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Abstract

Higher Order MRF-MAP formulation has been a popu-

lar technique for solving many problems in computer vision.

Inference in a general MRF-MAP problem is NP Hard,

but can be performed in polynomial time for the special

case when potential functions are submodular. Two popu-

lar combinatorial approaches for solving such formulations

are flow based and polyhedral approaches. Flow based ap-

proaches work well with small cliques and in that mode can

handle problems with millions of variables. Polyhedral ap-

proaches can handle large cliques but in small numbers. We

show in this paper that the variables in these seemingly dis-

parate techniques can be mapped to each other. This allows

us to combine the two styles in a joint framework exploit-

ing the strength of both of them. Using the proposed joint

framework, we are able to perform tractable inference in

MRF-MAP problems with millions of variables and a mix

of small and large cliques, a formulation which can not be

solved by either of the two styles individually. We show ap-

plicability of this hybrid framework on object segmentation

problem as an example of a situation where quality of re-

sults is significantly better than systems which are based

only on the use of small or large cliques.

1. Introduction

Many problems in computer vision can be posed as la-

beling problems [33, 16]. Modeling them as MRF and find-

ing the labeling configuration with maximum a posteriori

probability converts them to the following discrete opti-

mization problem:

lV
∗ = argmin

lV

∑

p∈V

fp(lp) +
∑

c∈C

fc(lc). (1)

Here, a pixel is denoted by p and V is the set of all pixels. A

clique is a set of pixels conditionally dependent upon each

other and is denoted by c, and lc is the set of labels assigned

to the pixels in clique c. C denotes the set of all cliques.

fp(lp), called unary energy, assigns the cost for labeling a

particular pixel p as lp, whereas fc(lc), called clique po-

tential, is the cost of assigning labeling configuration lc to

clique c. The inference problem, popularly known as MRF-

MAP, is to find the labeling, lV
∗ which minimizes the right

hand side of Eq. (1). Many computer vision problems like

image restoration, segmentation of videos and images, su-

per resolution, texture synthesis, stereo matching to object

detection, can be modelled as MRF-MAP inference prob-

lems [33, 16].

MRF-MAP is computationally a hard problem even

in the restricted setting of binary labels and pairwise

cliques. However, its applicability to modeling computer

vision problems is so well established that variety of ap-

proaches have been explored to solve the problem in the re-

stricted setting mentioned above. These approaches have

ranged from message passing [24], dual decomposition

[26], semidefinite programming relaxation [34], and graph

cut [1, 25].

Since higher order clique potentials are more expressive

compared to pairwise and lead to improved visual quality

in the inferred output, the above mentioned techniques have

been generalized to handle such problems also. The infer-

ence problem, however, becomes significantly more com-

plicated. Apart from generalization of message passing

and dual decomposition [23, 31], reducing the higher order

problem to an equivalent pseudo Boolean form and solv-

ing it approximately using the QPBO algorithm is the other

notable approach to handle such generalizations [8, 11, 15].

It should be noted that all the methods mentioned above

provide only approximate solutions. Therefore, developing

efficient inference techniques for some special subclass of

clique potentials of interest has become an area of active re-

search [18, 19, 20, 29]. One such special class of clique po-

tentials whose importance to solving MRF MAP inference

problems in computer vision is increasingly getting recog-

nized is based on the notion of submodularity (formally de-

fined in the next section).

Algorithms that minimize submodular functions (SFM)

in polynomial time have now been known for over two

decades [9, 30]. These algorithms work directly with the

submodular polyhedron (defined formally in the next sec-

tion), but have been found to be unusable as their run time

is bounded by very high degree polynomials. There have

been attempts to adapt/improvise various SFM techniques
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for MRF-MAP inference problem [14, 17, 32]. A signifi-

cant breakthrough is Generic Cuts (GC) [2, 3], a flow based

algorithm that solves the inference problem for sum of sub-

modular potentials in low order polynomial time for fixed

clique sizes. GC has been shown to run efficiently even

when the number of cliques runs into hundreds of thousands

but does not scale well on problems with cliques of size

larger than 16.

The problem of minimizing sum of submodular func-

tions is beginning to attract attention of researchers [22, 31].

