
Detail-Preserving Pooling in Deep Networks

Faraz Saeedan1 Nicolas Weber1,2
∗

Michael Goesele1,3
∗

Stefan Roth1

1TU Darmstadt 2NEC Laboratories Europe 3Oculus Research

Abstract

Most convolutional neural networks use some method for

gradually downscaling the size of the hidden layers. This

is commonly referred to as pooling, and is applied to re-

duce the number of parameters, improve invariance to cer-

tain distortions, and increase the receptive field size. Since

pooling by nature is a lossy process, it is crucial that each

such layer maintains the portion of the activations that is

most important for the network’s discriminability. Yet, sim-

ple maximization or averaging over blocks, max or average

pooling, or plain downsampling in the form of strided con-

volutions are the standard. In this paper, we aim to lever-

age recent results on image downscaling for the purposes

of deep learning. Inspired by the human visual system,

which focuses on local spatial changes, we propose detail-

preserving pooling (DPP), an adaptive pooling method that

magnifies spatial changes and preserves important struc-

tural detail. Importantly, its parameters can be learned

jointly with the rest of the network. We analyze some of

its theoretical properties and show its empirical benefits on

several datasets and networks, where DPP consistently out-

performs previous pooling approaches.

1. Introduction

Pooling in various forms has been a crucial component

of virtually all convolutional neural networks (CNNs) [1].

It reduces the computational cost and the number of param-

eters, improves the invariance to minor distortions, and in-

creases the receptive field of intermediate and output nodes.

In mid-sized networks, such as VGG [27] or GoogLeNet

[29], max or average pooling are most commonly used.

Deeper network architectures, such as ResNet [11], often

use strided convolutions. All of them have shortcomings:

Strided convolutions simply pick one node in a fixed po-

sition in each local neighborhood, regardless of the signif-

icance of its activation. From an image downscaling per-

spective, such downsampling can cause artifacts such as

aliasing. Average pooling results in a gradual, constant at-

∗This work was carried out while at TU Darmstadt.

(a) Original Image (b) DPID (λ = 1)

(c) Box filter (average pooling) (d) Spatial maximum \ extremum

Figure 1. Visual comparison for downscaling by a factor of 16 for

several methods applied to the image depicted in (a): (b) detail-

preserving image downscaling (DPID) [31] with λ = 1; (c) box

filter plus downsampling (average pooling); and (d) taking the

maximum \ extremum in each local neighborhood (max \ ex-

tremum pooling). The details are better preserved by DPID, e.g.,

observable in the dog’s eyes and whiskers. Best viewed on screen.

tenuation of the contribution of individual nodes in the for-

ward and backward passes, also irrespective of the impor-

tance of the local structure. The resulting loss of detail be-

comes apparent when visualizing its effect in image down-

scaling (Fig. 1c). Since detail is important for the discrim-

inability of the network [1], max pooling aims to preserve it.

Yet, it disrupts the flow of gradients in some of the branches

of the backward pass, since only one node is selected in ev-

ery input neighborhood. Moreover, looking from an image

downscaling perspective, max pooling leads to implausible

looking results (Fig. 1d). We thus ask: Can we design pool-

ing layers that address these limitations by taking inspira-

tion from image downscaling, expecting improved results?

Another shortcoming of standard pooling layers is that

the question of which one performs best depends on the

specific combination of network and dataset. Determining

the best pooling strategy is thus often done using exhaustive

empirical testing. There have been a few attempts to intro-

duce more generic pooling layers, e.g., based on learning

a linear combination of max and average pooling [19], or

9108

using binary switching variables deciding between the two

[32]. One drawback is that these methods inherit some of

the limitations of their components, i.e. max and average

pooling. Furthermore, a linear mixture of baselines [19]

only increases the flexibility in a limited fashion, raising the

question of the potential benefits of nonlinear combinations.

Yet, existing nonlinear pooling layers require brute-force

parameter search [2, 9] and their benefit for deep networks

and/or large-scale tasks remains unclear.

In this paper we aim to fill this gap. While traditional im-

age downscaling techniques follow well-known ideas from

signal processing, recent work in the graphics community

has shown that downscaling yields subjectively better re-

sults if special care is taken to preserve details in the images

[31] (Fig. 1b). Inspired by this observation, we first intro-

duce a novel pooling layer that is parameterized to adjust

the level of detail being preserved. Our approach is able to

learn a suitable pooling from a continuum of methods that

ranges from average to max (or extremum1) pooling. Sec-

ond, we show theoretically and empirically that our method

provides a generic pooling layer since it can learn to behave

like max or average pooling, or provide a nonlinear combi-

nation of the two. Third, our approach can be combined

with stochastic regularization techniques [34]. Fourth, our

pooling layer is completely differentiable, which can pro-

vide benefits such as in very deep networks. Exhaustive

experiments on CIFAR10 show that the proposed detail-

preserving pooling (DPP) learns to perform at least as well

as the best standard pooling layer for various network types,

and also outperforms other recent pooling methods in all

settings considered. For large-scale real-world tasks in

which the pooling specifics become more important, we

show that replacing the respective standard method with

DPP yields improved results on the ImageNet classification

task. For the popular ResNet architecture [11], we find that

ResNet-101 using DPP outperforms a plain ResNet-152 de-

spite significantly fewer layers and parameters.

