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Abstract

Despite significant research in the area, reconstruction

of multiple dynamic rigid objects (eg. vehicles) observed

from wide-baseline, uncalibrated and unsynchronized cam-

eras, remains hard. On one hand, feature tracking works

well within each view but is hard to correspond across mul-

tiple cameras with limited overlap in fields of view or due to

occlusions. On the other hand, advances in deep learning

have resulted in strong detectors that work across different

viewpoints but are still not precise enough for triangulation-

based reconstruction. In this work, we develop a frame-

work to fuse both the single-view feature tracks and multi-

view detected part locations to significantly improve the de-

tection, localization and reconstruction of moving vehicles,

even in the presence of strong occlusions. We demonstrate

our framework at a busy traffic intersection by reconstruct-

ing over 62 vehicles passing within a 3-minute window.

We evaluate the different components within our framework

and compare to alternate approaches such as reconstruc-

tion using tracking-by-detection.

1. Introduction

Multiple video cameras are becoming increasingly com-

mon at urban traffic intersections. This provides us a strong

opportunity to reconstruct moving vehicles crossing those

intersections. The shapes (even sparse) and motions of

the vehicles can be invaluable to traffic analysis, includ-

ing vehicle type, speed, density, trajectory and frequency

of events such as near-accidents. Infrastructure-to-Vehicle

(I2V) communication systems can provide such analysis to

other (semi-)autonomous vehicles approaching the intersec-

tion. That said, reconstructing moving vehicles in a busy

intersection is hard because of severe occlusions. Further-

more, the cameras are often unsynchronized, provide wide-

baseline views with little overlap in fields of view and need

to be calibrated each frame as they are often not rigidly at-

tached and sway because of wind or vibrations.

There has been a rich history of detection [12, 13, 34,

17], tracking [48, 9, 44, 41] and reconstruction [50, 19, 15,

8, 3] of vehicles. Their performances are progressively im-

proving thanks to recent advances in deep learning. In par-

ticular, detection of parts of vehicles (wheels, headlights,

Figure 1: Reconstruction of vehicles crossing a busy inter-
section, making turns, going straight and changing lanes. A
subset of vehicle skeletons (3D detector locations) and their
3D trajectories are augmented within the Google Earth view
of the intersection. The reconstructions are reprojected into
multiple views of two cars (a sedan and an SUV) demon-
strating good performance under partial occlusions.

doors, etc.) across multiple views is becoming increasingly

reliable [32, 24, 42]. However, the detected part locations

are still not precise enough to directly apply triangulation-

based 3D reconstruction methods, and are incomplete in the

presence of occlusions. For the same reason, tracking via

per-frame detection is not stable enough to be useful for

structure-from-motion approaches. We will refer to the de-

tected part locations as structured points.

On the other hand, there has also been significant work

on tracking feature points [38, 1] in structure-from-motion

approaches applied to a video from a single moving cam-

era [20, 31, 11, 30]. But corresponding these features across

wide-baseline views is near impossible given that each cam-

era sees only parts of a vehicle (front, one side, or back) at

any given time instant. These feature points do not often

have a semantic meaning (like the structured parts) and we

will call them unstructured points.

In this paper, we present a comprehensive framework

that fuses (a) incomplete and imprecise structured points
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Figure 2: CarFusion: Our overall pipeline for dynamic 3D reconstruction of multiple cars from uncalibrated and unsynchro-
nized video cameras. We fuse the structured points (detected vehicle parts) and the tracks of the unstructured feature points
to obtain precise reconstruction of the moving vehicle. The reconstructions are reprojected into all the views and are used to
bootstrap and improve the detectors.

(part detections) across multiple views with (b) precise

but sparse single-view tracks of unstructured points, to re-

construct moving vehicles even in severe occluded scenar-

ios. We call this framework as “CarFusion” and it con-

sists of three main stages: (1) a novel object-centric (as

opposed to feature-centric) RANSAC approach to provide

a good initialization of the 3D geometry of the structured

points of the vehicle (Sec. 3.1), (2) a novel algorithm that

fully exploits the complementary strength of the structured

and unstructured points via rigidity constraints (Sec. 3.2),

and (3) closing-the-loop by reprojecting the reconstructed

structured points to all views to retrain the part detectors

(Sec. 3.3). We implement a full end-to-end system that also

includes a pre-processing stage to self-calibrate and syn-

chronize the cameras by adapting recent prior works [40].

