning to be

robust to the transforms. Even though we use multiple data-

agnostic transforms, the distilled labels are data-dependent

and may convey knowledge from the extra data.

This result also suggests that performing data distillation

in an iterative fashion may improve the results further. We

leave this direction for future work.
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Figure 7. Object detection annotations generated on un-120.

6. Experiments on Object Detection

We investigate the generality of our approach by apply-

ing it to another task with minimal modification. We per-

form data distillation for object detection on the COCO

dataset [24]. Here our data splits involve co-35/80/115

as defined above. We test on minival.

6.1. Implementation

Our object detector is Faster R-CNN [30] with the FPN

backbone [23] and the RoIAlign improvement [15]. We

adopt the joint end-to-end training as described in [31].

Note that this is unlike in our keypoint experiments where

we froze the RPN stage (which created the same set of

boxes for keypoint ensembling). To produce the ensem-

ble results, we simply take the union set of the boxes pre-

dicted under different transformations, and combine them

using bounding box voting [10] (a process similar to non-

maximum suppression that merges the suppressed boxes).

This ensembling strategy on the union set of boxes shows

the flexibility of our method: it is agnostic to how the re-

sults from multiple transformations are aggregated.

The object detection task involves multiple categories. A

single threshold of score for generating labels may lead to

strong biases. To address this issue, we set a per-category

threshold of score confidence for annotating objects in the

unlabeled data. We choose a threshold for each category

such that its average number of annotated instances per im-

age in the unlabeled dataset matches the average number of

instances in the labeled dataset. Figure 7 shows some ex-

amples of the generated annotations on un-120.

6.2. Object Detection Results

We investigate data distillation in two cases (Table 4):

labeled unlabeled AP AP50 AP75 APS APM APL

co-35 30.5 51.9 31.9 15.2 33.0 40.6

co-35 co-80 32.3 53.8 33.9 16.8 35.5 43.7

co-115 37.1 59.1 39.6 20.0 40.0 49.4

(a) Small-scale data. Data distillation is performed on co-35 with la-

bels and co-80 without labels, vs. fully-supervised learning performed on

co-35 and co-115. The backbone is ResNet-50.

backbone DD AP AP50 AP75 APS APM APL

ResNet-50 37.1 59.1 39.6 20.0 40.0 49.4

ResNet-50 X 37.9 60.1 40.8 20.3 41.6 50.8

ResNet-101 39.2 61.0 42.3 21.7 42.9 52.3

ResNet-101 X 40.1 62.1 43.5 21.7 44.3 53.7

ResNeXt-101-32×4 40.1 62.4 43.2 22.6 43.7 53.7

ResNeXt-101-32×4 X 41.0 63.3 44.4 22.9 45.5 54.8

(b) Large-scale data. Data distillation (DD) is performed on co-115 with

labels and un-120 without labels, comparing with the supervised counter-

parts trained on co-115.

Table 4. Data distillation for COCO object detection. Box AP is

reported on COCO val2017.

(i) Small-scale data: we use co-35 as the labeled data and

treat co-80 as unlabeled.

(ii) Large-scale data: we use co-115 as the labeled data

and un-120 as unlabeled.

Small-scale data. Similar to the keypoint case, the semi-

supervised learning result of data distillation (Table 4a) is

higher than that of fully-supervised training in co-35, but

upper-bounded by that in co-115. However, in this case,

the data distillation is closer to the lower bound (32.3 vs.

30.5) and farther away from the upper bound. This result

requires further exploration, which we leave to future work.

Large-scale data. Table 4b shows the data distillation re-

sult using co-115 as labeled and un-120 as unlabeled

data, comparing with the fully-supervised result in

co-115. Our method is able to improve over the fully-

supervised baselines. Although the gains may appear small

(0.8-0.9 points in AP and 0.9-1.1 points in AP50), the signal

is consistently observed for all network backbones and for

all metrics. The biggest improvement is seen in the APM

metric, with an increase of up to 1.8 points (from 43.7 to

45.5 in ResNeXt-101-32×4).

The results in Table 4a and 4b suggest that object de-

tection with unlabeled data is a more challenging task, but

unlabeled data with data distillation can still help.

7. Conclusion

We show that it is possible to surpass large-scale super-

vised learning with omni-supervised learning, i.e., using

all available supervised data together with large amounts

of unlabeled data. We achieve this by applying data

distillation to the challenging problems of COCO object

and keypoint detection. We hope our work will attract more

attention to this practical, large-scale setting.
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