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Figure 1. From a YouTube video of a soccer game, our system outputs a dynamic 3D reconstruction of the game, that can be viewed

interactively on your tabletop with an Augmented Reality device. The supplementary video demonstrates the capabilities of the method.

Abstract

We present a system that transforms a monocular video

of a soccer game into a moving 3D reconstruction, in which

the players and field can be rendered interactively with a

3D viewer or through an Augmented Reality device. At the

heart of our paper is an approach to estimate the depth

map of each player, using a CNN that is trained on 3D

player data extracted from soccer video games. We com-

pare with state of the art body pose and depth estimation

techniques, and show results on both synthetic ground truth

benchmarks, and real YouTube soccer footage.

1. Introduction

Imagine watching a 3D hologram of a live soccer game

on your living room table; you can walk around with an

Augmented Reality device, watch the players from different

viewpoints, and lean in to see the action up close.

One way to create such an experience is to equip the

soccer field with many cameras, synchronize the cameras,

and then reconstruct the field and players in 3D using multi-

view geometry techniques. Approaches of that spirit were

previously proposed in the literature [14, 13, 19] and even

commercialized as Replay’s FreeD, and others [1]. The re-

sults of multi-view methods are impressive, however the re-

quirement of physically instrumenting the field with many

synchronized cameras limits their generality. What if, in-

stead, we could reconstruct any soccer game just from a

single YouTube video? This is the goal of this paper.

There are numerous challenges in monocular reconstruc-

tion of a soccer game. We must estimate the camera pose

relative to the field, detect and track each of the players, re-

construct their body shapes and poses, and render the com-

bined reconstruction.

We present the first end-to-end system (Fig. 2) that ac-

complishes this goal (short of reconstructing the ball, which

remains future work). In addition to the system, a key

technical contribution of our paper is a novel method for

player body depth map estimation from a single frame. Our

approach is trained on meshes extracted from FIFA video

games. Based on this data, a neural network estimates per

pixel depth values of any new soccer player, comparing fa-

vorably to other state-of-the-art body depth and pose esti-

mation techniques.

We present results on 10 YouTube games of different

teams. Our results can be rendered using any 3D viewer, en-

abling free-viewpoint navigation from the side of the field

recorded by the game camera. We also implemented “holo-

graphic” Augmented Reality viewing with HoloLens, pro-

jected onto a tabletop. See the supplementary material for

the AR video results and the 3D model of the game.

14738



Player AnalysisInput Frame Depth Estimation Scene Reconstruction

Figure 2. Overview of our reconstruction method. From a YouTube video frame, we recover camera parameters using the field lines. We

then extract bounding boxes, poses, and trajectories (across multiple frames) to segment the players. Using a deep network trained on video

game data, we reconstruct per-player depth maps on the playing field, which we can render in a 3D viewer or on an AR device.

2. Related Work

Sports Analysis Sports game analysis has been exten-

sively investigated from the perspectives of image process-

ing, computer vision, and computer graphics [32], both for

academic research and for industry applications. Under-

standing a sports game involves several steps, from field

localization to player detection, tracking, segmentation, etc.

Most sports have a predefined area where the action is hap-

pening; therefore, it is essential to localize that area w.r.t. the

camera. This can be done with manual correspondences and

calibration based on, e.g., edges [5], or fully automatically

[21]. In this work, we follow a field localization approach

similar to [5].

Sports reconstruction can be achieved using multiple

cameras or specialized equipment, an approach that has

been applied to free viewpoint navigation and 3D replays

of games. Products such as Intel FreeD [1] produce new

viewing experiences by incorporating data from multiple

cameras. Similarly, having a multi-camera setup allows

multiview stero methods [18, 19] for free viewpoint naviga-

tion [17, 47, 16], view interpolation based on player triangu-

lation [14] or view interpolation by representing players as

billboards [13]. In this paper, we show that reliable recon-

struction from monocular video is now becoming possible

due to recent advances in people detection [38, 7], tracking

[31], pose estimation [49, 37], segmentation [20], and deep

learning networks. In our framework, the input is broadcast

video of a game, readily available on YouTube and other

online media sites.