A detailed overview of our system is illustrated in Fig. 2.

We demonstrate reconstruction of vehicles at a busy in-

tersection shown in Fig. 1. About 62 vehicles were detected,

tracked and reconstructed within a 3-minute duration cap-

tured from 21 handheld cameras that are uncalibrated and

unsynchronized and were panning to cover wider fields of

view. A subset of vehicle structured point trajectories are

augmented within the Google Earth image of the intersec-

tion. They include cars of different types (sedans, SUVs,

hatch-backs, jeeps, etc.) making left and right turns, going

straight-ahead as well as changing lanes. Several views of

two specific cars in various occluded scenarios are shown

with the reprojections of the structured points.

We evaluate the performance of each stage of our frame-

work. We also compare our approach to alternate meth-

ods that rely only on tracking-by-detection or feature based

structure-from-motion. By treating them in a unified frame-

work, we are able to show significant improvements in vehi-

cle detection rates, vehicle trajectory lengths (or tracks) and

reconstruction accuracies. Our approaches are designed to

handle partial occlusions but fail when a vehicle is mostly

occluded at all times. The estimated 3D vehicle tracks are

accurate but slightly wobbly and will benefit from addi-

tional domain specific priors.

2. Related Work

The literature on 3D reconstruction of vehicles can be

largely classified into two categories: coarse, object centric

reconstruction using a single image or monocular video and

dense reconstruction using multiview stereo. Unlike works

that employ different sensor modalities [7, 23], our work

is purely based on RGB cameras and thus, we only review

methods using RGB sensors.

Single-View Reconstruction in the Wild: Reconstruct-

ing 3D information from a single view has been the sub-

ject of study for multiple decades. The earlier approaches

assumed an isolated object for analysis similar to a pro-

jection of a CAD model on a plain background [35, 5, 4].

With the onset of better recognition algorithms [21, 43, 22],

recent works utilize state-of-the-art object detectors [13]

and instance segmentation [17, 47] algorithms to isolate an

object, and follow various recipes to extract 3D informa-

tion [2, 39, 29]. Multi-stage pipelines involve detecting and

segmenting objects in the scene, estimating 3D poses, fit-

ting shape models to the segment masks, enabling coarse to
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fine improvement [19, 28, 33]. Notably, Xiang et al. [45] es-

timated 3D voxels of the object directly from detection and

segmentation results instead of estimating viewpoints and

keypoints. Approaches that regress depth from monocular

video have also been explored[14, 49]. In general, these ap-

proaches produce coarse and category specific reconstruc-

tion (e.g., car, chair). The reconstruction may potentially be

geometrically inconsistent if re-projected to multiple views.

Active-Shape Model Reconstruction: Many works have

been motivated by using active shape models [10] for vehi-

cle reconstruction [50, 51]. These algorithms exploit strong

part detectors learned from CNNs [32, 42, 24, 6, 25] and

deform the shape model to fit the observations. Recent

works have also combined SLAM with active shape pri-

ors for reconstruction of objects [8]. In general, these ap-

proaches produce more detailed 3D shape than those with

category specific reconstruction. And despite mainly ap-

plied to monocular settings, the shape model is flexible

enough for extension to multi-view system.

Multi-view stereo reconstruction: Multiview stereo sys-

tems are widely used in the context of vehicle reconstruc-

tion for both dense shape and velocity estimation [15, 27,

26, 3]. These approaches exploit cues from 2D bounding

box detection, image instance segmentation or object cate-

gory shape to regularize the stereo disparity for large dis-

placement and textureless/glossy regions. Our work also

employs multiple cameras but reconstructs both the car

skeleton and sparse trajectories of the car body using 3D

priors on symmetry, link length, and rigidity constraints.

Our multiview detector bootstrapping is similar in spirit

to Simon et al.[37] for hand keypoint detection. However,

their work is conducted in a laboratory studio equipped with

massive number of cameras and the method can produce

a good hand skeleton using multiview triangulation alone.

Our work is “in the wild” where stable vehicle reconstruc-

tion is hard even with ground truth correspondences.