Kolmogorov [22] has reported a polynomial time “submod-

ular flow” [6] based algorithm using capacity scaling. No

results exist, however, to assess it’s viability on practical

vision problems. Recently [31] has reported a submodular

function minimization algorithm, SOSMNP (Sum of Sub-

modular Min Norm Point), based on Minimum Norm Point

(MNP) algorithm [9]. SOSMNP works on realistic vision

problems (millions of variables) with few but very large

clique sizes.

This paper arises out of a realization that a typical vi-

sion problem involving millions of variables may require

a model in which there are a very large number of small

cliques (of sizes in the range 2 to 16) and a relatively few

but large cliques (sizes of the order of 1000). One typi-

cal example could be when smaller cliques enforce regu-

larization while larger cliques penalize deviation from the

region/patch level statistics (e.g. a prior on the expected

object size). Such problems are not solvable practically ei-

ther by flow based algorithms like [2] or submodular poly-

hedron based algorithm like [31]. The first cannot handle

large cliques and the second is applicable only when the

number of cliques is small. What is required is a framework

which simultaneously runs GC, a flow based algorithm on

the small cliques, and SOSMNP, a submodular polyhedron

based min norm style of algorithm on the large cliques. We

show that this is indeed possible. The specific contributions

of this paper are as follows:

1. Mapping: We show that variables in the, seem-

ingly disparate, flow based and submodular polyhe-

dron based approaches can be mapped to one other.

2. Fusion: The mapping allows us to propose a hy-

brid framework where we can adopt different styles to

solve different sub-problems within the overall infer-

ence problem.

3. Efficiency: Using the proposed framework inference

problems involving large number of variables with a

mix of small and large cliques can be solved efficiently.

4. Bridge: The proposed framework is general and can

act as a model for combining other algorithms chosen

for applicability to other vision problems.

2. Background

Central to this paper is the notion of submodularity. A

set function, f : S ⊆ V → R is called submodular if:

f(A) + f(B) ≥ f(A ∩B) + f(A ∪B), (2)

where A,B ⊆ V . Convex polyhedron based SFM algo-

rithms associate a base polyhedra, B(f), with each sub-

modular function f :

B(f) = {x | x(S) ≤ f(S), ∀S ⊆ V;x(V) = f(V)},

where x ∈ R
|V| and x(U) =

∑

u∈U x(u). Any point x ∈
B(f) is called a base vector or simply a base. For any base

vector x, we denote x−(U) =
∑

u∈U min {0, x(u)}. It is

easy to see that, x−(V) ≤ x(Y ) ≤ f(Y ) holds for any

x ∈ B(f) and any subset Y ⊆ V . An important result in

SFM theory is the Min Max Theorem [12] which states that

for a submodular function f : S ⊆ V → R with f(∅) = 0:

max {x−(V) | x ∈ B(f)} = min {f(S) | S ⊆ V}. (3)

Strongly polynomial convex polyhedron based SFM al-

gorithms actually solve the dual problem of maximizing

x−(V) [13, 28, 30]. The Min Norm Point algorithm of

Fuzishige et al. [9] on the other hand reduces the prob-

lem of finding a base vector, x, with maximum x−(V) to

finding a base vector x∗ with minimum norm: i.e., x∗ =
minx∈B(f) ‖x‖

2
. While no polynomial bound is known for

the algorithm, experimental studies have shown that it runs

much faster than the other available algorithms [14, 27, 31].

2.1. MRFMAP and SFM Relationship

Eq. (1), with label set {a, b} and the clique potential fc,

can be looked upon as a set function over the set c, such

that fc(lc) defines the cost of a subset of pixels in c given

a particular label (we use label ‘a’ as a convention here) in

the labeling lc. Further, it is possible to consider
∑

p fp(lp)

in Eq. (1) as a ‘modular’ function1 defined over a clique

spanning all pixels of the image. With this, the MRF-MAP

problem of Eq. (1) can be equivalently written as:

lV
∗ = argmin

lV

∑

c∈C

fc(lc). (4)

The above MRF-MAP formulation can be looked upon

as minimizing a sum of submodular functions. Shanu et

al. [31] have suggested a block coordinate descent frame-

work to implement the Min Norm Point algorithm when

cliques are large.

