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Abstract

Multi-Target Multi-Camera Tracking (MTMCT) tracks

many people through video taken from several cameras.

Person Re-Identification (Re-ID) retrieves from a gallery

images of people similar to a person query image. We

learn good features for both MTMCT and Re-ID with a con-

volutional neural network. Our contributions include an

adaptive weighted triplet loss for training and a new tech-

nique for hard-identity mining. Our method outperforms

the state of the art both on the DukeMTMC benchmarks for

tracking, and on the Market-1501 and DukeMTMC-ReID

benchmarks for Re-ID. We examine the correlation between

good Re-ID and good MTMCT scores, and perform abla-

tion studies to elucidate the contributions of the main com-

ponents of our system. Code is available1.

1. Introduction

Multi-Target Multi-Camera Tracking (MTMCT) aims to

determine the position of every person at all times from

video streams taken by multiple cameras. The resulting

multi-camera trajectories enable applications including vi-

sual surveillance, suspicious activity and anomaly detec-

tion, sport player tracking, and crowd behavior analysis. In

recent years, the number of cameras has increased dramat-

ically in airports, train stations, and shopping centers, so it

has become necessary to automate MTMC tracking.

MTMCT is a notoriously difficult problem: Cameras are

often placed far apart to reduce costs, and their fields of

view do not always overlap. This results in extended pe-

riods of occlusion and large changes of viewpoint and il-

lumination across different fields of view. In addition, the

number of people is typically not known in advance, and the

amount of data to process is enormous.

Person re-identification (Re-ID) is closely related to

MTMCT: Given a snapshot of a person (the query), a Re-

This material is based upon work supported by the National Science

Foundation under Grants No. IIS-1420894 and CCF-1513816.
1http://vision.cs.duke.edu/DukeMTMC/

Figure 1. Two example multi-camera results from our tracker on

the DukeMTMC dataset.

ID system retrieves from a database a list of other snapshots

of people, usually taken from different cameras and at dif-

ferent times, and ranks them by decreasing similarity to the

query. The intent is that any snapshots in the database that

are co-identical with (that is, depict the same person as) the

person in the query are ranked highly.

MTMCT and Re-ID differ subtly but fundamentally, be-

cause Re-ID ranks distances to a query while MTMCT clas-

sifies a pair of images as being co-identical or not, and their

performance is consequently measured by different met-

rics: ranking performance for Re-ID, classification error

rates for MTMCT. This difference would seem to suggest

that appearance features used for the two problems must

be learned with different loss functions. Ideally, the Re-ID

loss ought to ensure that for any query a the largest distance

between a and a feature that is co-identical to it is smaller

than the smallest distance between a and a feature that is

not co-identical to it. This would guarantee correct feature

ranking for any given query. In contrast, the MTMCT loss

ought to ensure that the largest distance between any two

co-identical features is smaller that the smallest distance be-

tween any two non co-identical features, to guarantee a mar-

gin between within-identity and between-identity distances.

With these criteria, zero MTMCT loss would imply zero

Re-ID loss, but not vice versa. However, training with a loss
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of the MTMCT type is very expensive, because it would

require using all pairs of features as input. More impor-

tantly, there would be a severe imbalance between the num-

ber of within-identity pairs and the much greater number

of between-identity pairs. In this paper, we couple a triplet

loss function of the Re-ID type with a training procedure

based on hard-data mining and obtain high-performing fea-

tures for both Re-ID and MTMCT. Our experiments also

show that when tracking moderately crowded scenes, im-

proving Re-ID rank accuracy beyond a certain point shows

diminishing returns for MTMCT.

To use our features for MTMCT, we assemble a process-

ing pipeline (Figure 2) that uses a state-of-the-art person

detector and, at test time, a state-of-the art data association

algorithm based on correlation clustering to group obser-

vations into identities. To reduce computational complex-

ity, we also incorporate standard hierarchical reasoning and

sliding temporal window techniques in our tracker. Some

qualitative results from our method are shown in Figure 1.

We do not include correlation clustering when training.

Instead, we make the conjecture that high-quality appear-

ance features lead to good clustering solutions, and only

train the features. Our state-of-the art experimental results

on the DukeMTMCT benchmark bear out this conjecture.

In summary we make the following contributions:

• We propose an adaptive weighted triplet loss that, un-

like fixed-weight variants, is both accurate and stable.

• We propose an inexpensive hard-identity mining

scheme that helps learn better features.

• We provide new insights on the relation between track-

ing and ranking accuracy on existing benchmarks.

• We show experimentally that our features yield state-

of-the-art results on both MTMCT and Re-ID tasks.

2. Related Work

We summarize work on different aspects of MTMCT.