3. Multiview Reconstruction of Moving Cars

Consider C video cameras observing M rigidly moving

cars over F video frames. At any time instance f , the car

m has a fixed number of structured points Sm(f) and an

arbitrary number of unstructured points Um(f). The struc-

tured points are semantically meaningful 3D locations of

parts on the car. They can be reliably but imprecisely de-

tected and can be matched to different images at any time

instance. The unstructured points are the 3D locations of

the local features (say, Harris corners) in the observed im-

age. They can precisely be detected and reliably matched

only within the same video. Their 2D locations are scm(f)
and uc

m(f), respectively. The motion of an individual car

is characterized by a rigid transformation [Rm(f), Tm(f)]
at frame f . Denote xc(f) = πc(X(f)) as the image pro-

jection of an arbitrary 3D point X to camera c at time f by

the camera projection matrix πc(f). The visibility of X in

camera c is given by V c(X(f)). We assume all the cameras

are calibrated and temporally synchronized. The 3D loca-

tions of the unstructured points can be computed using SfM

algorithms [36]. Our goal is to precisely estimate and track

the 3D configurations of the structured points.

3.1. cRANSAC: Car­Centric RANSAC

To reconstruct the vehicle from multiple views, we must

find correspondences across views first. We propose a car-

centric RANSAC procedure for finding such correspon-

dences. Compared to common point-based RANSAC [16],

we consider the entire car as a hypothesis, which allows

explicit physical constraints on the car link length and its

left-right symmetry to be enforced. Due to the uncertainty

in detecting the 2D location of the structured points from

different views, these additional constraints are needed for

reliable multiview correspondence estimation.

Concretely, consider a set of 2D car proposals h(f) =
{h1(f), ..., hc(f)} available from all the cameras at frame

f . Each proposal consists of a set of structured points scm.

We want to find a set gm = {g1m, ..gcm}, where gim ∈ hi,

for every car m visible in the cameras. At every RANSAC

iteration, we sample proposals within a triplet of cameras

with sufficiently large baselines and triangulate the hypoth-

esis to obtain Sm(f). These points are back-projected to

all cameras to find a better hypothesis gm. We optimize a

car-centric nonlinear cost function EC and prune proposals

with large error within gm. This procedure is applied for

fixed number of iterations. The hypothesis with the largest

number of elements is taken as the inlier proposal for that

car. These proposals are removed from the proposal pool h

and the process is restarted until no good hypothesis is left.

The car-centric cost function is defined as:

EC = αIEI + αSES + αLEL (1)

where, {EI , ES , EL} are the image evidence cost, car link

length symmetry cost, and car link length consistency cost,

respectively, and {αI , αS , αL} are the weights balancing

the contributions of each cost. The cost functions are de-

scribed below.

Image evidence cost: This cost function penalizes the

deviation between the 3D projection of a point and its de-

tected 2D location:

EI(f) =

C
∑

c=1

Sm
∑

p=1

V c
p (f)ρ

(

πc(Sp(f))− scp(f)

σI

)

,

where, ρ is the Tukey Biweight estimator and σI is the de-

viation in 2D localization of the structured point xc
p.

Link length consistency cost: This cost incorporates

prior information about the expected length of two struc-

tured points and penalizes the deviation of the estimated
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length with respect to its mean:

EL(f) =
∑

{p,q}∈L

ρ

(

Lp,q(f)− Lp,q

σL

)2

,

where, L{p,q} is the Euclidean distance between two struc-

tured points {p, q}, in the connectivity graph L, and its ex-

pected length L{p,q}, defined based on the vehicle type, e.g.

sedan or truck, and σL is the expected variation in length.

Left-right symmetry cost: We penalize large differ-

ences between the left and right link length of the car. This

constraint is useful in fusing detectors visible from the op-

posite side in other views. This cost function is given as:

ES(f) =
∑

{l,r}∈S

(

Ll(f)− Lr(f)

σs

)2

,

where, S is the set of corresponding left and right links, and

σS is the expected variation in the left and right link lengths.

We rescale the SfM reconstruction into metric units

and set {σI , σL, σS} to {10, 1.5, 0.1}, {αS , αS , αL)} to

{1, 1, 0.5}, respectively for our experiments.