1Modular functions are special type of submodular function when Eq.

(2) is satisfied with equality. Unlike submodular functions, modular func-

tions can be minimized trivially by finding the minimum of each element

independently.
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2.2. Sum of Submodular Functions and Block Co
ordinate Descent

With each fc, as given in Eq. (4), one can associate a

base polyhedron such that:

B(fc) :=
{

yc ∈ R|c| | yc(U) ≤ fc(U), ∀U ⊆ c; (5)

yc(c) = fc(c)
}

. (6)

Shanu et al. [31] have given the following results to relate a

base vector, x, of the function f and a set of base vectors yc
of a fc:

Lemma 2.1. Let x(S) =
∑

c
yc(c ∩ S) where each yc be-

longs to base polyhedra B(fc). Then the vector x belongs

to base polyhedron B(f).

Lemma 2.2. Let x be a vector belonging to the base polyhe-

dron B(f). Then, x can be expressed as the sum: x(S) =
∑

c
yc(S ∩ c), where each yc belongs to the submodular

polyhedron B(fc) i.e., yc ∈ B(fc) ∀ c.

The above results were used to minimize ‖x‖2 using a

block coordinate descent approach, where each block repre-

sents a base vector yc as defined above (c.f. [31]). Note that

a base vector yc is of dimension |c| (clique size), whereas

a base x is of dimension |V| (number of pixels in an im-

age). Since |c| ≪ |V|, minimizing the norm of yc over it’s

submodular polyhedron B(fc) is much more efficient than

minimizing the norm of x by just applying the MNP algo-

rithm. It should be noted that the above scheme is equally

applicable with any other polyhedral based algorithm to

minimize sum of submodular functions [9, 13, 28, 30].

2.3. Generic Cuts (GC)

An important result from [2] states that an arbitrary sub-

modular function, f , defined over a set V , can always be

factorized into a sum of modular function, fm, and a sub-

modular function, f ′, such that f ′(∅) = f ′(V) = 0 and

f ′(S) ≥ 0, ∀S ⊂ V . In GC a given function (Eq. (1)) is

reparameterized to such a form, f = fm + f ′
c
. GC then for-

mulates the reparameterized problem as an integer program,

relaxes it to a linear program, and maximizes its Lagrangian

dual given below:

max
∑

p∈V

Up, subject to

Up ≤ fm(l) +
∑

c:p∈c

Vc,p,l ∀p ∈ V, l ∈ {a, b}, and

∑

p∈c

Vc,p,l
p

c

≤ f ′
c
(lc), c ∈ C, lc ∈ {a, b}|c|. (7)

For all submodular functions, without loss of generality, all

Vc,p,b can be set to 0, thereby reducing Eq. (7) to:

∑

p:lp
c
=a

Vc,p,a ≤ f ′
c
(lc), c ∈ C, lc ∈ {a, b}|c|. (8)

The algorithm then creates a gadget based flow graph (a

gadget for each clique) with a node corresponding to each

pixel and two special nodes s and t for source and sink re-

spectively. The capacities of the edges from s and t to pixels

are set using modular function fm, whereas f ′
c
(lc) are used

to restrict sum of flows in the edges (measured by the value

of variables Vc,p,a) of a gadget [2].

3. Proposed Framework

From hereon, we will use a slightly modified notation

for flow variables in GC. We will denote the set of variables

Vc,p,a as a vector vc, with each variable Vc,p,a denoted by

vc(p) (a being implicit in the notation, since all the vari-

ables corresponding to b always remain 0 in GC). Recall

that a base vector is denoted by yc and each element in the

base vector is denoted as yc(p).
Further, we will assume that each submodular function

fc is of the form such that fc(∅) = fc(c) = 0 and

f(S) ≥ 0, ∀S ⊂ c. As shown in [2], the assumption is

not restrictive as every submodular function can be repa-

rameterized to such a form.

The following results establish the correspondence be-

tween vc and yc.

Lemma 3.1. Any vector vc derived from a valid flow in the

GC flow graph is a vector in the base polyhedron of fc.