2. Related Work

Even before the widespread use of CNNs, pooling was

used in the majority of feature extractors to reduce the size

of the feature vectors and gain invariance to small transfor-

mations of the input. This is often motivated by the study

of complex cells in animal visual cortex [13]. Popular uses

include SIFT [21] and HOG [4], which aggregate the ori-

entation of gradients in a neighborhood. In convolutional

neural networks, max pooling [17, 18] and average pool-

ing [15, 22] are most commonly used. In some networks,

especially very deep ones such as ResNet [11], strided con-

volutions are used for pooling, which are efficient but not

1By extremum pooling we refer to a generalization of max pooling in

which the activation that stands out the most from the mean in each local

neighborhood is selected, no matter whether it is a maximum or minimum.

adaptive to the data. From an image downscaling perspec-

tive, they just perform a sparse but regular downsampling.

Boureau et al. [1] analyzed pooling methods and showed

that max pooling improves discriminability over average

pooling, particularly for features with low activation proba-

bility. Hence, the optimal pooling for a feature map might

be somewhere ‘between’ average and max pooling. The

proposed DPP not only yields a suitable parameterization

that nonlinearly bridges max and average pooling, but also

learns the shape of this nonlinear function for every feature

map based on the training data and the activations thereon,

enabling DPP to explore a continuum of poolings.

Earlier work has focused on altering the receptive field of

a pooled pixel or on unconventional pooling ratios. Ionescu

et al. [14] provide a methodology that enables incorporating

higher-order pooling layers in deep networks. Maxout [7]

suggests performing inter-channel max pooling. Fractional

pooling [8] uses a fractional downscaling ratio, and hence a

more gradual size reduction. Rippel et al. [24] downsample

feature maps in spectral space using low-pass filtering. This

smoothes the input rather than preserving details, which are

mostly concentrated in higher frequencies.

Recent work has aimed to preserve the most discrimi-

native aspects of the data / activations and discard the re-

dundant ones through learnable pooling layers. Various at-

tempts to bridge max and average pooling have been made.

Mixed pooling [32] learns to perform a hard switch between

max or average pooling in every layer. Lp pooling [2, 9]

outputs the spatial Lp norm of the neighborhood, with the

L1 norm performing averaging (on non-negative inputs) and

the L∞ norm acting like max pooling. Lee et al. [19] com-

bine max and average pooling using a learned tree, choosing

the desired pooling based on the input data. Motivated by

regularization rather than detail preservation, S3pool [34]

and stochastic pooling [33] stochastically select a node in a

neighborhood, with the latter favoring stronger activations.

Their benefit stems from joint pooling and regularization

and it is not trivial to assess each aspect independently.

Almost all of these pooling methods rely on directly

combining previous ones such as max or average pooling.

This may mitigate harmful effects of the weaker baseline,

but often only to a certain extent, and frees the practitioner

from tediously choosing the best pooling layer for every

network/dataset combination.

Other pooling concepts include scaling proportionally to

the input size [5, 10, 23] such that networks can cope with

varying image sizes. Global average pooling [20] is a differ-

ent application of downscaling, which spatially averages the

feature maps of the last convolutional layer before feeding

them into the classifier.

Here, we focus on downscaling inside the network and

propose a pooling layer that is trainable, fully differentiable,

and includes major pooling techniques as special (limit)

9109

box filter Gaussian filter
optional

I
linear downscaling Ĩ

inverse bilateral filter

O
down-

sampling

Figure 2. Diagram of detail-preserving downscaling (DPID) [31]

and our detail-preserving pooling (DPP). DPP omits the Gaussian

filter; Full-DPP replaces the box filter with a learned 2D filter.

cases. Moreover, we build on a detail-preserving image

downscaling approach [31] that outperforms conventional

image downscaling techniques in subjective testing.

3. Detail-Preserving Image Downscaling

In contrast to traditional downscaling algorithms that

aim for physically plausible results, more recent work has

shown benefits of focusing on aspects of human percep-

tion. We specifically consider the approach of Weber et

al. [31], which aims to preserve small details of the input

image, which are often crucial for a faithful visual impres-

sion (Fig. 1). Their intuition is that small details transport

more information than bigger areas with similar colors. To

that end, an inverse bilateral filter is used to emphasize dif-

ferences rather than punishing them. Given an input im-

age I[·], detail-preserving image downscaling (DPID) cal-

culates the downscaled output at pixel p as

O[p] =
1

kp

∑

q∈Ωp

I[q] ·
∥

∥I[q]− Ĩ[p]
∥

∥

λ
, (1)

in which the linearly downscaled image Ĩ is given by

Ĩ = ID ∗ 1
16

[

1 2 1
]T [

1 2 1
]

. (2)

ID is the result of a box filter applied to the input followed

by downsampling, which is subsequently smoothed by an

approximate 2D Gaussian filter. The weights are normal-

ized with kp =
∑

q∈Ωp
‖I[q] − Ĩ[p]‖λ. The neighborhood

Ωp is chosen according to the downscaling ratio. Downscal-

ing by a factor of kH in one dimension and kW in the other

results in applying Eq. (1) over a kW × kH neighborhood

in the input image to form a single pixel in O. The overall

block structure is illustrated in Fig. 2.

