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Abstract

Despite significant research in the area, reconstruction

of multiple dynamic rigid objects (eg. vehicles) observed

from wide-baseline, uncalibrated and unsynchronized cam-

eras, remains hard. On one hand, feature tracking works

well within each view but is hard to correspond across mul-

tiple cameras with limited overlap in fields of view or due to

occlusions. On the other hand, advances in deep learning

have resulted in strong detectors that work across different

viewpoints but are still not precise enough for triangulation-

based reconstruction. In this work, we develop a frame-

work to fuse both the single-view feature tracks and multi-

view detected part locations to significantly improve the de-

tection, localization and reconstruction of moving vehicles,

even in the presence of strong occlusions. We demonstrate

our framework at a busy traffic intersection by reconstruct-

ing over 62 vehicles passing within a 3-minute window.

We evaluate the different components within our framework

and compare to alternate approaches such as reconstruc-

tion using tracking-by-detection.

1. Introduction

Multiple video cameras are becoming increasingly com-

mon at urban traffic intersections. This provides us a strong

opportunity to reconstruct moving vehicles crossing those

intersections. The shapes (even sparse) and motions of

the vehicles can be invaluable to traffic analysis, includ-

ing vehicle type, speed, density, trajectory and frequency

of events such as near-accidents. Infrastructure-to-Vehicle

(I2V) communication systems can provide such analysis to

other (semi-)autonomous vehicles approaching the intersec-

tion. That said, reconstructing moving vehicles in a busy

intersection is hard because of severe occlusions. Further-

more, the cameras are often unsynchronized, provide wide-

baseline views with little overlap in fields of view and need

to be calibrated each frame as they are often not rigidly at-

tached and sway because of wind or vibrations.

There has been a rich history of detection [12, 13, 34,

17], tracking [48, 9, 44, 41] and reconstruction [50, 19, 15,

8, 3] of vehicles. Their performances are progressively im-

proving thanks to recent advances in deep learning. In par-

ticular, detection of parts of vehicles (wheels, headlights,

Figure 1: Reconstruction of vehicles crossing a busy inter-
section, making turns, going straight and changing lanes. A
subset of vehicle skeletons (3D detector locations) and their
3D trajectories are augmented within the Google Earth view
of the intersection. The reconstructions are reprojected into
multiple views of two cars (a sedan and an SUV) demon-
strating good performance under partial occlusions.

doors, etc.) across multiple views is becoming increasingly

reliable [32, 24, 42]. However, the detected part locations

are still not precise enough to directly apply triangulation-

based 3D reconstruction methods, and are incomplete in the

presence of occlusions. For the same reason, tracking via

per-frame detection is not stable enough to be useful for

structure-from-motion approaches. We will refer to the de-

tected part locations as structured points.

On the other hand, there has also been significant work

on tracking feature points [38, 1] in structure-from-motion

approaches applied to a video from a single moving cam-

era [20, 31, 11, 30]. But corresponding these features across

wide-baseline views is near impossible given that each cam-

era sees only parts of a vehicle (front, one side, or back) at

any given time instant. These feature points do not often

have a semantic meaning (like the structured parts) and we

will call them unstructured points.

In this paper, we present a comprehensive framework

that fuses (a) incomplete and imprecise structured points
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Figure 2: CarFusion: Our overall pipeline for dynamic 3D reconstruction of multiple cars from uncalibrated and unsynchro-
nized video cameras. We fuse the structured points (detected vehicle parts) and the tracks of the unstructured feature points
to obtain precise reconstruction of the moving vehicle. The reconstructions are reprojected into all the views and are used to
bootstrap and improve the detectors.

(part detections) across multiple views with (b) precise

but sparse single-view tracks of unstructured points, to re-

construct moving vehicles even in severe occluded scenar-

ios. We call this framework as “CarFusion” and it con-

sists of three main stages: (1) a novel object-centric (as

opposed to feature-centric) RANSAC approach to provide

a good initialization of the 3D geometry of the structured

points of the vehicle (Sec. 3.1), (2) a novel algorithm that

fully exploits the complementary strength of the structured

and unstructured points via rigidity constraints (Sec. 3.2),

and (3) closing-the-loop by reprojecting the reconstructed

structured points to all views to retrain the part detectors

(Sec. 3.3). We implement a full end-to-end system that also

includes a pre-processing stage to self-calibrate and syn-

chronize the cameras by adapting recent prior works [40].

A detailed overview of our system is illustrated in Fig. 2.