Person Detection. MTMC trackers rely on person detec-

tion and some trackers assume that single-camera trajecto-

ries are given [11, 14, 19, 20, 21, 26, 27, 32, 38, 42, 48,

77]. The popular Deformable Parts Model detector [30]

was used as the public detector for MOTChallenge se-

quences [43, 51, 57] and in labeling Re-ID datasets [63, 81].

Since the MOT17 challenge, trackers have shown increased

accuracy by utilizing detectors that rely on deep learning.

These include Faster R-CNN [56], SSD [47], KDNT [73],

or pose-based detectors [17, 36]. We use OpenPose [17]

which has shown good performance.

Data Association. Most existing formulations, with some

exceptions [10, 52, 53], are special cases of the multidimen-

sional assignment problem [25]: Input detections are ar-

ranged in a graph whose edges encode similarity and whose

nodes are then partitioned into identities. Formulations with

polynomial time solutions consider evidence along paths of

time-consecutive edges [8, 16, 31, 37, 38, 39, 55, 75, 78]

and some build on bipartite matching [12, 14, 20, 26, 42,

62, 71]. Methods that use all pairwise terms, not only time-

consecutive ones, are significantly more accurate but NP-

hard [18, 25, 27, 28, 41, 58, 61, 65, 66, 67]. Unary terms are

sometimes added for completeness [28, 65]. Higher order

terms have also been used [13, 70] but with sharply dimin-

ishing returns. Identities can be optimized jointly [28] or it-

eratively [74]. We choose correlation clustering [4, 57, 58]

to trade off computational cost for simplicity of formulation

and accuracy. This formulation considers evidence from all

pairwise terms and optimizes identities jointly. An equiva-

lent formulation is that of graph multicuts [66] which mini-

mizes disagreement instead of maximizing agreement [29].

Appearance. Human appearance has been described by

color [14, 19, 20, 21, 27, 32, 38, 39, 42, 77, 78] and tex-

ture descriptors [14, 20, 26, 42, 77, 78]. Lighting variations

are addressed through color normalization [14], exemplar-

based approaches [20], or brightness transfer functions

learned with [27, 38] or without supervision [19, 32, 77,

78]. Discriminative power is improved by saliency infor-

mation [50, 80] or by learning features specific to body

parts [14, 20, 21, 26, 27, 39, 42], either in the image [6, 7,

24] or back-projected onto an articulated [2, 23] or mono-

lithic [3] 3D body model. The current state of the art in per-

son re-identification relies on deep learning [82, 84], hard

negative mining [84], data augmentation [5, 85], special

purpose layers [64] or branches [83], and specialized loss

functions [35]. We use a residual network [34] and similar

techniques to learn good features for MTMCT and Re-ID.

Multiple Cameras. Spatial relations between cameras are

either explicitly mapped in 3D [19, 77], learned by track-

ing known identities [15, 38, 39], or obtained by comparing

entry/exit rates across pairs of cameras [14, 42, 48]. Pre-

processing methods may fuse data from partially overlap-

ping views [78], while some systems rely on completely

overlapping and unobstructed views [1, 8, 11, 33, 40]. Peo-

ple entry and exit points may be explicitly modeled on the

ground [14, 19, 42, 48] or image plane [32, 39]. Travel

time is also modeled, either parametrically [39, 77] or

not [19, 32, 38, 42, 48]. We use time constraints to rule

out unlikely inter-camera associations. Similarly to [57] we

decay correlations to zero as the time distance between ob-

servations increases. Correlation decay ensures that time-

distant observations are associated if there is a chain of

positively-correlated observations that connect them. The

idea is similar to lifted multicuts [67], although we employ

no threshold or hard constraints.

Learning to Track. There have been several attempts to

learn multi-target tracking data association in a supervised

way, either through recurrent neural networks for end-to-
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Figure 2. An illustration of our pipeline for Multi-Target Multi-Camera Tracking. Given video streams, a person detector extracts bounding

box observations from video. For trajectory inference, a feature extractor extracts motion and appearance features from observations. These

are in turn converted into correlations and labeled using correlation clustering optimization. Finally, post-processing interpolates missing

detections and discards low confidence tracks. Multi-stage reasoning repeats trajectory inference for tracklets, single- and multi-camera

trajectories. At train time the detector is trained independently, and the feature loss penalizes features that yield wrong correlations.

end prediction of trajectories [52] or by learning data asso-

ciation by back-propagating through a network-flow solu-

tion [60]. These methods have been pushing in the right di-

rection even though they haven’t yet topped single-camera

tracking benchmarks. In our method we learn features for

correlations without measuring trajectory quality through

combinatorial optimization. Our argument is that if cor-

relations are good, even greedy association suffices. This

idea has been shown to work for person detection [17], and

implicitly pursued in single-camera trackers [66, 67, 73]

and Re-ID methods [35, 82, 83] that improve features to

increase accuracy. Learning good correlations makes train-

ing simpler and less expensive, and we show that it achieves

state-of-the-art performance for MTMCT.