Algorithm 1: CarFusion

Input: {scm(f), uc
m(f)}, πc(f), h(f)

Output: {Sm(f), Um(f)},{Rm(f), Tm(f)}
1 repeat

2 while No more cars available do

3 while Inliers < Min Inliers do

4 repeat

5 gm ← Sample h from three cameras;
6 Sm ← DLT(gm);
7 gm ← Project Sm to all cameras;
8 gm ← Optimize Eq. 1 and prune gm;
9 if gm > gmbest then

10 gmbest = gm;
11 end

12 iter++;

13 until iter < Max Iteration;

14 end Sec 3.1
15 Remove gm from h;
16 Reconstruction Um(f) objects ;
17 Optimize Eq.2 for Sm(f), {Rm(f), Tm(f)};
18 end

19 Project Sm and retrain the detector (Sec.3.3);

20 until iter < Max Iteration;

3.2. Fusion of Structured and Unstructured Points

By exploiting the physical constraints on link length and

left-right symmetry, we can estimate plausible 3D configu-

rations of Sm from multiple wide baseline cameras at any

time instances. Yet, these estimations remain spatially and

temporally unstable due to large uncertainty in detected lo-

cations of structured points. On the other hand, the unstruc-

tured points can be detected and tracked precisely for every

camera. However, it is difficult to reliably establish corre-

spondence between unstructured points across cameras due

to large viewpoint changes.

Our fusion cost combines the complementary strengths

of the structured and unstructured points using rigidity con-

straints. It enables precise and spatio-temporally stable es-

timation of the 3D configuration of the structured points.

This cost function is formulated as:

e(f) =

(

‖Rm(f)Sc
i (fs)+Tm(f)−Uc

j (f))‖2−‖(Sc
i (fs)−Uc

j (fs))‖2

σR

)2

,

ER =
∑C

c

∑F

f

∑Uc
m

j

∑Sc
m

i e(f),

where, σR, set to 0.1, is the expected deviation from rigid

deformation of the car 3D configurations over time, and fs
is the frame where the car is first reconstructed (with suf-

ficient inliers) using our RANSAC algorithm. This formu-

lation links structured and unstructured points between all

the visible cameras seamlessly over space and time.The cost

function promotes fixed distances between the structured

and unstructured points (definition of rigid motion) during

the course of motion. No spatial constraints are needed for

unstructured points. No temporal constraints are needed for

structured points.

Since the car motion is a rigid transformation, we explic-

itly enforce this constraint into the image evidence cost and

integrate it over all time instances:

e(f) = ρ

(

πc(Rm(f)(f)Sm(0)+Tm(f))−scp(f)

σI

)

EI2 =
∑C

c=1

∑F

f

∑Sm

p=1 V
c
p (f)e(f),

We then optimize the following total cost for precise 3D

reconstruction of each car:

E = min
Sm(t0),Lm,{Rm(f),Tm(f)}

EI2 + ES + EL + ER, (2)

where, Lm is set of mean link lengths and is initialized us-

ing mean of the 3D configurations Sm estimated in Sec. 3.1.

For efficiency, we start the reconstruction of each ve-

hicle progressively, starting from the first time when our

RANSAC detects the 3D object, and optimize Equation 2

for its structured point trajectories. The reconstructed cars

are removed from the hypotheses pool. We iterate this pro-

cess until no more cars can be reconstructed. Please refer to

Algorithm 1 for the entire process.

3.3. Multiview Detection Bootstrapping

Precise and temporally stable 3D reconstruction of the

car from multiple views can bootstrap the 2D detection of
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(a) Input Image (b) Manually Annotated (c) Alejandro et al.[32] (d) MVB @Iter1 (e) CarFusion

Figure 3: Qualitative analysis of the structured point detector before and after multiview bootstrapping (MVB), shown for
two cars in three different views. Initial detectors were trained using Alejandro et al.[32]. The CarFusion approach was used
to reconstruct the cars. Then the resulting 3D structured points were re-projected to all the views and used to retrain/bootstrap
the detectors. The MVB approach shows clear visual improvement over the baseline, even in the presence of occlusions.

the structured points (loop-back shown in Fig. 2). In turn,

better 2D localization of the structured points enable more

precise 3D estimation of the car. Given the 3D locations

of structured points and their visibilities, we project the 3D

points onto all the views. We use the reprojected points as

automatically computed labels for fine-tuning the car detec-

tor. We recompute the reconstruction using the improved

detectors for better fitting of the structured points and fur-

ther minimization of the reprojection error. The emphasis is

to improve detections using reconstruction and vice-versa

from cameras captured in the wild.

4. Experimental Evaluation

We evaluate our framework on a traffic scene captured

with six Samsung Galaxy 6, ten iPhone 6, and six Go-

pro Hero 3 cameras at 60 fps in a busy intersection for 3

minutes. In total the algorithm is run on nearly 210000

frames. These videos were captured by 13 people, some

of whom carried two cameras. The sequence is challeng-

ing as there are no constraints on the camera motion or the

vehicle motion in the scene. We manually annotate the 2D

locations of the structured points for every visible cameras

for 2793 frames from different viewing angles in the Inter-

section dataset. The data for this “Intersection Dataset” is

available for research purpose1.