DPID calculates a weighted average of the input, but un-

like ordinary bilateral filters [30], it rewards a difference

in the input intensities such that pixel values with a bigger

difference to Ĩ contribute more significantly. This differ-

ence can be positive or negative, meaning that both darker

and lighter pixels are rewarded based on their distance to

Ĩ . This provides a customizable level of detail magnifica-

tion, allowing to control the influence of regions with de-

tails, e.g. edges and corners. The parameter λ adjusts the

-1 -0.5 0 0.5 1
0

0.25

0.5

0.75

1

-1 -0.5 0 0.5 1
0

0.25

0.5

0.75

1

Figure 3. Inverse bilateral functions ρλ(·) used to calculate the

weights of the input nodes in the neighborhood Ωp: The symmet-

ric function (left) rewards arguments with bigger absolute values,

the asymmetric function (right) rewards arguments with bigger

values if they are positive. As smaller parameters λ decrease the

dynamic range of the reward function, it tends to being uniform

for λ → 0, leading to a simple averaging of all neighbors.

shape of the reward function, which can be tuned based

on the image content and/or the downscaling ratio. A user

study in [31] showed that on average people preferred DPID

(0.5 ≤ λ ≤ 1) over all considered downscaling techniques.

4. Detail-Preserving Pooling

To apply the idea of detail-preserving image downscal-

ing to CNNs, we here define a pooling layer called detail-

preserving pooling (DPP). We propose two reward variants:

a symmetric one that enhances all details and an asymmet-

ric reward that only enhances details that stand out with a

higher-than-average activation. To this end, we replace the

L2 norm in Eq. (1) with a generic scalar reward function,

which will be learned, and apply all operations per channel.

That is, we apply pooling to every feature map indepen-

dently. Specifically, we define detail-preserving pooling of

an input activation map I at spatial output position p as

Dα,λ(I)[p] =
1

∑

q′∈Ωp
wα,λ[p, q′]

∑

q∈Ωp

wα,λ[p, q]I[q].

(3)

Inverse bilateral weights. Equation (3) computes a spa-

tially weighted average of the input nodes in a neighbor-

hood I[q]q∈Ωp
for which we define weights wα,λ[p, q] as

wα,λ[p, q] = α+ ρλ

(

I[q]− Ĩ[p]
)

. (4)

The reward parameters α and λ will be learned from data

to enable the pooling to adapt to the requirements of each

feature map. Note that we constrain the parameters to be

non-negative by optimizing logα and log λ. For the sym-

metric variant of the reward function ρλ(·), we employ the

differentiable (generalized) Charbonnier penalty [3, 28]

ρSym(x) =
(

√

x2 + ǫ2
)λ

(5)

with a small constant ǫ. The asymmetric variant of ρλ(·)
only rewards positive arguments and is formulated as

ρAsym(x) =
(

√

max(0, x)2 + ǫ2
)λ

, (6)

9110

which prefers larger input activations by assigning bigger

weights to nodes q with I[q] ≥ Ĩ[p]. In both cases, we

occasionally omit the parameter λ (referred to as the reward

exponent) for the sake of notational simplicity. A bias term

α is added to the weights to ensure that inputs from uniform

regions are not entirely eliminated and influence the output.

For the sake of simplicity in notation, we reformulate

this such that the weights are normalized as

w̃α,λ[p, q] =
wα,λ[p, q]

∑

q′∈Ωp
wα,λ[p, q′]

, (7)

which allows us to write DPP as

Dα,λ(I)[p] =
∑

q∈Ωp

w̃α,λ[p, q]I[q]. (8)

Depending on whether ρAsym(x) or ρSym(x) is used for

weight calculation, the final result is called asymmetric or

symmetric DPP. Figure 3 visualizes the two families of

weight functions. Note that we learn the shape of these

nonlinear weight functions through their reward exponent

λ. Figure 4 shows a pooling example. While from a pure

visual impression, it is difficult to tell which type of pooling

is better in the context of an entire deep network, our results

below show that DPP clearly outperforms standard pooling

layers even when placed deep in the network.

Linear downscaling. In Eq. (4), Ĩ is the result of a linear

downscaling. We achieve full flexibility with

ĨF [p] =
∑

q∈Ω̃p

F [q]I[q], (9)

where F is a learned, non-normalized 2D filter on regions

Ω̃p. We typically use 3×3 regions Ω̃p, which is smaller than

the linear filters used by [31]. This variant is referred to as

Full-DPP in the following. Note that the filtering regions

Ω̃p can differ in size from neighborhoods in the inverse bi-

lateral filter, i.e. Ωp; the pooling ratio of DPP is determined

by the stride of downsampling following the linear filter F .

We also define a simplified variant termed Lite-DPP

based on ĨAvg, which is obtained with the special case of

a non-learned box filter, i.e. F [q] = 1/|Ω̃p|, where |Ω̃p| is

the cardinality of Ω̃p. For Lite-DPP we use 2 × 2 filtering

regions since we found no improvement from 3×3 regions.

Learning and differentiability. One drawback of max

pooling is that it is not differentiable, hence one has to resort

to a sub-differential during learning. A look-up table is used

for backpropagation, which is computed and stored during

the forward pass. The consequence is that the gradient is

only flowing to the maximizer during the backward pass,

which can be problematic when the network is deeper. Note

that pooling layers that include max pooling as a compo-

nent, e.g. by learning a linear combination of max and aver-

age pooling [19], typically inherit this non-differentiability.

DPP, on the other hand, is fully differentiable:

(a) Orig. feature map (b) Max pooling (c) Average pooling

(d) Extremum pooling (e) Asymmetric DPP

(λ = 1)

(f) Symmetric DPP

(λ = 2.7)

Figure 4. Visualization of different pooling methods on an exam-

ple feature map taken from the second layer of VGG-16. For both

reward variants, the bias α is set to 0 to visually magnify the effect

of the inverse bilateral weights. Best viewed on screen.

Proposition 1. Dα,λ is differentiable w.r.t. I , α, and λ.