3. Method

The input is a set of videos V = {V1, . . . , Vn} from n

different cameras, and the ground truth is a set of multi-

camera trajectories T = {T1, . . . , Tℓ}. MTMCT could be

cast as a supervised learning problem: Find the optimal pa-

rameters Θ∗ of a function f(Θ, V ) that estimates the true

trajectories as well as possible:

Θ∗ = argmin
Θ

L(f(Θ, V ), T ) (1)

where the loss function L could be derived from the multi-

camera tracking accuracy measure IDF1 [57].

However, end-to-end training would require back-

propagating the loss through a combinatorial optimization

layer that performs data association, and this is expen-

sive [60]. We avoid this complexity by noting that if the cor-

relations were positive for co-identical pairs and negative

for non co-identical pairs, then combinatorial optimization

would be trivial. Thus, we aim to learn features that produce

good correlations during training, while at test time we em-

ploy correlation clustering to maximize agreement between

potentially erroneous correlations.

An additional source of difficulty during training is

model depth, as weight updates can fail to propagate back

to early layers responsible for person detection. If the net-

work is monolithic and trained with a single loss, training

becomes more difficult. We therefore separate detection and

association as is customary in the literature (Figure 2). In

the following we describe how we learn appearance fea-

tures, and the different parts of the tracker.

3.1. Learning Appearance Features

Given a large collection of labeled person snapshots we

learn appearance features using an adaptive weighted triplet

loss. For an anchor sample xa, positive samples xp ∈ P (a)
and negative samples xn ∈ N(a), we re-write the triplet

loss in its most general form as:

L3 =



m+
∑

xp∈P (a)

wpd(xa, xp)−
∑

xn∈N(a)

wnd(xa, xn)





+

(2)

where m is the given inter-person separation margin, d

denotes distance of appearance, and [·]+ = max(0, ·). This

reformulation has two advantages. First it avoids the com-

binatorial process of triplet generation by using all the sam-

ples rather than a selection. Instead, the challenge of learn-

ing good features is to assign larger weights to difficult pos-

itive and negative samples. Second, the positive/negative

class imbalance is easily handled by reflecting it in the

weight distribution.

Hermans et al [35] and Mischuk et al [54] have proposed

the batch-hard triplet loss with built-in hard sample mining.

The batch-hard loss weights for Equation 2 are binary in

their approach, as the loss considers only the most difficult

positive and negative sample:

wp =
[

xp == arg max
x∈P (a)

d(xa, x)
]

(3)
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Figure 4. Hard identity mining: For each anchor identity, half of the P−1 identities

in the batch are sampled from the hard identity pool, the other half from the random

identity pool. Hard-negative identities (correct matches) are outlined in red (green).

wn =
[

xn == arg min
x∈N(a)

d(xa, x)
]

(4)

where [·] denotes the Iverson bracket. This loss gives

better results than the original triplet loss with uniform

weights [59] because the latter washes out the contribution

of hard samples and is driven to worse local minima by

easy samples. On the other hand, the uniformly weighted

loss is more robust to outliers because they cannot affect

the weights.

Can we define weights such that L3 converges to param-

eters at least as good as the batch-hard loss, yet remains ro-

bust to outliers? Our first improvement pertains to weights

that achieve high accuracy and training stability simulta-

neously. Equations 3-4 assign full weight to the hardest

positive/negative sample for each anchor while ignoring the

remaining positive and negative samples. Instead, we as-

sign adaptive weights using the softmax/min weight distri-

butions as follows (see Figure 3):

wp =
ed(xa,xp)

∑

x∈P (a)

ed(xa,x)
, wn =

e−d(xa,xn)

∑

x∈N(a)

e−d(xa,x)
. (5)

The adaptive weights in Equation 5 give little impor-

tance to easy samples and emphasize the most difficult ones.

When several difficult samples appear in a batch, they all

get their fair share of the weight. This differs from the hard

weight assignments of Equations 3-4 which give impor-

tance to the single most difficult sample. Adaptive weights

are useful when the most difficult sample in a batch is an

outlier, yet there exist other difficult samples to learn from.

Experiments in such cases demonstrate the favorable prop-

erties of adaptive weights.

For batch construction during training we leverage the

idea of PK batches also introduced by Hermans et al [35].

In each batch there are K sample images for each of P iden-

tities. This approach has shown very good performance in

similarity-based ranking and avoids the need to generate a

combinatorial number of triplets. During a training epoch

each identity is selected in its batch in turn, and the remain-

ing P−1 batch identities are sampled at random. K samples

for each identity are then also selected at random.