We evaluate our reconstruction pipeline at its progressive

stages: car-centric RANSAC (cRANSAC), temporal inte-

gration using only the structured points (TcRANSAC), and

the fusion of both structured points and unstructured track

1http://www.cs.cmu.edu/∼ILIM/projects/IM/CarFusion/
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cRANSAC T-cRANSAC CarFusion
Length of No of RMSE No of RMSE No of RMSE

Traj Traj Pretrained MVB Traj Pretrained MVB Traj Pretrained MVB

Straight 234 14 12.24 8.52 14 17.8 7.1 112 16.8 2.5

Turning 172 14 8.94 6.95 14 12.5 5.83 101 15.5 3.1

Multi 202 42 7.45 5.3 42 14.3 4.47 414 17.4 2.2

Table 1: Reprojection error of the reconstructed tracks at different stages of the pipeline. The rows refer to cases where one car
is moving straight, turning left or right and multiple cars in the intersection. The number of trajectories using cRANSAC and
T-cRANSAC is fixed to the number of parts, while with point fusion we have a combination of structured and unstructured
tracks. The full pipeline (CarFusion + MVB) performs best, reducing the error of cRANSAC and T-cRANSAC by 4 and 2
times, respectively.

Figure 4: Analysis of accuracy with respect to increase in
number of frames (left) and increase in number of unstruc-
tured points (right) used in the CarFusion algorithm.

(CarFusion). The TcRANSAC is the result of optimizing

the cost function 2 but without the fusion term ER. This

method can be considered as reconstruction using tracking-

by-detection. We also compare the evolution in accuracy of

the 2D structured point detector before and after the multi-

view bootstrapping. We use the Stacked Hourglass architec-

ture [32] referred to as ”pretrained”, to detect the structured

points. The same architecture is used for finetuning with

the point labels obtained using our multiview reconstruc-

tion. The finetuned detector is referred to as MVB (multi-

view bootstrapping).

Structured points detection and tracking: We used the

FCIS model [47] to obtain the car proposal hypotheses. For

each hypothesis, The structured points are 14 car keypoints,

obtained by training the Stacked hourglass CNN architec-

ture [32] the KITTI dataset [24, 18]. We generate tracklet

of each proposal by examining the overlapping area of the

bounding boxes in consecutive frames. We split the track-

let if there are other bounding boxes with 70% overlapping

area in one frame.

Camera calibration and 3D background estima-

tion: We estimate the camera intrinsics and extrinsics at

keyframes and reconstruct the stationary background points

using ColMap [36]. The camera poses are propagated from

the keyframes to all other frames using the affine Lucas-

Kanade tracking and PnP pose estimation. The time offsets

between cameras are estimated using the approach in [40].

3D reconstructing of the unstructured points: For ev-

ery car proposal, we detect the Harris features and track

α = 0.1 α = 0.2

Pretrained 87.1 91.8

MVB 91.4 94.5

Table 2: Comparing the structured point detectors using the
Percentage of Correct Keypoint (PCK) metric. Our multi-
view bootstrapping (MVB) shows clear improvement over
the state-of-art baseline detector [32].

them using the affine Lucas-Kanade algorithm. We initial-

ize the detection every 30 frames and the track them for 120

frames in both backward and forward directions. We esti-

mate their 3D locations using single view SFM.

4.1. Ablation Analysis

Fig. 3 compares detection of the structured points be-

fore and after multiview bootstrapping with respect to the

ground truth labels for two cars observed in three differ-

ent views. We visualize only detections with more than

50% confidence. Our multiview bootstrapping shows clear

improvements over the baseline method as more confident

points are accurately detected. Using CarFusion, the re-

projected points accurately localize the structured points

and provide plausible prediction for occluded locations, as

showed for twelve snapshots of another car in Fig. 5. We at-

tribute this property to the use of symmetry, link length, and

rigidity constraints in the reconstruction stage. Although

some of the structured points are not visible from any of the

views, for example the left front wheel of the car in Fig. 5,

we are still able to accurately reconstruct the point in 3D

due to our left-right symmetry and link length constraints.