Proof. For α this is obvious. For λ and I this follows di-

rectly from ρλ being differentiable. In the asymmetric case,

the derivative of ρAsym w.r.t. x is

dρAsym(x)

dx
=

{

0 x ≤ 0

λx
(

x2 + ǫ2
)

λ
2
−1

0 < x.
(10)

Leveraging this differentiability characteristic, we let the

network learn the shape of the weight function by learn-

ing both α and λ and, optionally, the filter parameters F in

linear downscaling. We initialize the parameters of the in-

verse bilateral function to 1 and the filter coefficients of the

linear downscaling to 0. A small zero-mean Gaussian per-

turbation is added to all parameters to break any undesired

symmetries. The standard deviation is set as suggested by

[6]; ǫ2 is set to 0.001. We use stochastic gradient descent

(SGD) for training with weight decay disabled for α and λ.

Stochastic variants. Stochastic pooling techniques [33, 34]

fuse downsampling and regularization through a random

node selection procedure to improve performance. Stochas-

tic pooling [33] randomly selects one node in every s × s
neighborhood, where s is the pooling factor, according to

a multinomial distribution that favors nodes with stronger

activations. S3pool [34] applies s × s max pooling with

a stride of 1 and then applies uniform sampling to rows

and columns of nodes. Inspired by this, we can also de-

fine stochastic variants of DPP. Specifically, we consider

stochastic spatial sampling DPP (S3DPP), which extends

S3Pool by first applying regular DPP with a stride of 1 to the

input and then sampling rows and columns uniformly. Since

DPP magnifies details in a feature map, adding a uniform

9111

random selection of nodes on top results in a controlled im-

portance sampling where the importance of every node is

controlled by the DPP parameters λ and α.

5. Analysis and Discussion

We turn to a discussion and brief mathematical analysis

of certain key properties of the proposed DPP layer. Par-

ticularly, we show how DPP can learn to behave similar to

other pooling layers. We also discuss its computational and

parameter overhead, as well as some motivations.

Relation to other pooling layers. First, we mathematically

show that symmetric DPP can be equivalent to average or

extremum (max in the case of asymmetric DPP) pooling for

certain choices of parameters.

Proposition 2. Dα,0 is equivalent to average-pooling for

any finite α ∈ R
+.

Proof. λ = 0 (and finite, positive α) implies that the

weights of Eq. (4) are equal. Hence, the normalized weights

(Eq. 7) equal 1/|Ω|p. Consequently, Eq. (8) performs aver-

aging of all activations in the neighborhood Ωp.

Proposition 3. As λ → ∞, symmetric D0,λ performs ex-

tremum pooling while asymmetric D0,λ yields max pooling.

Proof. We begin with the symmetric case. Let qe be the

location of the extremum of the neighborhood, i.e.

qe = arg max
q∈Ωp

|I(q)− Ĩ(p)|. (11)

We first consider w̃0,λ[qe], omitting the argument p for

brevity. After rewriting Eq. (7) for the extremum pixel and

dividing the numerator and denominator by w0,λ[qe], we

have
1

1 +
∑

q′ 6=qe
w0,λ[q

′]/w0,λ[qe]
. (12)

Since qe is the location of the extremum and assuming no

ties, w0,λ[q
′]/w0,λ[qe] → 0 for λ → ∞. It follows that

limλ→∞ w̃0,λ[qe] = 1.

Next, we consider all non-extremum pixels,

i.e. w̃0,λ[q], q 6= qe, which we can rewrite as

1
w0,λ[qe]/w0,λ[q] +

∑

q′ 6=qe
w0,λ[q

′]/w0,λ[q]
. (13)

Reasoning as above leads to w0,λ[qe]/w0,λ[q] → ∞ for

λ → ∞. Given that all w0,λ[q
′]/w0,λ[q] ≥ 0, it follows that

limλ→∞ w̃0,λ[q] = 0. In the case of ties, the extrema all

receive equal weight, leading to their averaging as λ → ∞.

For the asymmetric case, the reasoning is analogous, ex-

cept that we omit the absolute value in Eq. (11).

Parameterization. DPP is applied to all channels indepen-

dently, hence results in adding one λ and one α parameter

per feature map. If block averaging is used for linear down-

scaling, no further parameters are added. The full ĨF from

Eq. (9), using 3 × 3 filters, adds 10 parameters (including

the bias in convolutions) per feature map. Note that this is

by far less (2 or 3 orders of magnitude, depending on the

number of channels) than a single 3D convolutional layer,

which would add (kW × kH × nP × nP)+ nP parameters

to the network, where kW and kH are the width and height

of the filter (here, 3) and nP is the number of feature maps.

ResNet-50 and 101 have 25M and 44M parameters,

VGG-16 has 139M. Full-DPP with learnable linear filters

adds 43k parameters (0.172% and 0.098%) to ResNet and

17.7k parameters to VGG-16 (0.013%). For Lite-DPP with

fixed linear downsampling, as used for most experiments,

the increase in parameter count is even more negligible.

Computational expense. The proposed detail-preserving

pooling is conveniently scalable since every pixel in the

output is independent of the others. Hence a parallel im-

plementation achieves a considerable speed-up. Since the

linear downscaling part of DPP is using standard layers, we

only require a CUDA implementation of the nonlinear com-

ponent. Code is available on the authors’ web pages.

The inverse bilateral weight calculation from Eq. (3), on

average, takes 45ms on a single Pascal Titan X GPU to per-

form a forward and backward pass for a mini batch of 128

images, 64 feature maps, 224 × 224 spatial resolution, and

a pooling ratio of 2. This is the worst case overhead for the

majority of existing CNN architectures. The overhead de-

pends on the number of pooling layers, but is independent

of the number of convolutional layers. The slow-down of

DPP for VGG-16 on ImageNet is ∼ 20%, while for very

deep networks it is quite minor, e.g. ∼5% for ResNet-101.