Our second improvement is on the procedure that selects

difficult identities. As the size of the training set increases,

sampling P −1 identities at random rarely picks the hardest

negatives, thereby moderating batch difficulty. This effect

can also be observed in the last few epochs of training, when

many triplets within a batch exhibit zero loss.

To increase the chances of seeing hard negatives, we con-

struct two sets to sample identities from. An example is

shown in Figure 4. The hard identity pool consists of the

H most difficult identities given the anchor, and the random

identity pool consists of the remaining identities. Then in

a PK batch of an anchor identity we sample the remaining

P − 1 identities from the hard or random identity pool with

equal probability. This technique samples hard negatives

more frequently and yet the batch partially preserves dataset

statistics by drawing random identities. The pools can be

constructed either after training the network for few epochs,

or computed from a pre-trained network. We demonstrate

the benefit of using the hard-identity mining scheme in the

experiments section.

3.2. MTMC Tracker

Given an array Od of k-dimensional detections as input,

the tracker outputs a (k + 1) × ot array Ot = ft(Θt, Od)
of ot detections. The added dimension is the identity la-

bel assignment to the input observations. In our design,

the tracker first computes features for all od input observa-

tions, then estimates correlation between all pairs of fea-

tures, and finally solves a correlation clustering problem

to assign identities to observations. Two post-processing

steps, interpolation and pruning, interpolate detections to

fill gaps and remove trajectories with low confidence. For

this reason, the number ot of output detections can differ

from the number od of input detections.

Detector. We use the off-the-shelf OpenPose person de-

tector which achieves good performance [17]. This de-

tector learns part affinity fields to capture the relation be-
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tween body parts and applies greedy parsing to combine

part affinities into bounding boxes. During training it is su-

pervised directly on part affinities rather than bounding box

accuracy.

Appearance Features. We use the ResNet50 model pre-

trained on ImageNet and follow its pool5 layer by a dense

layer with 1024 units, batch normalization, and ReLU. An-

other dense layer yields 128-dimensional appearance fea-

tures. We train the model with the adaptive weighted triplet

loss, data augmentation, and hard-identity mining.

We define the appearance correlation between two de-

tections as wij =
ta−d(xi,xj)

ta
(a number ≤ 1) where the

threshold ta = 1
2 (µp + µn) separates the means of positive

and negative distances µp and µn of all training pairs.

Data Augmentation. We augment the training images on-

line with crops and horizontal flips to compensate for de-

tector localization errors and to gain some degree of view-

point/pose invariance. For illumination invariance we ad-

ditionally apply contrast normalization, grayscale and color

multiplication effects on the image. For resolution invari-

ance we apply Gaussian blur of varying σ. For additional

viewpoint/pose invariance we apply perspective transforma-

tions and small distortions. We additionally hide small rect-

angular image patches to simulate occlusion.

Motion Correlation. We use a linear motion model to pre-

dict motion correlation. As the forward-backward predic-

tion error em = ef + eb is non-negative, we use the tra-

jectories from the training set to learn a threshold tm that

separates positive and negative evidence, and a scaling fac-

tor α to convert errors to correlations: wm = α(tm − em).
Impossible associations receive correlation wm = −∞.

Optimization. A matrix W = (Wa + Wm) ⊙ D collects

appearance and motion correlations, and the matrix D spec-

ifies discounts = e−β∆t ∈ [0, 1] that decay correlations to

zero as the time lag ∆t between observation increases. D

ensures association of time-distant trajectories only if there

is a chain of associations with positive net correlation that

connects them. Parameters tm, α, β are chosen to maximize

tracking accuracy over small subsets of the training set.

We establish co-identity by correlation clustering. Given

a weighted graph G = (V,E,W ), two nodes vi and vj are

co-identical if the binary incidence variable xij = 1 in the

solution. Correlation clustering is defined as:

X∗ = arg max
{xij}

∑

(i,j)∈E

wijxij (6)

subject to: xij + xjk ≤ 1 + xik ∀i, j, k ∈ V (7)

Equation 6 maximizes positive (negative) correlation

within (between) clusters and the constraints in Equation

7 enforce transitivity in the solution.

Multi-Level Reasoning. Our method reduces the computa-

tional burden by reasoning hierarchically over three levels.

The first level computes one-second long tracklets, the sec-

ond associates tracklets into single-camera trajectories, and

the third associates single-camera trajectories into multi-

camera identities.

Tracklets are found in disjoint, one-second long win-

dows. Trajectories are computed online in a sliding tem-

poral window that overlaps 50% with the previous window.

All trajectories that have at least one detection in the win-

dow are re-considered for association. We set the window

width for single-camera trajectories to 10 seconds, and 1.5

minutes for multi-camera trajectories.