Without these constraints the reconstruction of the struc-

tured points, even fully visible from multiple views, often

explodes due to erroneous detection hypothesis.

We adopted the widely used PCK metric [46] to eval-

uate the accuracy of 2D structured point detection. Un-

der this metric, a 2D prediction is deemed correct when it

lies within specified radius α ∗ B of the ground truth la-

bel, where B is the larger dimension of the car bounding

box. As showed in Table 1, our finetuned detector improves

the accuracy of the baseline method by 4.3% with α = 0.1
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Figure 5: The 2D re-projections of the steel gray colored car in many occluded configurations. The CarFusion method can
accurately reconstruct the 3D configuration of car despite strong occlusion. The top row shows the full field of views and the
bottom row shows zoomed in insets.

Figure 6: Visualization of the reconstructed trajectories of multiple cars using cRANSAC. The insets on the right show
detailed comparisons of the trajectories stability between cRANSAC and CarFusion. CarFusion produces clearly more stable
trajectories. Visually, they correspond well to the motion of a moving car.

and 2.7% with α = 0.2 just by finetuning the detector from

the 2D re-projection of the reconstructed structured points.

This result clearly demonstrates the benefit of CarFusion for

accurate 3D structured points reconstruction and multiview

bootstrapping for more accurate structured point detection.

We analyze the improvement in the accuracy of recon-

structed structured points with respect to the ground truth

annotations according to the tracking length and the number

of unstructured points in Fig. 4. As expected, the increase in

visibility (track length) of structured points better stabilize

the structured points which leads to higher quality recon-

struction. We also find that the larger number of unstruc-

tured points improve the quality of the structured points due

stronger rigidity constraints and the improvement is more

evident for stricter threshold (α = 0.1).

Fig. 6 shows a comparison between the quality of the

reconstructed trajectories of the structured points using

cRANSAC and the complete CarFusion pipeline. The tra-

jectories are smoother by incorporating the Fusion of points

compared to SFM on structured points. Assuming the de-

tector is accurate, we quantify the accuracy of re-projected

2D point with respect to the detections. A 2D re-projection

of the 3D structured point is correct when it lies within spec-

ified radius β∗B of the corresponding detected visible point

in the image. We set β = 0.1. We report the percentage of

inlier points at different stages before and after multiview

bootstrapping in Table 2. Regardless of the finetuning step,

cRANSAC performs poorly, as confirmed visually in Fig. 6.

This is due to erroneous detection that leads to frequent fail-

ure of cRANSAC . We observe a significant boost in the

accuracy by temporal smoothing of the cRANSAC results

over time. Our full CarFusion algorithm with multiview

bootstrapping performs best, with 79.4% inliers detected.

We provide fine-grain analysis of the methods in Table

1, using three sub-sequences: car moving straight in sin-

gle lane, car turning, and a three cars scene. The first

sub-sequence is observed for 234 frames, the second sub-

sequence is observed for 172 frames, and last sub-sequence

is observed for 202 frames. We report the root mean square

error (RMSE) of the difference between the re-projected

points and the detected points. We observe that the RMSE

of the cRANSAC algorithm is large because of many de-

tections with high variation in part localization. This error

is reduced by finetuning (MVB) and can be attributed to
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Figure 7: Visualization of the 8/43 reconstructed cars using CarFusion. We show the 2D re-projection of the reconstructions
onto sample frame containing those cars. All the re-projected points fit the cars well.

the fact that better detection produces a more consistent 3D

model. Interestingly, without multiview bootstrapping the

error increases for T-cRANSAC. This could be because the

detections are not temporally consistent. As expected, this

error drops after detector finetuning. Using the unstructured

tracks reduces the overall reprojection error of the 3D tracks

by at least 5 times (12.24 to 2.5 or 7.45 to 2.2). However,

the finetuned network gives modest improvement over the

reconstruction of the structured tracks. This could be due

to the limitation of the CNN architecture where the train-

ing image is down sampled substantially. The length of the

trajectory of the car is the max length of the bounding box

tracks over all the inlier videos.

In Figure. 7 we illustrate the complete 3D reconstruction of

trajectories of structured points on moving cars using Car-

Fusion and the 2D projection to inlier views for several cars.

As can be seen from the results we are able to accurately re-

construct the trajectories of the cars over time captured from

unsynchronized videos.