Detail preservation in deeper layers. While a perceptual

motivation of DPP is immediate in earlier network layers,

the activations of deeper layers are visually rather distinct

from natural images (Fig. 4). To study the benefit of DPP

in deeper layers, we trained a ResNet-110 [11] on the CI-

FAR10 dataset [16] with data augmentation (see Sec. 6 for

details). We compare three variants: (1) a standard ResNet-

Network Error [%]

ResNet-110 (standard, 2× strided convolution) 6.89

ResNet-110 (1× strided convolution + 1× DPP) 6.68

ResNet-110 (2× DPP) 6.59

Table 1. Impact of replacing the downsampling steps of ResNet

[11] with DPP, evaluated on CIFAR10. Replacing only the second

downsampling with DPP (2nd row) already yields a clear improve-

ment, showing the benefit of DPP even in deeper layers. Replacing

both downsampling steps with DPP further improves the results.

9112

-8 -6 -4 -2 0 2 4 6 8

px

82

87

92

Figure 5. Classification accuracy (in % using VGG on CIFAR10)

as a function of horizontal input translations (in pixels). DPP is

more translation-invariant than max pooling, and performs best for

moderate translations of up to 4 pixels (12.5% of the image size).

110, (2) ResNet where only the second (deeper) downsam-

pling has been replaced by DPP, and (3) ResNet in which

both strided convolutions have been replaced with DPP. Ta-

ble 1 shows the results. Having just one DPP located in a

very deep layer clearly improves the accuracy, illustrating

the benefit of DPP even for deeper network layers.

Invariance to small perturbations. One of the benefits of

pooling is gaining invariance to small perturbations in the

input image, such as translations or rotations. As an exam-

ple analysis, Fig. 5 compares the robustness of DPP to that

of max and average pooling when subjected to a horizon-

tal shift of the input. The experiment is performed using a

VGG [27] network on CIFAR10. DPP shows better transla-

tion invariance compared to max pooling, and outperforms

average pooling for moderate amounts of translation (up to

4 pixels). DPP thus shows a favorable trade-off between

invariance and classification accuracy (c.f . Sec. 6).

6. Experiments

We verify the effectiveness of our approach with a series

of experiments on different datasets and CNN architectures.

First, we perform image classification on the CIFAR10

dataset [16] as this allows for exhaustive comparisons. The

trained networks include ResNet-110 [11], VGG [27], a

NIN-like network [20], and DenseNet [12]. The original

VGG uses max pooling, while NIN uses average and max

pooling both in the same network. ResNet-110 employs

strided convolutions for downscaling, while DenseNet re-

lies on average pooling. We will show that in some cases,

e.g. VGG and NIN on CIFAR10, the original pooling layer

is suboptimal and can be improved upon with other stan-

dard pooling methods. Such a procedure is of course te-

dious, possibly even impractical depending on the applica-

tion dataset and network. Moreover, for all four architec-

tures, our pooling layer clearly learns to perform better than

the original choice by a considerable margin. Compared to

other, more advanced pooling methods, DPP also shows fa-

vorable results. The second set of experiments focuses on

using bigger networks on a more realistic dataset. We train

complete VGG-16 and ResNet-50 and 101 networks on the

classification task of the ImageNet dataset [25] and observe

clear improvements over the original networks.

We test two linear downscaling variants inside DPP, Lite-

DPP and Full-DPP. Moreover, we compare asymmetric

(Asym) and symmetric (Sym) reward functions. By default

we use a pooling ratio of 2, i.e. set the downsampling stride

after the linear filter to 2, and apply the inverse bilateral fil-

ter on non-overlapping 2×2 neighborhoods Ωp. Finally, we

consider the stochastic S3DPP in some of the settings. Note

that for all networks and experiments, the respective param-

eters of DPP are learned from data; every feature channel

has unique parameters, which are not fixed.

6.1. Detailed analysis on CIFAR10

The CIFAR10 dataset [16] consists of 60000 images

(32× 32 pixels, RGB) evenly distributed across 10 classes.

50000 images are used for training, 10000 for testing.

Stochastic gradient descent is used for optimization, with

momentum set to 0.9 and a mini-batch size of 128. The ini-

tial learning rate is set to 1 and cut in half every 25 epochs.

The whole training procedure lasts 300 epochs. Apart from

commonly used pooling layers, we also compare against

mixed (50/50) and gated pooling [19], as well as Lp pooling

[2]. We did not include tree pooling [19] since it was out-

performed by mixed and gated pooling on CIFAR10 in the

original paper. We additionally consider stochastic meth-

ods, particularly stochastic pooling [33] and S3pool [34].

VGG. We first use a network with an architecture similar

to VGG-16 [27], but with smaller fully connected layers to

reduce the parameter count (two fully connected layers of

512 and 10 nodes). Each convolution layer is followed by a

batch normalization and a ReLU nonlinearity. We augment

the dataset during training by flipping the input images with

a probability of 0.5. Our results are the average of 10 runs.

NIN. This network is based on the idea of using 1×1 convo-

lutional layers, follows a very different structure compared

to VGG, and has considerably fewer parameters. We em-

ploy a configuration very similar to that of [20]. A fully

connected layer is added to the end of the network to aid

convergence (see supplemental). The data is preprocessed

as in [20]; we perform 3 trials without data augmentation.