4. Experiments

We run the following experiments on recent benchmarks

for MTMCT and Re-ID: (a) Measure overall MTMCT per-

formance, (b) measure the impact of improved detector

and features during tracking, (c) study the relation between

measures of accuracy for ranking and tracking, (d) demon-

strate the usefulness of the adaptive weighted triplet loss

and hard negative mining, and (e) analyze tracker failures.

4.1. Benchmarks

DukeMTMC [57] is a large-scale tracking dataset recorded

on the Duke University campus featuring 2.8k identities, of

which 1.8k belong to the training/validation set. The dataset

was recorded by 8 cameras with 1080p 60fps image quality

and the evaluation is done on disjoint fields of view. The

video duration of each camera is 1 hour and 25 minutes.

We benchmark our method on the 25 minute long test-easy

sequence and 15 minute long test-hard sequence hosted on

MOTChallenge [43]. test-hard features a group of 50 peo-

ple traveling through 4 cameras. We use the 17 minute long

validation sequence for ablation experiments.

DukeMTMC-reID [57, 84] is a subset of the DukeMTMC

tracking dataset [57] for image-based person re-

identification. It features 1,404 identities appearing in

more than two cameras and 408 identities who appear in

only one camera are used as distractors. 702 identities are

reserved for training and 702 for testing.

Market-1501 [81] is a large-scale person re-identification

dataset with 1,501 identities observed by 6 near-

synchronized cameras. The dataset was collected in the

campus of Tsinghua University. It features 32,668 bounding

boxes obtained using the deformable parts model detector.

The dataset is challenging as the boxes are often misaligned

and viewpoints can differ significantly. 751 identities are

reserved for training and the remaining 750 for testing.

4.2. Evaluation

For MTMCT evaluation we use ID measures of perfor-

mance [57] which indicate how well a tracker identifies who

is where regardless of where or why mistakes occur. IDP
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Multi-Camera Easy Multi-Camera Hard Single-Camera Easy Single-Camera Hard

IDF1 IDP IDR IDF1 IDP IDR IDF1 IDP IDR MOTA IDF1 IDP IDR MOTA

BIPCC [57] 56.2 67.0 48.4 47.3 59.6 39.2 70.1 83.6 60.4 59.4 64.5 81.2 53.5 54.6

lx b [45] 58.0 72.6 48.2 48.3 60.6 40.2 70.3 88.1 58.5 61.3 64.2 80.4 53.4 53.6

PT BIPCC [49] - - - - - - 71.2 84.8 61.4 59.3 65.0 81.8 54.0 54.4

MTMC CDSC [68] 60.0 68.3 53.5 50.9 63.2 42.6 77.0 87.6 68.6 70.9 65.5 81.4 54.7 59.6

MYTRACKER [72] 64.8 70.8 59.8 47.3 55.6 41.2 80.0 87.5 73.8 77.7 63.4 74.5 55.2 59.0

MTMC ReID [79]† 78.3 82.6 74.3 67.7 78.6 59.4 86.3 91.2 82.0 83.6 77.6 90.1 68.1 69.6

DeepCC 82.0 84.3 79.8 68.5 75.8 62.4 89.2 91.7 86.7 87.5 79.0 87.4 72.0 70.0

Table 1. DukeMTMCT results. Methods in † are unrefereed submissions.

(IDR) is the fraction of computed (true) detections that are

correctly identified. IDF1 is the ratio of correctly identified

detections over the average number of true and computed

detections. IDF1 is used as the principal measure for rank-

ing MTMC trackers. ID measures first compute a 1-1 map-

ping between true and computed identities that maximizes

true positives, and then compute the ID scores.

For single-camera evaluation we also report MOTA,

which counts mistakes by how often, not how long, incor-

rect decisions are made. MOTA is based on the CLEAR-

MOT mapping [9] which under-reports multi-camera errors,

therefore we report it only in single camera experiments.

For person re-identification experiments we report rank

accuracy as well as mean average precision (mAP) [81].

4.3. Model Training

For training we set P = 18, K = 4, m = 1, resolution

256×128. The learning rate is 3 · 10−4 for the first 15000

iterations, and decays to 10−7 at iteration 25000. In exper-

iments with hard identity mining we construct the hard and

random pools once with features obtained at iteration 5000,

then sample identities from these pools until the last iter-

ation. The hard identity pool size H is set to 50 and we

found that similar scores were obtained with 30-100 identi-

ties (4%-15% of all training identities). Extreme sizes yield

little gain: A size of 1 contains a single hard identity which

can be an outlier, a large HN pool nears random sampling.