Proof. Equations (5) and (6) give the conditions for any

vector to be in the base polyhedron. By virtue of Eq. (8), it

is easy to see that the flow vector satisfies Eq. (5). Further,

by the property of flow conservation in the GC flow graph
∑

p∈c
vc(p) = 0 = fc(c) (c.f. [2]), thus satisfying Eq. (6)

as well.

Lemma 3.1 serves to indicate that equations (5) and (8)

are essentially the same, and a flow vector also satisfies the

conditions of a base vector. This allows us to directly map

a flow vector vc to yc. But, the converse is not true, since,

a general base vector may not satisfy the flow conservation

constraint at each vertex in the flow graph. In flow minus

out flow, i.e. excess at the vertex, may be negative or pos-

itive. However, this is easy to fix as follows. If the excess

is negative then an edge directed from the source s is to the

vertex with negative excess is added with flow equal to the

absolute value of the excess. If the excess is positive then an

edge from the positive excess vertex to the sink t is added

with flow equal to the excess. We have, in effect, shown the

following:
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Lemma 3.2. For every base vector yc there exists a GC flow

graph with valid flow obtained through one to one mapping

of yc to the flow vector vc in the gadget corresponding to

clique c in the GC flow graph.

4. Hybrid Algorithms

Lemmas 3.1 and 3.2 enable us to put in place a block co-

ordinate descent strategy consistent with the framework of

[31]. We make a coordinate block corresponding to sum of

large clique potentials to be solved by a polyhedral method

maximizing x−(V). Another coordinate block is made (cor-

responding to sum of smaller cliques) to be solved by GC

by maximizing flow. At each iteration we choose a coor-

dinate block and solve it’s optimization problem using the

chosen method. Consistent with the coordinate blocks, Eq.

(4) can be rewritten as

lV
∗ = argmin

lV

∑

c∈L

fc(lc) +
∑

c∈S

fc(lc). (9)

Here L and S are the set of large and small cliques respec-

tively such that C = L ∪ S . If x is a base vector correspond-

ing to the submodular function as given in Eq. (9), then

using Lemma 2.2 it can also be written as:

x =
∑

c∈L

yc(lc) +
∑

c∈S

yc(lc), or (10)

x = xl + xs, (11)

where yc(lc), c ∈ L and yc(lc), c ∈ S are the base vectors

corresponding to large and small cliques respectively. Vec-

tors, xl and xs denote the factors of x due to large and small

cliques respectively.

A hybrid algorithm achieves the objective of maximiz-

ing x−(V) by alternately carrying out a block coordinate

descent iterations on the blocks corresponding to L and S .

While maximizing x−
l (V) we keep xs (and its associated

y’s) as constant. Any base polyhedron based SFM algo-

rithm which works on the principle of maximizing x−(V)
can be used for the maximizing step. Note that since there

will be multiple number of large cliques it is quite likely that

the sum of submodular function algorithm used may itself

be based on block coordinate descent scheme.

We use GC to maximize x−
s (V) and when we do that,

we keep xl constant, in effect treating them as unary costs

in GC flow graph. As explained in Section 2.3 the role of

unary costs is in setting the terminal edge capacities in the

GC graph. The flow graph is created as per the construction

given in Section 3.

It may be noted that during multiple such block coordi-

nate ascent iterations GC edge capacities remain constant

and the minimum cut to be found changes due to changes

in the terminal edge capacities. In principle, it is possible to

exploit such structure by initializing the flow in an iteration

from the flow in the last iteration, fixing the overflows and

then send more flow if possible. This kind of structure have

been exploited by Kohli and Torr [21] using graph cuts. Our

current implementation, however, does not exploit this.

5. Hybrid Algorithm Based On MNP and GC

It must be pointed out that the above framework is not

applicable as written if the base polyhedron based algorithm

is the Min Norm Point Algorithm, the algorithm of choice

for working with large cliques [27, 31]. We give below the

reasoning in detail and the changes required to use MNP to

handle large cliques.

5.1. Problems in Combining GC with MNP

Before we delve into the problem in combing MNP

and GC, it is important to understand the differences be-

tween polyhedral methods which maximize x−(V) and

MNP which minimizes ‖x‖2.