ResNet. Next, we use ResNet-110 [11], a very deep net-

work, which has been shown to have the best accuracy

among all ResNets on CIFAR10. ResNet consists of numer-

ous concatenated residual building blocks. Unlike VGG and

NIN, it does not have layers explicitly dedicated to pooling,

but instead sets the stride of a convolution inside some of

the building blocks to 2 to achieve downscaling. ResNet-

110 for CIFAR10 downscales the input in two of its building

blocks. For our experiments we set the stride of these two

blocks back to 1 and place different pooling layers (max,

9113

Method VGG NIN ResNet

D
et

er
m

in
is

ti
c

m
et

h
o

d
s

Strided conv. 8.43±0.20 10.97±0.10 6.23(∗)

Max 7.43±0.20
(∗) 9.42±0.07 6.52

Average 7.12±0.18 8.75±0.15 6.33

NIN – 9.01±0.11
(∗) –

Mixed (50/50) 7.27±0.20 8.68±0.23 6.05

Gated 7.25±0.14 8.67±0.22 7.12

L2 7.15±0.18 8.65±0.12 7.29

Lite-DPPAsym 7.10±0.15 8.62±0.10 6.17

Full-DPPAsym 7.17±0.18 8.73±0.05 6.23

Lite-DPPSym 7.19±0.10 8.58±0.11 6.05

Full-DPPSym 7.02±0.18 8.70±0.14 5.97

S
to

ch
. Stochastic 7.67±0.10 8.92±0.09 5.83

S3pool 7.21±0.14 7.23±0.08 5.55

Lite-S3DPPSym – 7.13±0.09 5.42

Table 2. Comparison of different architectures and pooling lay-

ers on the CIFAR10 dataset (classification error in %, best result

bold, 2nd best underlined). For VGG and NIN we report the mean

and standard deviation across trials, for ResNet the error for the

best model following [11]. The original choice of pooling layers

(marked as ∗) is not necessarily optimal for CIFAR10. DPP out-

performs the best standard pooling (top part) in all cases, and also

exceeds more advanced pooling layers (2nd part). Moreover, DPP

yields the best results among the stochastic methods (bottom part).

average, DPP) immediately after each of them, while leav-

ing the rest of the network fully intact. We also leave the

global average pooling unchanged. Each experiment (for

all pooling types) is repeated 5 times and the best result is

reported, again following the standard protocol [11].

DenseNet. Finally, we apply S3DPP to the more recent

DenseNet [12] architecture. For this experiment we take

DenseNet-BC (L = 100, k = 24) and replace the average

poolings in the transition layers with Lite-S3DPPSym and

train (mini-batch size 64) with data augmentation. We re-

port results from a single run, following [12].

Discussion. The comparison to standard pooling methods

in Table 2 (top part) for all experiments reveals that none

of strided convolution, max, and average pooling, or their

combination are consistently superior. In fact, which is

best can be different from the original choice of the respec-

tive network, which was typically optimized for a specific

dataset. This clearly demonstrates the necessity of a generic

pooling layer that can perform better than the best baseline.

Linear combinations of max and average pooling,

e.g. the 50/50 mixed or gated pooling [19], are observed

to perform somewhere between max and average for VGG,

yield some improvements for NIN, and show inconsistent

results on ResNet. Unlike the settings in [19], mixed pool-

ing does not outperform the baselines in all cases.

Spatial Lp pooling [9] calculates the p-norm over input

Network Params [M] Error [%]

DenseNet-BC 3.020 3.90

DenseNet 27.2 3.74

DenseNet-BC + Lite-S3DPPSym 3.021 3.75

Table 3. Comparison of the effect of adding Lite-S3DPPSym to

DenseNet (k = 24) vs. increasing the number of feature maps in

the transition layers. Replacing average pooling with S3DPP adds

1032 parameters. The same error decrease as from S3DPP can be

obtained had we used regular DenseNet (not the BC version), at

the expense of a 9-fold increase in parameter count.

neighborhoods. Finding the best p following the approach

of [26] requires brute force evaluation across a wide range

of p values on a validation set. This is computationally ex-

pensive and limits practicality.2 We choose L2 pooling for

comparison, as it is the most commonly used variant. It

outperforms the baseline methods for NIN, but significantly

deteriorates accuracy on ResNet.

Comparing to all deterministic pooling methods, DPP

shows strong results, yielding the lowest error for all three

networks. For VGG, the number of trials enables establish-

ing statistical significance. For example, we can confidently

reject the hypothesis (with 99% confidence) that the differ-

ence of DPP to max pooling and 50/50 mixed pooling is due

to chance. While all DPP variants perform well, the sym-

metric ones tend to perform best and reach 5.97% error us-

ing ResNet-110 on CIFAR10. This is perhaps unexpected,

since the limit case of symmetric rewards for large values of

λ is extremum pooling, a concept that had not been consid-

ered so far. One important property of DPP is that, unlike

all other pooling methods tested, it achieves consistently

good results across three different networks (and also other

datasets, see below). Hence, we suggest that DPP can be

used as a generic pooling layer, which can avoid finding the

best pooling layer using brute force enumeration. Following

our analysis, we recommend Lite-DPPSym as default choice

and Full-DPPSym if computation is not critical.

Among the stochastic pooling layers (Table 2, bottom),

the variant of DPP consistently performs the best as well,

yielding very competitive results for ResNet (5.42% error).