5. Results

We discuss results for MTMC tracking, where our pro-

posed method outperforms previous and concurrent work in

IDF1 score and identity recall IDR; study the influence of

different components; and analyze common tracking fail-

ures. We also present results on person re-identification

datasets, where our learned appearance features achieve

competitive results.

5.1. Impact of Learning

We evaluate how detector and feature choice impact

multi-camera IDF1 on the DukeMTMC validation set. Re-

sults are shown in Table 2.

IDF1 IDP IDR

BIPCC (DPM + HSV) [57] 54.98 62.67 48.97

DeepCC (OpenPose + HSV) 58.24 60.60 56.06

DeepCC (DPM + ResNet) 65.68 74.87 58.50

DeepCC (OpenPose + ResNet) 80.26 83.50 77.25

Table 2. Impact of improving detector and features on multi-

camera performance for the validation sequence.

First we compare the behavior of our baseline method

BIPCC with and without deep features. BIPCC uses part

based color histograms as appearance features. Our learned

features play an important role in improving IDF1 by 10.7

points (third row) in multi-camera performance.

Second we measure the impact of the deep learned de-

tector. We substituted the baseline’s DPM detections (first

row) with those obtained from OpenPose [17] (second row).

Although single-camera IDF1 increases from 75.0 to 85.5,

multi-camera IDF1 increases by only 3.26 points (from

54.98 to 58.24%). This indicates that the detector plays an

important role in single-camera tracking by reducing false

negatives, but in multi-camera tracking weak features take

little advantage of better single-camera trajectories.

These results imply that good features are crucial for

MTMC tracking, and that a good detector is most useful for

improving single-camera performance. The best MTMCT

performance is achieved by combining both.

5.2. MTMC Tracking

Overall results are presented in Tables 1 and 3. Our

method DeepCC improves the multi-camera IDF1 accuracy

w.r.t to the previous state of the art MTMC CDSC [68]

by 22 and 17.6 points for the test-easy and test-hard se-

quences, respectively. For the single-camera easy and hard

sequences, the IDF1 improvement is 12.2 and 13.5 points,

and MOTA improves by 16.6 and 10.4 points.

Compared to unrefereed submissions, we perform

slightly worse on IDP on the hard sequence. This could

be due to a choice of detector that works better for crowded

scenarios, a detector that is more conservative, and/or more

conservative association. We nonetheless outperform all

methods on IDF1, IDR and MOTA.
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MOTA IDP IDR IDF1

Easy-all 59.4 59.3 70.9 77.7 83.6 87.5 83.6 84.8 87.6 87.5 91.2 91.7 60.4 61.4 68.6 73.8 82.0 86.7 70.1 71.2 77.0 80.0 86.3 89.2

Cam1 43.0 42.9 69.9 84.9 87.4 93.3 91.2 91.9 89.1 89.7 91.1 95.6 41.8 42.2 67.7 79.6 86.2 93.0 57.3 57.8 76.9 84.3 88.6 94.3

Cam2 44.8 44.7 71.5 78.4 84.2 87.1 69.3 70.4 90.9 88.9 92.4 93.6 67.1 68.0 73.4 75.9 82.9 87.4 68.2 69.2 81.2 81.9 87.4 90.4

Cam3 57.8 57.8 67.4 65.7 82.4 79.7 78.9 78.2 76.3 76.2 87.8 86.2 48.8 48.4 56.0 63.5 79.7 77.7 60.3 59.8 64.6 69.3 83.6 81.8

Cam4 63.2 63.2 76.8 79.8 91.9 91.8 88.7 91.7 91.2 84.1 97.7 96.3 62.8 64.9 79.0 77.6 93.1 94.4 73.5 76.0 84.7 80.7 95.4 95.3

Cam5 72.8 72.6 68.9 76.6 80.8 86.2 83.0 83.0 76.1 81.4 87.2 83.6 65.4 65.6 61.9 67.3 75.8 77.7 73.2 73.3 68.3 73.7 81.1 80.6

Cam6 73.4 73.4 77.0 82.8 83.1 88.7 87.5 91.7 91.6 88.9 91.7 93.4 69.1 72.4 75.3 78.8 82.5 92.2 77.2 80.9 82.7 83.5 86.9 92.8

Cam7 71.4 71.4 73.8 77.0 80.8 82.2 93.6 93.6 94.0 91.4 92.8 93.7 70.6 70.6 72.5 73.5 80.1 83.7 80.5 80.5 81.8 81.5 86.0 88.5

Cam8 60.7 60.9 63.4 71.6 79.9 85.0 92.2 92.2 89.1 90.8 91.1 89.4 59.6 60.0 61.8 71.3 78.6 82.4 72.4 72.7 73.0 79.9 84.4 85.8