Human Analysis Recently, there has been enormous im-

provement in people analysis using deep learning. Person

detection [38, 7] and pose estimation [49, 37] provide robust

building blocks for further analysis of images and video.

Similarly, semantic segmentation can provide pixel-level

predictions for a large number of classes [51, 27]. In our

work, we use such predictions (bounding boxes from [38],

pose keypoints [49], and people segmentation [51]) as input

steps towards a full system where the input is a single video

sequence, and the output is a 3D model of the scene.

Analysis and reconstruction of people from depth sen-

sors is an active area of research [44, 3], but the use of depth

sensors in outdoor scenarios is limited because of the inter-

ference with abundant natural light. An alternative would

be to use synthetic data [48, 22, 46, 43], but these virtual

worlds are far from our soccer scenario. There is exten-

sive work on depth estimation from images/videos of in-

door [10] and road [15] scenes, but not explicitly for hu-

mans. Recently, the work of [48] proposes a human part and

depth estimation method trained on synthetic data. They fit

a parametric human model [29] to motion capture data and

use cloth textures to model appearance variability for arbi-

trary subjects and poses when constructing their dataset. In

contrast, our approach takes advantage of the restricted soc-

cer scenario for which we construct a dataset of depth map

/ image pairs of players in typical soccer clothing and body

poses extracted from a high quality video game. Another

approach that can indirectly infer depth for humans from

2D images is [4]. This work estimates the pose and shape

parameters of a 3D parametric shape model in order to fit

the observed 2D pose estimation. However, the method re-

lies on robust 2D poses, and the reconstructed shape does

not fit to the players’ clothing. We compare to both of these

methods in the Experiments section.

Multi-camera rigs are required for many motion capture

and reconstruction methods [8, 45]. [33] uses a CNN per-

son segmentation per camera and fuses the estimations in

3D. Body pose estimation from multiple cameras is used

for outdoor motion capture in [40, 11]. In the case of a sin-

gle camera, motion capture can be obtained using 3D pose

estimators [35, 36, 30]. However, these methods provide

the 3D position only for skeleton joints; estimating full hu-

man depth would require additional steps such as paramet-

ric shape fitting. We require only a single camera.
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Figure 3. Training data: we extracted images and their correspond-

ing depths while playing a FIFA game. We present several exam-

ples here visualized as depth maps and meshes.

3. Soccer player depth map estimation

A key component of our system is a method for estimat-

ing a depth map for a soccer player given only a single im-

age of the player. In this section, we describe how we train

a deep network to perform this task.

3.1. Training data from FIFA video games

State-of-the-art datasets for human shape modeling

mostly focus on general representation of human bodies

and aim at diversity of body shape and clothing [29, 48].

Instead, to optimize for accuracy and performance in our

problem, we want a training dataset that focuses solely on

soccer, where clothing, players’ poses, camera views, and

positions on the field are very constrained. Since our goal

is to estimate a depth map given a single photo of a soc-

cer player, the ideal training data would be image and depth

map pairs of soccer players in various body poses and cloth-

ing, viewed from a typical soccer game camera.

The question is: how do we acquire such ideal data? It

turns out that while playing Electronic Arts FIFA games and

intercepting the calls between the game engine and the GPU

[42, 41], it is possible to extract depth maps from video

game frames.

In particular, we use RenderDoc [2] to intercept the calls

between the game engine and the GPU. FIFA, similar to

most games, uses deferred shading during game play. Hav-

ing access to the GPU calls enables capture of the depth and

color buffers per frame1. Once depth and color is captured

for a given frame we process it to extract the players.

The extracted color buffer is an RGB screen shot of the

game, without the score and time counter overlays and the

in-game indicators. The extracted depth buffer is in Nor-

1RenderDoc causes the game to freeze, essentially capturing 1 fps.

malized Device Coordinates (NDC), with values between

0 and 1. To get the world coordinates of the underlying

scene we require the OpenGL camera matrices that were

used for rendering. In our case, these matrices were not di-

rectly accessible in RenderDoc, so we estimated them (see

Appendix A in supplementary material).

Given the game camera parameters, we can convert the

z-buffer from the NDC to 3D points in world coordinates.