Favorable results can also be observed with DenseNet in Ta-

ble 3, showing that the lean DenseNet-BC with S3DPP be-

comes competitive with the much larger standard DenseNet

(no -BC) with many times more parameters. Note, however,

that too much stochasticity can limit the accuracy [34].

Figure 6 shows the distribution of the learned pooling pa-

rameters in the different pooling layers of a VGG network

with Lite-DPPAsym for CIFAR10. For higher values of α,

the reward bias becomes the dominant term and the pooling

layer performs similar to average pooling. With low α val-

2Learning the p value would require a modified formulation due to pos-

sible exploding gradients.

9114

1 2 3 4 5
Pooling layer

0.7

1

1.3

L
a

m
b

d
a

1 2 3 4 5
Pooling layer

0

1

2

A
lp

h
a

Figure 6. Empirical distribution of learned λ (left) and α (right) for

different pooling layers in a VGG network with Lite-DPPAsym on

CIFAR10. Higher values of λ indicate a more max-like behavior,

while higher values of α indicate an averaging tendency.

ues, as in the early layers, the inverse bilateral behavior be-

comes the dominant characteristic of DPP. Thereby, higher

values of the reward exponent λ correspond to a behavior

more similar to max pooling. We observe that lower lay-

ers tend to behave more like max pooling, while later layers

average more. Other networks exhibit similar trends.

6.2. Image classification on ImageNet

The ILSVRC dataset [25] has 1.2M images for train-

ing and 50k for validation, distributed evenly across 1000

classes. We use 224 × 224 random crops (after rescaling)

for training and test on the validation set.

VGG-16. We train a standard VGG-16 network [27] to

yield a baseline, and compare this to the case where the

original max pooling is swapped for the proposed DPP. For

completeness, we also report results using average pooling.

All networks are trained from scratch and as similar to the

original training conditions of [27] as possible. We add 2

batch normalization units after the 1st and the 2nd fully con-

nected layers to help reduce the sensitivity to initialization.

Both networks are initialized as suggested by [6] and trained

for 74 epochs, using mini batches of 128 images. Baseline

training took 1 hour per epoch on 4 Pascal Titan X GPUs

and the added training time caused by our pooling layer was

no more than 12 minutes per epoch. The relative computa-

tion overhead for VGG was the worst case scenario among

all our ImageNet experiments.

ResNet. We also evaluate on ResNet-50 and 101. For Im-

ageNet, there are three residual blocks that perform down-

scaling and, as before, we set the stride in these blocks back

to 1 and place DPP immediately after each block. The pre-

processing of the data and training are done as in [11] for

90 epochs. We use a mini-batch of size 85 for training and

we also train the baseline networks with the same batch size

to maintain comparability. The initial learning rate is set to

0.033 and cut by a factor of 10 every 30 epochs.

Results. For both networks we observe that using DPP

as pooling layer accelerates convergence compared to the

standard architecture especially at the early training stages.

More importantly, our VGG-16 converges to 30.05% er-

ror for the one crop evaluation criterion, thus 0.3% points

Network Single crop Ten crop

Top-1 Top-5 Top-1 Top-5

VGG-16 (original) 30.40 10.20 – –

VGG-16 + Average 30.36 10.19 – –

VGG-16 + Lite-DPPSym 30.05 10.08 – –

ResNet-50 24.23 7.26 22.53 6.26

ResNet-50 + Lite-DPPSym 23.42 6.83 21.82 5.92

ResNet-101 22.31 6.23 20.93 5.38

ResNet-152 22.16 6.16 20.69 5.21

ResNet-101 + Lite-DPPSym 21.70 5.91 20.52 5.20

Table 4. Comparison of VGG-16, ResNet-50 and 101 (error in

%) on ImageNet, with and without DPP for different evaluation

methods. DPP yields consistent benefits. Our ResNet-101 with

DPP even outperforms the much larger and deeper ResNet-152.

lower than the baseline with max pooling, which converges

to 30.4% error. For ResNet the gap is wider. Table 4 shows

a detailed comparison for both networks. It should be noted

that our ResNet baselines are already better than the num-

bers reported in [11], which were 22.85% and 21.75% for

the ten-crop evaluation of ResNet-50 and 101. Adding DPP

lowers the error on the validation set by 0.8% for ResNet-

50 and by 0.6% points for ResNet-101. In fact, ResNet-101

with DPP surpasses a standard ResNet-152 with quite a bit

of margin, despite being faster (5 vs. 50% slow-down over

ResNet-101) and having many fewer layers and parameters.

7. Conclusion

We presented a novel pooling layer for convolutional

neural networks termed detail-preserving pooling (DPP),

based on the idea of inverse bilateral filters. DPP allows

downscaling to focus on important structural detail; learn-

able parameters control the amount of detail preservation.

We showed theoretically that DPP can adapt to perform sim-

ilar to max/extremum or average pooling, or on a nonlinear

continuum of intermediate functions while incurring only

a minor computational overhead. Our quantitative exper-

iments showed that for a wide range of network architec-

tures and datasets, DPP performs consistently better than

the best standard pooling layer and a selection of advanced

pooling methods, making DPP broadly applicable. Further-

more, DPP can be combined with stochastic pooling meth-

ods with further accuracy gains as detail preservation and

regularization complement each other. For ResNet on the

challenging ImageNet classification task, DPP substantially

lowers the error, even below that of much deeper models.

Acknowledgements. FS and SR gratefully acknowledge support by

Smiths Heimann GmbH. The work of NW is supported by the ‘Excellence

Initiative’ of the German Federal and State Governments and the Graduate

School of Computational Engineering at TU Darmstadt.