Hard-all 54.6 54.4 59.6 59.0 69.6 70.0 81.2 81.8 81.4 74.5 90.1 87.4 53.5 54.0 54.7 55.2 68.1 72.0 64.5 65.0 65.5 63.4 77.6 79.0

Cam1 37.8 37.4 63.2 61.1 74.4 79.6 92.5 91.9 83.0 72.2 92.3 94.7 36.8 36.7 56.4 58.4 76.1 80.1 52.7 52.5 67.1 64.6 83.4 86.8

Cam2 47.3 46.6 54.8 50.4 70.9 57.9 65.7 66.0 78.8 61.2 89.1 77.5 56.1 56.7 53.1 52.6 66.7 67.3 60.6 61.0 63.4 56.6 76.3 72.0

Cam3 46.7 46.7 68.8 70.3 87.1 84.2 96.1 96.1 91.1 86.9 94.9 90.8 46.5 46.5 73.7 74.1 89.2 87.1 62.7 62.7 81.5 80.0 91.9 88.9

Cam4 85.3 85.5 75.6 81.2 95.0 90.3 86.0 93.6 87.1 84.4 97.3 93.0 82.7 91.0 78.1 82.2 97.7 97.0 84.3 92.3 82.3 83.3 97.5 94.9

Cam5 78.3 78.3 78.6 81.9 77.2 86.0 90.1 90.1 91.5 93.3 88.4 90.9 75.1 75.1 75.7 79.2 75.3 85.5 81.9 81.9 82.8 85.7 81.3 88.1

Cam6 59.4 59.4 53.3 56.1 58.4 63.3 81.7 82.4 71.2 70.0 86.3 87.0 52.7 53.3 42.3 44.9 55.4 62.2 64.1 64.7 53.1 54.7 67.5 72.5

Cam7 50.8 50.6 50.8 49.8 60.3 61.4 81.2 81.4 84.7 74.7 91.4 85.2 47.1 47.2 47.1 44.4 59.7 61.3 59.6 59.8 60.6 55.7 72.2 71.3

Cam8 73.0 73.0 70.0 71.5 85.6 85.0 94.9 94.9 90.3 93.5 92.2 92.3 72.8 72.8 73.9 70.5 83.7 87.7 82.4 82.4 81.3 80.4 87.7 89.9

Table 3. Detailed DukeMTMCT single-camera tracking results for the test-easy and test-hard sequences. Methods in † are unrefereed

submissions.

It is worth noting that our method achieves the high-

est identity recall IDR on all scenarios, and on nearly all

single-camera sequences. Identity recall is Achille’s heel

for modern multi-target trackers, as they commonly fail to

re-identify targets after occlusions [44]. We believe that this

improvement is a combination of better detections, joint op-

timization, and a discriminative feature embedding.

5.3. Impact of Loss and Hard Negative Mining

Our Re-ID results for similarity-based ranking are shown

in Tables 4 and 5. Scores are averages of five repetitions

and no test-time augmentation is used. (a) Our Adaptive

Weighted Triplet Loss (AWTL) consistently improves over

the batch-hard loss [35, 54]. (b) When training with square

Euclidean distance to emphasize sensitivity to outliers our

loss is robust in all scenarios, whereas the batch-hard loss

shows to be unstable on the Duke dataset. (c) The pro-

posed hard identity mining scheme (HNM) is also benefi-

cial, and our adaptive weighted loss is both accurate and

stable with difficult batches. (d) We also compare against a

recent method that combines two network streams for better

performance [22]. When employing a similar technique (2-

stream ensemble) we improve our ranking accuracy further.

5.4. Accuracy of Tracking vs. Ranking

As more and more re-identification methods are being

applied to multi-target tracking, we study the relation be-

tween ID measures for MTMC tracking and rank measures

for Re-ID. In this experiment, we freeze ground truth single-

camera trajectories and perform across-camera tracking

with features at different times during training, resulting in

different levels of ranking accuracy. Appearance features

are learned from scratch using the 461 DukeMTMC-reID

training IDs that do not appear in the validation sequence.

Tracking accuracy is evaluated on the DukeMTMC vali-

dation sequence (241 IDs), and rank-1 accuracy on both

DukeMTMC-reID test (702 IDs) and DukeMTMC valida-

tion. Results are shown in Figures 5-6.

We observe the following: Figure 5: Rank-1 accuracy

for DukeMTMC-reID test and DukeMTMC validation cor-

relate, even if the former is more difficult than the latter due

to 3x as many identities. Figure 6: (a) Features with modest

rank-1 performance can still do well in MTMCT because

of more limited and diverse identities to compare between,

and because tracking is also helped by motion information.

(b) MTMCT IDF1 performance improves with rank-1 accu-

racy. However, after a point, further improvement in rank-1

accuracy yields diminishing returns in IDF1.