We demonstrate reconstruction of vehicles at a busy in-

tersection shown in Fig. 1. About 62 vehicles were detected,

tracked and reconstructed within a 3-minute duration cap-

tured from 21 handheld cameras that are uncalibrated and

unsynchronized and were panning to cover wider fields of

view. A subset of vehicle structured point trajectories are

augmented within the Google Earth image of the intersec-

tion. They include cars of different types (sedans, SUVs,

hatch-backs, jeeps, etc.) making left and right turns, going

straight-ahead as well as changing lanes. Several views of

two specific cars in various occluded scenarios are shown

with the reprojections of the structured points.

We evaluate the performance of each stage of our frame-

work. We also compare our approach to alternate meth-

ods that rely only on tracking-by-detection or feature based

structure-from-motion. By treating them in a unified frame-

work, we are able to show significant improvements in vehi-

cle detection rates, vehicle trajectory lengths (or tracks) and

reconstruction accuracies. Our approaches are designed to

handle partial occlusions but fail when a vehicle is mostly

occluded at all times. The estimated 3D vehicle tracks are

accurate but slightly wobbly and will benefit from addi-

tional domain specific priors.

2. Related Work

The literature on 3D reconstruction of vehicles can be

largely classified into two categories: coarse, object centric

reconstruction using a single image or monocular video and

dense reconstruction using multiview stereo. Unlike works

that employ different sensor modalities [7, 23], our work

is purely based on RGB cameras and thus, we only review

methods using RGB sensors.

Single-View Reconstruction in the Wild: Reconstruct-

ing 3D information from a single view has been the sub-

ject of study for multiple decades. The earlier approaches

assumed an isolated object for analysis similar to a pro-

jection of a CAD model on a plain background [35, 5, 4].

With the onset of better recognition algorithms [21, 43, 22],

recent works utilize state-of-the-art object detectors [13]

and instance segmentation [17, 47] algorithms to isolate an

object, and follow various recipes to extract 3D informa-

tion [2, 39, 29]. Multi-stage pipelines involve detecting and

segmenting objects in the scene, estimating 3D poses, fit-

ting shape models to the segment masks, enabling coarse to
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fine improvement [19, 28, 33]. Notably, Xiang et al. [45] es-

timated 3D voxels of the object directly from detection and

segmentation results instead of estimating viewpoints and

keypoints. Approaches that regress depth from monocular

video have also been explored[14, 49]. In general, these ap-

proaches produce coarse and category specific reconstruc-

tion (e.g., car, chair). The reconstruction may potentially be

geometrically inconsistent if re-projected to multiple views.

Active-Shape Model Reconstruction: Many works have

been motivated by using active shape models [10] for vehi-

cle reconstruction [50, 51]. These algorithms exploit strong

part detectors learned from CNNs [32, 42, 24, 6, 25] and

deform the shape model to fit the observations. Recent

works have also combined SLAM with active shape pri-

ors for reconstruction of objects [8]. In general, these ap-

proaches produce more detailed 3D shape than those with

category specific reconstruction. And despite mainly ap-

plied to monocular settings, the shape model is flexible

enough for extension to multi-view system.

Multi-view stereo reconstruction: Multiview stereo sys-

tems are widely used in the context of vehicle reconstruc-

tion for both dense shape and velocity estimation [15, 27,

26, 3]. These approaches exploit cues from 2D bounding

box detection, image instance segmentation or object cate-

gory shape to regularize the stereo disparity for large dis-

placement and textureless/glossy regions. Our work also

employs multiple cameras but reconstructs both the car

skeleton and sparse trajectories of the car body using 3D

priors on symmetry, link length, and rigidity constraints.

Our multiview detector bootstrapping is similar in spirit

to Simon et al.[37] for hand keypoint detection. However,

their work is conducted in a laboratory studio equipped with

massive number of cameras and the method can produce

a good hand skeleton using multiview triangulation alone.

Our work is “in the wild” where stable vehicle reconstruc-

tion is hard even with ground truth correspondences.

3. Multiview Reconstruction of Moving Cars

Consider C video cameras observing M rigidly moving

cars over F video frames. At any time instance f , the car

m has a fixed number of structured points Sm(f) and an

arbitrary number of unstructured points Um(f). The struc-

tured points are semantically meaningful 3D locations of

parts on the car. They can be reliably but imprecisely de-

tected and can be matched to different images at any time

instance. The unstructured points are the 3D locations of

the local features (say, Harris corners) in the observed im-

age. They can precisely be detected and reliably matched

only within the same video. Their 2D locations are scm(f)
and uc

m(f), respectively. The motion of an individual car

is characterized by a rigid transformation [Rm(f), Tm(f)]
at frame f . Denote xc(f) = πc(X(f)) as the image pro-

jection of an arbitrary 3D point X to camera c at time f by

the camera projection matrix πc(f). The visibility of X in

camera c is given by V c(X(f)). We assume all the cameras

are calibrated and temporally synchronized. The 3D loca-

tions of the unstructured points can be computed using SfM

algorithms [36]. Our goal is to precisely estimate and track

the 3D configurations of the structured points.