9115

References

[1] Y.-L. Boureau, J. Ponce, and Y. LeCun. A theoretical analy-

sis of feature pooling in visual recognition. In ICML, pages

111–118, 2010. 1, 2

[2] J. Bruna, A. Szlam, and Y. LeCun. Signal recovery from

pooling representations. In ICML, pages 307–315, 2014. 2,

6

[3] P. Charbonnier, L. Blanc-Féraud, G. Aubert, and M. Bar-

laud. Deterministic edge-preserving regularization in com-

puted imaging. IEEE T. Image Process., 6(2):298–311, Feb.

1997. 3

[4] N. Dalal and B. Triggs. Histograms of oriented gradients for

human detection. In CVPR, pages 886–893, 2005. 2

[5] R. Girshick. Fast R-CNN. In ICCV, pages 1440–1448, 2015.

2

[6] X. Glorot and Y. Bengio. Understanding the difficulty of

training deep feedforward neural networks. In AISTATS,

pages 249–256, 2010. 4, 8

[7] I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville,

and Y. Bengio. Maxout networks. In ICML, pages 1319–

1327, 2013. 2

[8] B. Graham. Fractional max-pooling. arXiv:1412.6071,

2014. 2

[9] C. Gulcehre, K. Cho, R. Pascanu, and Y. Bengio. Learned-

norm pooling for deep feedforward and recurrent neural net-

works. In ECML PKDD, pages 530–546, 2014. 2, 7

[10] K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling

in deep convolutional networks for visual recognition. In

ECCV, volume 3, pages 346–361, 2014. 2

[11] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In CVPR, pages 770–778, 2016. 1, 2,

5, 6, 7, 8

[12] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger.

Densely connected convolutional networks. In CVPR, pages

770–778, 2017. 6, 7

[13] D. H. Hubel and T. N. Wiesel. Receptive fields, binocular

interaction and functional architecture in the cat’s visual cor-

tex. J. Physiology, pages 106–154, Jan. 1962. 2

[14] C. Ionescu, O. Vantzos, and C. Sminchisescu. Matrix back-

propagation for deep networks with structured layers. In

ICCV, pages 2965–2973, 2015. 2

[15] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun.

What is the best multi-stage architecture for object recog-

nition? In ICCV, pages 2146–2153, 2009. 2

[16] A. Krizhevsky. Learning multiple layers of features from

tiny images. Technical report, University of Toronto, 2009.

5, 6

[17] Y. LeCun, B. E. Boser, J. S. Denker, D. Henderson, R. E.

Howard, W. E. Hubbard, and L. D. Jackel. Handwrit-

ten digit recognition with a back-propagation network. In

NIPS*1989, pages 396–404. 2

[18] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-

based learning applied to document recognition. Proc. IEEE,

86(11):2278–2324, Nov. 1998. 2

[19] C.-Y. Lee, P. W. Gallagher, and Z. Tu. Generalizing pooling

functions in convolutional neural networks: Mixed, gated,

and tree. In AISTATS, pages 464–472, 2016. 1, 2, 4, 6, 7
[20] M. Lin, Q. Chen, and S. Yan. Network in network. In ICLR,

2014. 2, 6

[21] D. G. Lowe. Distinctive image features from scale-invariant

keypoints. Int. J. Comput. Vision, 60(2):91–110, Nov. 2004.

2

[22] M. Ranzato, Y.-L. Boureau, and Y. LeCun. Sparse feature

learning for deep belief networks. In NIPS*2007, pages

1185–1192. 2

[23] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: To-

wards real-time object detection with region proposal net-

works. In NIPS*2016, pages 1137–1149. 2

[24] O. Rippel, J. Snoek, and R. P. Adams. Spectral represen-

tations for convolutional neural networks. In NIPS*2015,

pages 2449–2457. 2

[25] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,

A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual

Recognition Challenge. Int. J. Comput. Vision, 115(13):211–

252, 2015. 6, 8

[26] P. Sermanet, S. Chintala, and Y. LeCun. Convolutional neu-

ral networks applied to house numbers digit classification. In

ICPR, pages 3288–3291, 2012. 7

[27] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. In ICLR, 2015.

1, 6, 8

[28] D. Sun, S. Roth, and M. J. Black. A quantitative analysis of

current practices in optical flow estimation and the principles

behind them. Int. J. Comput. Vision, 106(2):115–137, Jan.

2014. 3

[29] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.

Going deeper with convolutions. In CVPR, pages 1–9, 2015.

1

[30] C. Tomasi and R. Manduchi. Bilateral filtering for gray and

color images. In ICCV, pages 839–846, 1998. 3

[31] N. Weber, M. Waechter, S. C. Amend, S. Guthe, and M. Goe-

sele. Rapid, detail-preserving image downscaling. ACM

Trans. Graph. (Proc. SIGGRAPH Asia), 35(6):205:1–205:6,

Nov. 2016. 1, 2, 3, 4

[32] D. Yu, H. Wang, P. Chen, and Z. Wei. Mixed pooling for

convolutional neural networks. In Rough Sets and Knowl-

edge Technology, pages 364–375. Springer, 2014. 2

[33] M. Zeiler and R. Fergus. Stochastic pooling for regulariza-

tion of deep convolutional neural networks. In ICLR, 2013.

2, 4, 6

[34] S. Zhai, H. Wu, A. Kumar, Y. Cheng, Y. Lu, Z. Zhang, and

R. Feris. S3pool: Pooling with stochastic spatial sampling.

In CVPR, pages 770–778, 2017. 2, 4, 6, 7

9116