The result is a point cloud that includes the players, the

ground, and portions of the stadium when it is visible. The

field lies in the plane y = 0. To keep only the players, we

remove everything that is outside of the soccer field bound-

aries and all points on the field (i.e., points with y = 0).

To separate the players from each other we use DBSCAN

clustering [12] on their 3D locations. Finally, we project

each player’s 3D cluster to the image and recalculate the

depth buffer with metric depth. Cropping the image and

the depth buffer around the projected points gives us the

image-depth pairs – we extracted 12000 of them – for train-

ing a depth estimation network (Fig. 3). Note that we use a

player-centric depth estimation because we get more train-

ing data by breaking down each frame into 10-20 players,

and it is easier for the network to learn individual player’s

configuration rather than whole-scene arrangements.

3.2. Depth Estimation Neural Network

Given the depth-image pairs extracted from the video

game, we train a neural network to estimate depth for any

new image of a soccer player. Our approach follows the

hourglass network model [34, 48]: the input is processed

by a sequence of hourglass modules – a series of residual

blocks that lower the input resolution and then upscale it –

and the output is depth estimates.

Specifically, the input of the network is a 256×256 RGB

image cropped around a player together with a segmen-

tation mask for the player, resulting in a 4-channel input.

We experimented with training on no masks, ground truth

masks, and estimated masks. Using masks noticeably im-

proved results. In addition, we found that using estimated

masks yielded better results than ground truth masks. With

estimated masks, the network learns the noise that occurs in

player segmentation during testing, where no ground truth

masks are available. To calculate the player’s mask, we ap-

ply the person segmentation network of [51], refined with

a CRF [25]. Note that our network is single-player-centric:

if there are overlapping players in the input image, it will

try to estimate the depth of the center one (that originally

generated the cropped image) and assign the other players’

pixels to the background.

The input is processed by a series of 8 hourglass mod-

ules and the output of the network is a 64×64×50 volume,

representing 49 quantized depths (as discrete classes) and

1 background class. The network was trained with cross
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entropy loss with batch size of 6 for 300 epochs with learn-

ing rate 0.0001 using the Adam [24] solver (see details of

the architecture in supplementary material).

The depth parameterization is performed as follows:

first, we estimate a virtual vertical plane passing through the

middle of the player and calculate its depth w.r.t. the cam-

era. Then, we find the distance in depth values between a

player’s point and the plane. The distance is quantized into

49 bins (1 bin at the plane, 24 bins in front, 24 bins behind)

at a spacing of 0.02 meters, roughly covering 0.5 meters in

front and in back of the plane (1 meter depth span). In this

way, all of our training images have a common reference

point. Later, during testing, we can apply these distance

offsets to a player’s bounding box after lifting it into 3D

(see Sec. 4.4).

4. Reconstructing the Game

In this section we describe our full pipeline for 3D re-

construction from a soccer video clip.

4.1. Camera Pose Estimation

The first step is to estimate the per-frame parameters of

the real game camera. Because soccer fields have specific

dimensions and structure according to the rules of FIFA, we

can estimate the camera parameters by aligning the image

with a synthetic planar field template. We set the world

origin to coincide with the center of the synthetic soccer

field which lies in the y = 0 plane.

The most consistent features on the field of play are the

field lines (e.g., sidelines, penalty box around the goal).

Thus, we extract edge points E for each frame to localize

those features. We can solve for the camera parameters w

(focal length, rotation and translation) that align rendered

synthetic field lines with the extracted edge points. In par-

ticular, we first construct a distance map D that, for each

pixel in the original frame, stores the squared distance to the

nearest point in E . Then, for projection T (p;w) that maps

the visible 3D line points p to the image, we minimize:

min
w

∑

p

D (T (p;w)) , (1)

i.e., the sum of squared distances between the projected syn-

thetic field points and the nearest edge points in E .

This process is highly dependent on the the quality of

the edge points E and the camera initialization. We use

structured forests [9] for line detection. We additionally

remove edges that belong to people by applying a person

segmentation network [51]. To initialize the camera fitting,

we provide 4 manual correspondences in the first frame, and

further solve for the camera pose in each successive frame

using the previous frame as initialization.