5. Summary
We have presented a method to fuse imprecise and in-

complete part detections of vehicles across multiple views

and the more precise feature tracks within a single view

to obtain better detection, localization, tracking and recon-

struction of vehicles. This approach works well even in the

presence of strong occlusions. We have quantified improve-

ments due to the different stages of the end-to-end pipeline

that only uses videos from multiple uncalibrated and unsyn-

chronized cameras as input. We believe this approach can

be useful for stronger traffic analytics at urban intersections.

In the future, we will extend our methods to identify and fit

vehicle CAD models to the videos for better visualization.

6. Acknowledgments

This paper was supported in parts by a Heinz Founda-

tion grant, an NSF award CNS-1446601, an ONR grant

N00014-15-1-2358, a CMU University Transportation Cen-

ter T-SET grant and a PhD fellowship from Qualcomm.

1913



References

[1] S. Baker and I. Matthews. Lucas-kanade 20 years on: A

unifying framework. IJCV, 2004.

[2] A. Bansal, B. Russell, and A. Gupta. Marr revisited: 2d-

3d alignment via surface normal prediction. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 5965–5974, 2016.

[3] A. Behl, O. H. Jafari, S. K. Mustikovela, H. A. Alhaija,

C. Rother, and A. Geiger. Bounding boxes, segmentations

and object coordinates: How important is recognition for 3d

scene flow estimation in autonomous driving scenarios? In

International Conference on Computer Vision (ICCV), 2017.

[4] I. Biederman. Recognition-by-components: a theory of hu-

man image understanding. Psychological review, 1987.

[5] T. O. Binford. Visual perception by computer. In IEEE Conf.

on Systems and Control, 1971.

[6] F. Chabot, M. Chaouch, J. Rabarisoa, C. Teulière, and

T. Chateau. Deep manta: A coarse-to-fine many-task net-

work for joint 2d and 3d vehicle analysis from monocular

image. arXiv preprint arXiv:1703.07570, 2017.

[7] X. Chen, H. Ma, J. Wan, B. Li, and T. Xia. Multi-view 3d

object detection network for autonomous driving. 2017.

[8] F. Chhaya, D. Reddy, S. Upadhyay, V. Chari, M. Z. Zia,

and K. M. Krishna. Monocular reconstruction of vehicles:

Combining slam with shape priors. In Robotics and Automa-

tion (ICRA), 2016 IEEE International Conference on, pages

5758–5765. IEEE, 2016.

[9] W. Choi. Near-online multi-target tracking with aggregated

local flow descriptor. In ICCV, 2015.

[10] T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham.

Active shape models-their training and application. CVIU,

1995.

[11] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse.

Monoslam: Real-time single camera slam. TPAMI, 2007.

[12] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ra-

manan. Object detection with discriminatively trained part-

based models. TPAMI, 2010.

[13] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich fea-

ture hierarchies for accurate object detection and semantic

segmentation. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2014.

[14] C. Godard, O. Mac Aodha, and G. J. Brostow. Unsupervised

monocular depth estimation with left-right consistency. In

CVPR, 2017.

[15] F. Guney and A. Geiger. Displets: Resolving stereo ambigu-

ities using object knowledge. In CVPR, 2015.

[16] R. Hartley and A. Zisserman. Multiple view geometry in

computer vision. Cambridge university press, 2003.

[17] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask r-cnn.

In ICCV, 2017.

[18] S. S. J. Krishna Murthy and K. M. Krishna. Shape priors for

real-time monocular object localization in dynamic environ-

ments. In IROS, 2017.

[19] A. Kar, S. Tulsiani, J. Carreira, and J. Malik. Category-

specific object reconstruction from a single image. In CVPR,

2015.

[20] G. Klein and D. Murray. Parallel tracking and mapping for

small ar workspaces. In ISMAR.

[21] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

NIPS.

[22] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature,

521(7553):436–444, 2015.

[23] B. Li, T. Zhang, and T. Xia. Vehicle detection from 3d lidar

using fully convolutional network. In Robotics: Science and

Systems, 2016.

[24] C. Li, M. Z. Zia, Q.-H. Tran, X. Yu, G. D. Hager, and

M. Chandraker. Deep supervision with shape concepts

for occlusion-aware 3d object parsing. arXiv preprint

arXiv:1612.02699, 2016.

[25] Y.-L. Lin, V. I. Morariu, W. Hsu, and L. S. Davis. Jointly

optimizing 3d model fitting and fine-grained classification.