Polyhedral methods that maximize x−(V) can be consid-

ered to move from one base vector to another in which the

value of x−(V) increases. The extent of increase is a func-

tion of the next base vector that the algorithm chooses. For

example, in Schrijver’s algorithm [30] this increase is ef-

fected by carrying out what is known as “block exchange”.

Given a base vector x and two elements say p and q in V ,

in a block exchange, a δ is computed to generate a new

base vector x′, which differs from x only in that the value

of x′(p) is larger than x(p) by δ and the value of x′(q) is

smaller than x(q) by δ. In many polyhedral based meth-

ods the value of x−(V) is maximized through appropriately

chosen block exchanges.

Let S be a set that minimizes the given submodular func-

tion. It can be shown that S can also be obtained by includ-

ing all the elements with negative value in a base vector x
that maximizes x−(V) along with some other elements of

x, with zero value, chosen based upon some “reachability”

criterion that is particular to specific SFM algorithms.

Note that if p and q are in S a block exchange may be

possible which increases the value of x(p) and decreases

the value of x(q) without making x(p) positive. In this case

neither the value of x−(V) changes nor the optimal set S
changes, but new optimal base vector has been computed.

By picking two elements, which either both belong to S
or it’s complement, one can, therefore, generate infinitely

many optimal base vectors that leave the optimal set S un-

changed. It can be easily shown that when such block ex-

changes also leave the relative order of the values of ele-

ments unchanged the L2 norm value of the resultant base

vector reduces. The discussion not only indicates that poly-

hedral methods using block exchanges as the basic opera-

tion to maximize x−(V) may not minimize L2 norm, but

also motivates a strategy to do so using GC, as we show

later in the next section.
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Note that, apart from the edge emanating from the source

and the edge incident at the sink, the edges in a flow aug-

mentation path in GC consists of a sequence of pairs of

edges each pair belonging to a gadget through which the

path passes. During flow augmentation flow increases in

one edge of such a pair and decreases by the same amount

in the other resulting in change in the flow vetor value at

just two vertices in the gadget involved. Lemma 3.2 implies

that this results in change in the value of the corresponding

base vector at just two vertices. In effect flow augmentation

in GC, at the macro level, involves performing of a series

of block exchange operations (corresponding to the gadgets

through which the augmenting path passes), and results in

maximized x−(V) at termination. The source of problem

faced in combining GC and SOSMNP in a common block

descent framework is, the additional requirement, that out-

put of GC should also minimize the L2 norm. When GC

flow augmentation stops, the set of pixels gets partitioned

into a (S, T ) cut set: namely those which are reachable from

the source s form the set S, and the remaining nodes form

the set T . It can be easily shown that while the total flow

in the edges across the cutset is the value of the maximum

flow and also the value of the optimal solution to the sum of

submodular function minimization problem, the values of

the elements in S in the corresponding final base vector are

all negative or zero and their sum is equal to the max flow

in the GC flow graph.

5.2. Outputting a Min L2 Norm Solution in GC

As shown in the previous section, GC can be interpreted

as a block exchange algorithm. Therefore, the reachability

property from nodes s and t to verticices in sets S and T in

the max flow (S, T ) cutset in the GC flowgraph are the same

reachability properties as those by the attributes in the sets

S and T outputted by any other block exchange based algo-

rithm, say Schrijver’s. Therefore, the counterpart of block

exchange among nodes in set S in Schrijver’s algorithm that

results in lowering of the L2 norm in GC is nothing but the

result of sending flow from s to some node p in S. The

following lemma can be shown to hold.

Lemma 5.1. The base vector x corresponding to max flow

flow in GC with (S, T ) cut set does not satisfy the L2 norm

as long as there exist augmenting paths

1. from s to any vertex p in S such that the value of x(q),
q being the first vertex on that path after s, is less than

x(p), and

2. to t from any vertex p in T such that the value of x(q),
q being the first vertex on that path after t, is larger

than x(p).

We propose the following scheme for moving towards

minimum L2 norm solution in GC. Let (S, T ) be the min cut

in the flow graph outputted by GC. We will explain below

the process for the set S. The process for set T will be

identical and consistent with condition 2 of Lemma 5.1 and

effectively be just the mirror image of process explained

below.