4.2. Player Detection and Tracking

The first step of the video analysis is to detect the players

in every frame. While detecting soccer players may seem

straightforward due to the relatively uniform background,

most state-of-the-art person detectors still have difficulty

when, e.g., players from the same team occlude each other

or the players are too small.

We start with a set of bounding boxes obtained with [39].

Next, we refine the initial bounding boxes based on pose in-

formation using the detected keypoints/skeletons from [49].

We observed that the estimated poses can better separate

the players than just the bounding boxes, and the pose key-

points can be effectively used for tracking the players across

frames.

Finally, we generate tracks over the sequence based on

the refined bounding boxes. Every track has a starting and

ending location in the video sequence. The distance be-

tween two tracks A and B is defined as the 2D Euclidean

distance between the ending location of track A and start-

ing location of track B, assuming track B starts at a later

frame than track A and their frame difference is smaller

than a threshold (detailed parameters are described in sup-

plementary material). We follow a greedy merging strat-

egy. We start by considering all detected neck keypoints

(we found this keypoint to be the most reliable to associate

with a particular player) from all frames as separate tracks

and we calculate their pairwise distances. Two tracks are

merged if their distance is below a threshold, and we con-

tinue until there are no tracks to merge. This step associates

every player with a set of bounding boxes and poses across

frames. This information is essential for the later processing

of the players, namely the temporal segmentation, depth es-

timation and better placement in 3D. Fig. 2 shows the steps

of detection, pose estimation, and tracking.

4.3. Temporal Instance Segmentation

For every tracked player we need to estimate its segmen-

tation mask to be used in the depth estimation network. A

straightforward approach is to apply at each frame a person

segmentation method [51], refined with a dense CRF [25] as

we did for training. This can work well for the unoccluded

players, but in the case of overlap, the network estimates are

confused. Although there are training samples with occlu-

sion, their number is not sufficient for the network to esti-

mate the depth of one player (e.g. the one closer to the cen-

ter) and assign the rest to the background. For this reason,

we “help” the depth estimation network by providing a seg-

mentation mask where the tracked player is the foreground

and the field, stadium and other players are background (this

is similar to the instance segmentation problem [20, 50], but

in a 1-vs-all scenario).

To estimate the pixels that belong to a particular player

T , we rely both on the semantic segmentation and on the
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pose estimation from the previous step. First, for every pixel

p, we aim to find the continuous variable op that indicates

its association to the player T , background or other players

by minimizing the energy [28, 26, 27]:

E =
∑

p

(op −
∑

q∈N(p)

wpqoq), (2)

where N(p) is the spatial neighborhood of pixel p, and wpq

is the affinity between pixels p and q based on the color

image I and edge image G: exp(−||Ip−Iq||
2)∗exp(−G2

p).
Several pixels can be used as anchors for the optimization:

a) the pixels s that belong to the tracked player skeleton

will have os = 0, b) other players’ skeleton pixels r have

or = 2 and c) pixels b with high background probability

have ob = 1. By thresholding the optimized op values (we

use 0.5 for our experiments) we generate the player’s mask

Mo. This mask performs well in separating the main player

from other players, but tends to include some background

as well.

To better segment out the background, we estimate an

additional mask MCNN as follows. We construct a video

volume containing the player in a block of 15 frames, with

the player’s per-frame locations translated to align the neck

keypoint across frames. We solve a dense CRF [25] over the

volume to obtain MCNN for every frame in the block. The

unary potentials come from the person segmentation net-

work of [51]. The pairwise potentials are modeled as Gaus-

sian kernels in a D-dimensional feature space, with the fea-

tures f ∈ D consisting of the rgb colors, the xy locations,

and t the time stamp. MCNN better segments out the back-

ground, but tends to include other players. Thus, our final

segmentation mask is the product Mfinal = MoMCNN . In

the inset image, we show an occluded player, the optimized

variables op, our masks, and the instance segmentation from

another state-of-the-art method [50] (see supplementary for

additional results). For the op visualization, os is yellow, or
is blue, and ob is magenta.