In European Conference on Computer Vision, pages 466–

480. Springer, 2014.

[26] M. Menze and A. Geiger. Object scene flow for autonomous

vehicles. In Conference on Computer Vision and Pattern

Recognition (CVPR), 2015.

[27] M. Menze, C. Heipke, and A. Geiger. Joint 3d estimation

of vehicles and scene flow. In ISPRS Workshop on Image

Sequence Analysis, 2015.

[28] R. Mottaghi, Y. Xiang, and S. Savarese. A coarse-to-fine

model for 3d pose estimation and sub-category recognition.

In CVPR, 2015.

[29] A. Mousavian, D. Anguelov, J. Flynn, and J. Kosecka. 3d

bounding box estimation using deep learning and geometry.

In CVPR, 2017.

[30] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos. Orb-slam:

a versatile and accurate monocular slam system. T-RO, 2015.

[31] R. A. Newcombe, S. J. Lovegrove, and A. J. Davison. Dtam:

Dense tracking and mapping in real-time. In ICCV, 2011.

[32] A. Newell, K. Yang, and J. Deng. Stacked hourglass net-

works for human pose estimation. In European Conference

on Computer Vision, pages 483–499. Springer, 2016.

[33] G. Pavlakos, X. Zhou, A. Chan, K. G. Derpanis, and K. Dani-

ilidis. 6-dof object pose from semantic keypoints. In ICRA,

2017.

[34] J. Ren, X. Chen, J. Liu, W. Sun, J. Pang, Q. Yan, Y.-W. Tai,

and L. Xu. Accurate single stage detector using recurrent

rolling convolution. arXiv preprint arXiv:1704.05776, 2017.

[35] L. G. Roberts. Machine perception of three-dimensional

solids. PhD thesis, Massachusetts Institute of Technology,

1965.

[36] J. L. Schonberger and J.-M. Frahm. Structure-from-motion

revisited. In CVPR, 2016.

[37] T. Simon, H. Joo, I. Matthews, and Y. Sheikh. Hand key-

point detection in single images using multiview bootstrap-

ping. arXiv preprint arXiv:1704.07809, 2017.

[38] C. Tomasi and T. Kanade. Detection and tracking of point

features. 1991.

[39] S. Tulsiani and J. Malik. Viewpoints and keypoints. In

CVPR, 2015.

[40] M. Vo, S. G. Narasimhan, and Y. Sheikh. Spatiotemporal

bundle adjustment for dynamic 3d reconstruction. In The

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), June 2016.

[41] S. Wang and C. C. Fowlkes. Learning optimal parameters

for multi-target tracking with contextual interactions. Inter-

national Journal of Computer Vision, 122(3):484–501, 2017.

[42] S.-E. Wei, V. Ramakrishna, T. Kanade, and Y. Sheikh. Con-

volutional pose machines. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

4724–4732, 2016.

1914



[43] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and

J. Xiao. 3d shapenets: A deep representation for volumetric

shapes. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 1912–1920, 2015.

[44] Y. Xiang, A. Alahi, and S. Savarese. Learning to track: On-

line multi-object tracking by decision making. In Proceed-

ings of the IEEE International Conference on Computer Vi-

sion, pages 4705–4713, 2015.

[45] Y. Xiang, W. Choi, Y. Lin, and S. Savarese. Data-driven

3d voxel patterns for object category recognition. In CVPR,

2015.

[46] Y. Yang and D. Ramanan. Articulated pose estimation with

flexible mixtures-of-parts. In Proceedings of the 2011 IEEE

Conference on Computer Vision and Pattern Recognition,

CVPR ’11, pages 1385–1392, Washington, DC, USA, 2011.

IEEE Computer Society.

[47] J. D. X. J. Yi Li, Haozhi Qi and Y. Weil. Fully convolutional

instance-aware semantic segmentation. In CVPR, 2017.

[48] L. Zhang, Y. Li, and R. Nevatia. Global data association for

multi-object tracking using network flows. In CVPR, 2008.

[49] T. Zhou, M. Brown, N. Snavely, and D. G. Lowe. Unsu-

pervised learning of depth and ego-motion from video. In

CVPR, 2017.

[50] M. Z. Zia, M. Stark, B. Schiele, and K. Schindler. De-

tailed 3d representations for object recognition and model-

ing. TPAMI, 2013.

[51] M. Z. Zia, M. Stark, and K. Schindler. Towards scene un-

derstanding with detailed 3d object representations. IJCV,

2015.

1915