3.1. cRANSAC: Car­Centric RANSAC

To reconstruct the vehicle from multiple views, we must

find correspondences across views first. We propose a car-

centric RANSAC procedure for finding such correspon-

dences. Compared to common point-based RANSAC [16],

we consider the entire car as a hypothesis, which allows

explicit physical constraints on the car link length and its

left-right symmetry to be enforced. Due to the uncertainty

in detecting the 2D location of the structured points from

different views, these additional constraints are needed for

reliable multiview correspondence estimation.

Concretely, consider a set of 2D car proposals h(f) =
{h1(f), ..., hc(f)} available from all the cameras at frame

f . Each proposal consists of a set of structured points scm.

We want to find a set gm = {g1m, ..gcm}, where gim ∈ hi,

for every car m visible in the cameras. At every RANSAC

iteration, we sample proposals within a triplet of cameras

with sufficiently large baselines and triangulate the hypoth-

esis to obtain Sm(f). These points are back-projected to

all cameras to find a better hypothesis gm. We optimize a

car-centric nonlinear cost function EC and prune proposals

with large error within gm. This procedure is applied for

fixed number of iterations. The hypothesis with the largest

number of elements is taken as the inlier proposal for that

car. These proposals are removed from the proposal pool h

and the process is restarted until no good hypothesis is left.

The car-centric cost function is defined as:

EC = αIEI + αSES + αLEL (1)

where, {EI , ES , EL} are the image evidence cost, car link

length symmetry cost, and car link length consistency cost,

respectively, and {αI , αS , αL} are the weights balancing

the contributions of each cost. The cost functions are de-

scribed below.

Image evidence cost: This cost function penalizes the

deviation between the 3D projection of a point and its de-

tected 2D location:

EI(f) =

C
∑

c=1

Sm
∑

p=1

V c
p (f)ρ

(

πc(Sp(f))− scp(f)

σI

)

,

where, ρ is the Tukey Biweight estimator and σI is the de-

viation in 2D localization of the structured point xc
p.

Link length consistency cost: This cost incorporates

prior information about the expected length of two struc-

tured points and penalizes the deviation of the estimated
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length with respect to its mean:

EL(f) =
∑

{p,q}∈L

ρ

(

Lp,q(f)− Lp,q

σL

)2

,

where, L{p,q} is the Euclidean distance between two struc-

tured points {p, q}, in the connectivity graph L, and its ex-

pected length L{p,q}, defined based on the vehicle type, e.g.

sedan or truck, and σL is the expected variation in length.

Left-right symmetry cost: We penalize large differ-

ences between the left and right link length of the car. This

constraint is useful in fusing detectors visible from the op-

posite side in other views. This cost function is given as:

ES(f) =
∑

{l,r}∈S

(

Ll(f)− Lr(f)

σs

)2

,

where, S is the set of corresponding left and right links, and

σS is the expected variation in the left and right link lengths.

We rescale the SfM reconstruction into metric units

and set {σI , σL, σS} to {10, 1.5, 0.1}, {αS , αS , αL)} to

{1, 1, 0.5}, respectively for our experiments.

Algorithm 1: CarFusion

Input: {scm(f), uc
m(f)}, πc(f), h(f)

Output: {Sm(f), Um(f)},{Rm(f), Tm(f)}
1 repeat

2 while No more cars available do

3 while Inliers < Min Inliers do

4 repeat

5 gm ← Sample h from three cameras;
6 Sm ← DLT(gm);
7 gm ← Project Sm to all cameras;
8 gm ← Optimize Eq. 1 and prune gm;
9 if gm > gmbest then

10 gmbest = gm;
11 end

12 iter++;

13 until iter < Max Iteration;

14 end Sec 3.1
15 Remove gm from h;
16 Reconstruction Um(f) objects ;
17 Optimize Eq.2 for Sm(f), {Rm(f), Tm(f)};
18 end

19 Project Sm and retrain the detector (Sec.3.3);

20 until iter < Max Iteration;

3.2. Fusion of Structured and Unstructured Points

By exploiting the physical constraints on link length and

left-right symmetry, we can estimate plausible 3D configu-

rations of Sm from multiple wide baseline cameras at any

time instances. Yet, these estimations remain spatially and

temporally unstable due to large uncertainty in detected lo-

cations of structured points. On the other hand, the unstruc-

tured points can be detected and tracked precisely for every

camera. However, it is difficult to reliably establish corre-

spondence between unstructured points across cameras due

to large viewpoint changes.