Input o
p

M
final [43]M

O M
CNN

4.4. Mesh Generation

The foreground mask from the previous step, together

with the original cropped image are fed to the network de-

scribed in 3.2. The output of the network is per-pixel, quan-

tized signed distances between the player’s surface and a

virtual plane w.r.t. the camera. To obtain a metric depth

map we first lift the bounding box of the player into 3D,

creating a billboard (we assume that the bottom pixel of the

player lies on the ground). We then apply the distance off-

sets output by the network to the 3D billboard to obtain the

desired depth map.

The depth map is then unprojected to world coordinates

using the camera parameters, generating the player’s point-

cloud in 3D. Each pixel corresponds to a 3D point and we

use pixel connectivity to establish faces. We texture-map

the mesh with the input image. Depending on the applica-

tion, the mesh can be further simplified with mesh decima-

tion to reduce the file size for deployment in an AR device.

4.5. Trajectories in 3D

Due to imprecise camera calibration and bounding box

localization, the 3D placement of players can “jitter” from

frame to frame. To address this problem, we smooth the 3D

trajectories of the players. In particular, once we estimate

the player’s position in the 3D field, we calculate the center

of the mesh (mean of the player’s vertices) and solve for its

optimized 3D trajectory X ∈ R
N×3 [31] by minimizing:

E =
∑

t∈M

||Xt−Dt||
2+

N−1∑

t=1

||Xt−1−2Xt+Xt+1||
2 (3)

where N is the number of frames and M is the set of times-

tamps when a detection occurs. Dt corresponds to the cen-

ter of the lifted bounding box in 3D at time t. The first term

of the objective ensures that the estimated trajectory will be

close to the original detections, and the second term encour-

ages second order temporal smoothness.

5. Experiments

All videos were processed in a single desktop with an

i7 processor, 32 GB of RAM and a GTX 1080 with 6GB

of memory. The full (unoptimized) pipeline takes approxi-

mately 15 seconds for a typical 4K frame with 15 players.

Synthetic Evaluation We quantitatively evaluate our ap-

proach and several others using a held-out dataset from

FIFA video game captures. The dataset was created in the

same way as the training data (Sec. 3) and contains 32 rgb-

depth pairs of images, containing 450 players. We use the

scale invariant root mean square error (st-RMSE) [48, 10]

to measure the deviation of the estimated depth values of

foreground pixels from the ground truth. In this way we

compensate for any scale/translation ambiguity along the

camera’s z-axis. We additionally report segmentation accu-

racy results using the intersection-over-union (IoU) metric.

We compare with three different approaches: a) non

human-specific depth estimation [6], b) human-specific

depth estimation [48], and c) fitting a parametric human

shape model to 2D pose estimations [4]. For all of these

methods, we use their publicly available code.
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Figure 4. Results on the synthetic dataset and comparison to state of the art and ground truth, visualized as depth maps and 3D meshes.

Our method infers more accurate and complete depth estimates, which result in better mesh reconstructions.

The input for all methods are cropped images containing

soccer players. We apply the person detection and pose es-

timation steps, as described in Sec. 4, to the original video

game images in order to find the same set of players for all

methods (resulting in 432 player-depth pairs). For each de-

tection, we crop the area around the player to use as a test

image, and we get its corresponding ground truth depth for

evaluation. In addition, we lift its bounding box in 3D to

get the location of the player in the field and to use it for our

depth estimation method (note that the bounding box is not

always tight around the player, resulting in some displace-

ment across the camera’s z-axis).

The cropped images come from a larger frame with

known camera parameters; therefore, the depth estimates

can be placed back in the original camera’s (initially empty)

depth buffer. Since the depth estimates from the different

methods depend on the camera settings that each method

used during training, it is necessary to use scale/translation

invariance metrics. In addition, we transform the output of

[48] into world units by multiplying by their quantization

factor (0.045m). Note that our estimates are also in world

units, since we use the exact dimensions of the field for

camera calibration. For [4], we modify their code to use

the same 2D pose estimates used in our pipeline [49] and

we provide the camera parameters and the estimated 3D lo-

cation of the player. Table 1 summarizes the quantitative

results for depth estimation and player segmentation. Our

method outperforms the alternatives both in terms of depth

error and player coverage. This result highlights the benefit

of having a training set tailored to a specific scenario.