Our interpretation for this saturation effect is as follows.

Initially, the Re-ID model learns to separate positive and

negative samples, and tracking performance increases lin-

early with rank-1 performance. Once enough correlations

have the correct sign, correlation clustering can infer the

remaining missing agreements by enforcing transitivity (in-

equality 7). Therefore, correcting the sign of the remaining

correlations has a smaller effect on IDF1. Even beyond that

point, the Re-ID model tries to satisfy the separation margin

of L3 by further pulling co-identical samples together and

non co-identical ones apart. These changes do not affect the

correlation signs and have little influence on IDF1.

5.5. Weakness Analysis

We analyze the one-to-one ID mapping between true

and computed trajectories to understand failures in the

DukeMTMC validation sequence. During evaluation, each

true trajectory that is mapped to an actual computed trajec-

tory (not a false positive) has its own ID recall, as some of

its detections could be missed by the tracker. Similarly, the

computed trajectories have their own precision, as they can

contain false positive detections.

6042



Euclidean SqEuclidean

mAP rank-1 mAP rank-1

BoW+KISSME [81] 12.17 25.13 - -

LOMO+XQDA [46] 17.04 30.75 - -

Baseline [82] 44.99 65.22 - -

PAN [83] 51.51 71.59 - -

SVDNet [64] 56.80 76.70 - -

TriHard [35] 54.60 73.24 0.28 0.89

AWTL 54.97 74.23 52.37 71.45

TriHard (+Aug) 56.65 74.91 0.48 1.25

AWTL (+Aug) 57.28 75.31 55.94 75.04

TriHard (+Aug+HNM) 54.90 74.23 0.30 0.94

AWTL (+Aug+HNM) 58.74 77.69 57.84 76.21

DPFL (1-stream) [22] 48.90 70.10 - -

DPFL (2-stream) [22] 60.60 79.20 - -

AWTL (2-stream) 63.40 79.80 63.27 79.08

Table 4. Re-ID results on DukeMTMC-ReID
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Figure 5. Relation between validation and test sets.
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We rank computed trajectories by ID precision and true

trajectories by ID recall, then inspect the trajectories with

the lowest scores. This helps clarify which situations are

difficult in single- and multi-camera scenarios. Single-

and multi-camera scenarios are analyzed separately because

their ID mapping is different.

Two failure cases are illustrated in Figure 7. In single-

camera tracking, correlations are poor when there is signif-

icant pose change, significant occlusion, and/or abrupt mo-

tion, resulting in low identity recall (left in the Figure). In

Euclidean SqEuclidean

mAP rank-1 mAP rank-1

DNS [76] 29.87 55.43 - -

GatedSiamese [69] 39.55 65.88 - -

PointSet [86] 44.27 70.72 - -

SomaNet [5] 47.89 73.87 - -

PAN [83] 63.35 82.81 - -

TriHard [35] 66.63 82.99 64.47 82.01

AWTL 68.03 84.20 65.95 82.16

TriHard (+Aug) 69.57 85.14 68.92 84.12

AWTL (+Aug) 70.83 86.11 69.64 84.71

TriHard (+Aug+HNM) 71.13 86.40 0.16 0.36

AWTL (+Aug+HNM) 71.76 86.94 70.19 85.39

DPFL (1-stream) [22] 66.50 85.70 - -

DPFL (2-stream) [22] 72.60 88.06 - -

AWTL (2-stream) 75.67 89.46 74.81 87.92

Table 5. Re-ID results on Market-1501

Figure 7. Left: A multi-camera trajectory with low identity preci-

sion. Right: Example ground truth trajectory with poor identity

recall in single camera tracking. Red indicates failure.

multi-camera tracking, fragmentation is mostly caused by

delays in blind spots and unpredictable motion. Merge er-

rors happen in cases where people dress similarly and their

inter-camera motion is plausible.

The example in Figure 7 (right) highlights one of

the most difficult situations in the validation sequence,

where several construction workers share similar appear-

ance. They enter and exit the field of view a few times,

and both appearance and motion correlations are weak, re-

sulting in poor identity recall during tracking.

6. Conclusion

We showed that a new triplet loss with real-valued, adap-

tive weights, coupled with a new hard-identity mining tech-

nique that mixes difficult and random identities, yields ap-

pearance features that achieve state-of-the art performance

in both MTMCT and Re-ID, whether measured by IDF1,

MOTA, or rank-1 scores.

Our experiments also elucidate the relation between

changes in rank-1 Re-ID score and changes in IDF1 track-

ing accuracy. The two performance measures relate linearly

with each other at first, but the dependency saturates once

rank-1 scores are good enough to yield data association cor-

relations with the correct signs.

We hope that new large-scale data sets will be introduced

to further validate our ideas.
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