Let x denote the base vector corresponding to a GC block

coordinate descent iteration. Let x−(S) denote the sum of

the negative elements (corresponding to pixels) in set S. It

is easy to see that the ideal redistribution of values in vector

x such that the x−(S) remains same, but the norm ‖x(S)‖2

achieves minimum is when all non zero elements in set S
have the value x−(S)/|S|.

To move towards the desired objective, we create a new

flow graph containing all the nodes in S and two auxiliary

nodes s and t. We create an edge from source s to a vertex,

p, whenever x(p) < x−(S)/|S|. The capacity of the edge

is set to
x−(S)
|S| − x(p). From the rest of the negative valued

vertices in S we direct edges to sink t. Capacity of an edge

from such a node q to t is set equal to x(q) − x+(S)
|S| . All

the other edges between two pixel nodes of the set S are

the edges of the original GC graph with their capacities set

equal to the residual capacities they had when GC’s previ-

ous iteration terminated.

We now solve the max flow problem in the flow sub-

graph so created. If all the edges out of s are saturated then

we have effectively shown that there exists an optimal solu-

tion to the original problem in which all the elements on the

S side have the same value, which the optimal min norm

solution should have. Otherwise, we have discovered a new

(S, T ) cut in the subproblem the base vector corresponding

to which can be moved towards the min L2 norm recur-

sively by solving two max flow problems (for the new S
and T sets) as explained above on increasingly smaller flow

graphs. Note that the this method of moving towards the

min L2 norm solution, consistent with Lemma 5.1, has the

merit that the number of additional max flow problems that

need to be solved are not only finite but are bounded by the

number of nodes in the original GC graph.

5.3. Proposed Algorithm

We formalize the proposed hybrid strategy for minimiz-

ing the sum of submodular functions. As it is common in

SFM literature, we assume that fc(∅) = 0 for large clique

potentials. For small clique potentials, as is done in GC,

we assume that the function has been appropriately repa-

rameterized such that fc(∅) = fc(c) = 0 and the value of

clique potential for all other configurations is non-negative.

No such reparameterization is done for large clique poten-

tial. Values of modular function, fm, can be arbitrary (pos-

itive/negative/zero), but we reparameterize it in our algo-

rithm such that fm(lp = a) = fm(lp = a) − fm(lp = b)
and fm(lp = b) = 0. This causes a decrease of constant,
∑

p fm(lp = b), in all the function values, which we add
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Procedure 1 HybridMNGC: Algorithm for minimizing a

sum of submodular function with mixed sized cliques

Input: f =
∑

fm + fs + fl.

Output: x∗ = ym + xs + xl = argmin ‖x‖2 subject to

x ∈ B(f).
1: Set ym = fm and yc = 0, c ∈ S .

2: ∀c ∈ L initialize yc from a random base vector.

3: while Norm of x decreases do

4: Call SOSMNP with ym + xs as unary cost and fl as

the clique potential;

5: MinNormGC(V, fs, ym + xl, 0);

6: end while

Procedure 2 MinNormGC(V, fs, U, b)

Input: V: Set of Nodes/Elements for which norm is to

computed.

Input: U : Function specifying unary/modular cost for

each pixel in V .

Input: fs: Clique potential for the small cliques.

Input: b: Base value above which we add edge from s.

# We create the GC gadget graph using fs and assume

that the flow graph once created is available globally

during the recursive calls. Only the edges from s and to

t change.

1: for ∀p ∈ V do

2: if U(p) > b then

3: Add s to p edge with capacity U(p)− b;
4: else

5: Add p to t edge with capacity b− U(p);
6: end if

7: end for

8: Run GC; Find minimum cut and corresponding S and

T sets;

9: if |S| > 1 then

10: Denote by US , the residual edge capacity between

source s and pixels p ∈ S;

11: Denote average of US by bS ;

12: MinNormGC(S, fs, US , bS);

13: end if

14: if |T | > 1 then

15: Denote by UT , the residual edge capacity between

pixels p ∈ T and sink node t;
16: Denote average of UT by bT ;

17: MinNormGC(T, fs, UT , bT );

18: end if

back in the returned value of the minimum.