In Fig. 4 we show qualitative results on the synthetic

dataset, both as depth maps and meshes. Our approach is

st-RMSE IoU

Non-human training [6] 0.92 -

Non-soccer training [48] 0.16 0.41

Parametric Shape [4] 0.14 0.61

Ours 0.06 0.86
Table 1. Depth estimation (st-RMSE) and player segmentation

(IoU) comparison for different approaches.

GT

SMPL

Ours

SMPL vs GT Ours vs GT

Figure 5. Reconstructed mesh comparison.

closer to the ground truth posture and mesh shape, since

our network has been trained on people with soccer outfits

and common soccer poses (Fig. 5).

The method of [48] assigned a large number of fore-

ground pixels to the background. One reason is that their

training data aims to capture general human appearance

against cluttered backgrounds, unlike what is found in

typical soccer images. Moreover, the parametric shape

model [29] that is used in [48, 4] is based on scans of hu-

mans with shapes and poses not necessarily observed in soc-

cer games. Trying to fit such a model to soccer data may

result in shapes/poses that are not representative of soccer

players. In addition, the parametric shape model is trained

on subjects wearing little clothing, resulting in “naked” re-

constructions.
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Figure 6. Results on real images from YouTube videos.

Input SMPL Ours OursSMPL

Figure 7. Reconstructed meshes and texturing.

YouTube videos We evaluate our approach on a collec-

tion of soccer videos downloaded from YouTube with 4K

resolution. The initial sequences were trimmed to 10 video

clips shot from the main game camera. Each sequence is

150-300 frames and contains various game highlights (e.g.,

passing, shooting, etc.) for different teams and with varying

numbers of players per clip. The videos also contain typical

imaging artifacts, such as chromatic aberration and motion

blur, and compression artifacts.

Fig. 6 shows the depth maps of different methods on

real examples. Similar to the synthetic experiment, the

non-human and non-soccer methods perform poorly. The

method of [4] correctly places the projections of the pose

keypoints in 2D, but the estimated 3D pose and shape are of-

ten different from what is seen in the images. Moreover, the

projected parametric shape does not always correctly cover

the player pixels (also due to the lack of clothing), leading

to incorrect texturing (Fig. 7). With our method, while we

do not obtain full 3D models as in [4], the visible surfaces

are modeled properly (e.g. the player’s shorts). Also, after

correctly texturing our 3D model, the quantization artifacts

from the depth estimation are no longer evident. In princi-

ple, the full 3D models produced by [4] could enable view-

ing a player from a wide range of viewpoints (unlike our

depth maps); however, they will lack correct texture for un-

seen portions in a given frame, a problem that would require

substantial additional work to address.

Figure 8. Our depth estimates are consistent for the same pose but

different viewpoints (colors indicate viewpoint).

Figure 9. Depth estimation consistency for consecutive frames

from 25 fps video, even the training data was captured at 1 fps.

Depth Estimation Consistency Our network is trained

on players from individual frames without explicitly en-

forcing any temporal or viewpoint coherence. Ideally, the

network should give compatible depthmaps for a specific

player seen at the same time from different viewpoints. In

Fig. 8, we illustrate the estimated meshes on the KTH mul-

tiview soccer dataset [23], with a player captured from three

different, synced cameras. Since we do not have the loca-

tion of the player on the field, we use a mock-up camera to

estimate the 3D bounding box of the player. The meshes

were roughly aligned with manual correspondences.

In addition, for slight changes in body configuration

from frame to frame, we expect the depthmap to change

accordingly. Fig. 9 shows reconstructed meshes for four

consecutive frames, illustrating 3D temporal coherence de-

spite frame-by-frame reconstruction.

Experiencing Soccer in 3D The textured meshes and

field we reconstruct can be used to visualize soccer con-

tent in 3D. Fig. 10 illustrates novel views for three input

YouTube frames, where the reconstructed players are placed

in a virtual stadium. The 3D video content can also be

viewed in an AR device such as a HoloLens (Fig. 1), en-

abling the experience of watching soccer on your tabletop.