Our fusion cost combines the complementary strengths

of the structured and unstructured points using rigidity con-

straints. It enables precise and spatio-temporally stable es-

timation of the 3D configuration of the structured points.

This cost function is formulated as:

e(f) =

(

‖Rm(f)Sc
i (fs)+Tm(f)−Uc

j (f))‖2−‖(Sc
i (fs)−Uc

j (fs))‖2

σR

)2

,

ER =
∑C

c

∑F

f

∑Uc
m

j

∑Sc
m

i e(f),

where, σR, set to 0.1, is the expected deviation from rigid

deformation of the car 3D configurations over time, and fs
is the frame where the car is first reconstructed (with suf-

ficient inliers) using our RANSAC algorithm. This formu-

lation links structured and unstructured points between all

the visible cameras seamlessly over space and time.The cost

function promotes fixed distances between the structured

and unstructured points (definition of rigid motion) during

the course of motion. No spatial constraints are needed for

unstructured points. No temporal constraints are needed for

structured points.

Since the car motion is a rigid transformation, we explic-

itly enforce this constraint into the image evidence cost and

integrate it over all time instances:

e(f) = ρ

(

πc(Rm(f)(f)Sm(0)+Tm(f))−scp(f)

σI

)

EI2 =
∑C

c=1

∑F

f

∑Sm

p=1 V
c
p (f)e(f),

We then optimize the following total cost for precise 3D

reconstruction of each car:

E = min
Sm(t0),Lm,{Rm(f),Tm(f)}

EI2 + ES + EL + ER, (2)

where, Lm is set of mean link lengths and is initialized us-

ing mean of the 3D configurations Sm estimated in Sec. 3.1.

For efficiency, we start the reconstruction of each ve-

hicle progressively, starting from the first time when our

RANSAC detects the 3D object, and optimize Equation 2

for its structured point trajectories. The reconstructed cars

are removed from the hypotheses pool. We iterate this pro-

cess until no more cars can be reconstructed. Please refer to

Algorithm 1 for the entire process.

3.3. Multiview Detection Bootstrapping

Precise and temporally stable 3D reconstruction of the

car from multiple views can bootstrap the 2D detection of
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(a) Input Image (b) Manually Annotated (c) Alejandro et al.[32] (d) MVB @Iter 1 (e) CarFusion

Figure 3: Qualitative analysis of the structured point detector before and after multiview bootstrapping (MVB), shown for
two cars in three different views. Initial detectors were trained using Alejandro et al.[32]. The CarFusion approach was used
to reconstruct the cars. Then the resulting 3D structured points were re-projected to all the views and used to retrain/bootstrap
the detectors. The MVB approach shows clear visual improvement over the baseline, even in the presence of occlusions.

the structured points (loop-back shown in Fig. 2). In turn,

better 2D localization of the structured points enable more

precise 3D estimation of the car. Given the 3D locations

of structured points and their visibilities, we project the 3D

points onto all the views. We use the reprojected points as

automatically computed labels for fine-tuning the car detec-

tor. We recompute the reconstruction using the improved

detectors for better fitting of the structured points and fur-

ther minimization of the reprojection error. The emphasis is

to improve detections using reconstruction and vice-versa

from cameras captured in the wild.

4. Experimental Evaluation

We evaluate our framework on a traffic scene captured

with six Samsung Galaxy 6, ten iPhone 6, and six Go-

pro Hero 3 cameras at 60 fps in a busy intersection for 3

minutes. In total the algorithm is run on nearly 210000

frames. These videos were captured by 13 people, some

of whom carried two cameras. The sequence is challeng-

ing as there are no constraints on the camera motion or the

vehicle motion in the scene. We manually annotate the 2D

locations of the structured points for every visible cameras

for 2793 frames from different viewing angles in the Inter-

section dataset. The data for this “Intersection Dataset” is

available for research purpose1.

We evaluate our reconstruction pipeline at its progressive

stages: car-centric RANSAC (cRANSAC), temporal inte-

gration using only the structured points (TcRANSAC), and

the fusion of both structured points and unstructured track

1http://www.cs.cmu.edu/� ILIM/projects/IM/CarFusion/
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