4744



Figure 10. Starting from Youtube frames (top row), the depth maps reconstructed by our network can populate a virtual 3D soccer environ-

ment, shown here as mesh-only and textured renderings (rows 2-4).

See supplemental video.

Limitations Our pipeline consists of several steps and

each one can introduce errors. Missed detections lead to

players not appearing in the final reconstruction. Errors in

the pose estimation can result in incorrect trajectories and

segmentation masks (e.g. missing body parts). While our

method can handle occlusions to a certain degree, in many

cases the players overlap considerably, causing inaccurate

depth estimations. We do not model jumping players since

we assume that they always step on the ground. Finally,

strong motion blur and low image quality can adversely af-

fect the performance of the depth estimation network.

6. Discussion

We have presented a system to reconstruct a soccer game

in 3D from a single YouTube video, and a deployment that

enables viewing the game holographically on your table-

top using a Hololens or other Augmented Reality device.

The key contributions of the paper are the end-to-end sys-

tem and a new state-of-the-art framework for player depth

estimation from monocular video.

Going forward there are a number of important direc-

tions for future work. First, only a depth map is recon-

structed per player currently, which provides a satisfactory

viewing experience from only one side of the field. Further,

occluded portions of players are not reconstructed. Hallu-

cinating the opposite sides (geometry and texture) and oc-

cluded portions of players would enable viewing from any

angle. Second, further improvements in player detection,

tracking, and depth estimation will help reduce occasional

artifacts and reconstructing the ball in the field will enable a

more satisfactory viewing of an entire game. In addition,

video game data could provide additional information to

learn from, e.g., temporal evolution of a player’s mesh (if

real-time capture is possible using a different capture en-

gine) and jumping poses that could be detected from depth

discontinuities between the player and the field.

Finally, to watch a full, live game in a HoloLens, we

need both a real-time reconstruction method and a method

for efficient data compression and streaming.

Acknowledgements This work is supported by NSF/Intel

Visual and Experimental Computing Award #1538618 and

the UW Reality Lab.

4745



References

[1] Intel freeD. https://www.intel.com/

content/www/us/en/sports/technology/

intel-freed-360-replay-technology.html.

1, 2

[2] RenderDoc. https://renderdoc.org. 3

[3] F. Bogo, M. J. Black, M. Loper, and J. Romero. Detailed

full-body reconstructions of moving people from monocular

RGB-D sequences. In ICCV), 2015. 2

[4] F. Bogo, A. Kanazawa, C. Lassner, P. V. Gehler, J. Romero,

and M. J. Black. Keep it smpl: Automatic estimation of 3d

human pose and shape from a single image. In ECCV, 2016.

2, 5, 6, 7

[5] P. A. Carr, Y. Sheikh, and I. A. Matthews. Point-less calibra-

tion: Camera parameters from gradient-based alignment to

edge images. WACV, 2012. 2

[6] W. Chen, Z. Fu, D. Yang, and J. Deng. Single-image depth

perception in the wild. In NIPS. 2016. 5, 6

[7] J. Dai, Y. Li, K. He, and J. Sun. R-fcn: Object detection via

region-based fully convolutional networks. In NIPS. 2016. 2

[8] E. de Aguiar, C. Stoll, C. Theobalt, N. Ahmed, H.-P. Seidel,

and S. Thrun. Performance capture from sparse multi-view

video. ACM Trans. Graph., 2008. 2

[9] P. Dollár and C. L. Zitnick. Structured forests for fast edge

detection. In ICCV, 2013. 4

[10] D. Eigen, C. Puhrsch, and R. Fergus. Depth map prediction

from a single image using a multi-scale deep network. In

NIPS, 2014. 2, 5

[11] A. Elhayek, E. Aguiar, A. Jain, J. Tompson, L. Pishchulin,

M. Andriluka, C. Bregler, B. Schiele, and C. Theobalt. Ef-

ficient convnet-based marker-less motion capture in general

scenes with a low number of cameras. In CVPR, 2015. 2

[12] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-

based algorithm for discovering clusters a density-based al-

gorithm for discovering clusters in large spatial databases

with noise. In KDD, 1996. 3

[13] M. Germann, A. Hornung, R. Keiser, R. Ziegler, S. Würmlin,
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