We solve the minimization problem in the dual domain

by finding a vector with minimum norm in the base poly-

hedron of sum of fm + fl + fs. We make use of the block

coordinate descent framework of [31] and maintain a base

vector, x, of the overall function, as the sum of base vectors

ym, xs and xl, corresponding to modular, small and large

clique potential functions. We initialize the vector ym as

the value of function fm and keep it constant throughout

the algorithm. We initialize the yc corresponding to small

cliques to be zero, which is equivalent to initializing the GC

flow graph with flow of zero. For large cliques, we start

with an arbitrary base as the starting yc.

The various iterations of the algorithm follow the scheme

as detailed out in Section 4. The above detailing of the ini-

tialization process takes into account modular function costs

which were subsumed earlier. Algorithms 1 and 2 give the

details of proposed algorithm in pseudocode format.

5.4. Convergence

Overall algorithm implements block coordinate descent

over two blocks. One consists of all the large cliques, and

the other contains all the small cliques. Each iteration min-

imizes the norm of the solution vector x corresponding to

the block chosen. Convergence of the over all algorithm

follows from the in principle convergence of Min Norm

algorithm [10], polynomial time convergence of GC [2],

and convergence of the block coordinate descent based min

norm algorithm [14, 31]. The additional work that is hap-

pening is transformation of GC output in every run of GC

block to satisfy L2 norm. That can take as little as O(log n)
GC iterations in the best case to O(n) iterations in the worst

case, where n is the number of pixels. Experiments reported

in the next section indicate that HybridMNGC is signifi-

cantly faster than SOSMNP which, experiments reported

earlier [31] indicate, is the algorithm of choice for polyhe-

dral based algorithms working with large cliques.

6. Experiments

We have conducted all the experiments on a regular

workstation with Intel Core i7 CPU, 8 GB of RAM and

running Windows 10 OS. We have implemented the pro-

posed algorithm in C++. We have taken implementations of

SOSMNP and GC from the authors’ website and modified

them for our purpose. All timings reported are in seconds.

The focus of the experiments is to establish the effi-

cacy of the hybrid scheme both in terms of the efficiency

and quality of the results outputted. The experiments fo-

cussing on efficiency have been on synthetic problems of

small sizes. The results and discussion are in Section 6.1.

Quality comparison has been done on the pixelwise object

segmentation problem where the images for the demonstra-

tion are taken from Pascal VOC dataset [7]. Outputs of Hy-

bridMNGC are compared with that of SegNet [4] (chosen to

represent state of the art methods based on deep neural net-

works). GC runs with cliques of size two, and SOSMNPs

run with cliques of size approximately 1000.

In experiments which focus on efficiency, as in [31], we

consider edge based clique potentials based on counting the
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Big Clique Size =100, No. of cliques =25

Small Clique Size 2× 1 2× 2 3× 2 3× 3 4× 3

HybridMNGC 11.54 9.42 9.68 14.35 58.48

SOSMNP 274.27 538.62 184.53 366.77 231.78

Table 1. Clique potentials are Count Based. Small cliques span the

image in sliding window style. All running time are in seconds.

Big Clique Size =100, No. of cliques =25

Small Clique Size 2× 1 2× 2 3× 2 3× 3 4× 3

HybridMNGC 17.41 21.27 21.51 28.56 93.96

SOSMNP 250.67 350.17 375.78 268.42 228.54

Table 2. Similar comparison as in Table 1 with the proviso that

clique potentials are edge based. All running time are in seconds.

No. of Pixels 2500

#No. of Big Cliques 40 60 80 100 120

HybridMNGC 31.28 34.98 62.75 66.11 94.66

SOSMNP 295.73 367.97 396.08 403.61 428.46

Table 3. Count based big cliques with size=100, pairwise small

cliques span whole image. All running time are in seconds.

No. of Big Cliques = 50

#No. of Pixels 2500 3600 4900 6400

HybridMNGC 34.69 30.02 31.95 32.50

SOSMNP 234.17 271.79 301.67 349.71

Table 4. Time as a function of Image size. Count based big cliques

with size=100, pairwise small cliques span whole image. All run-

ning time are in seconds.

square root of the number of edges, and count based poten-

tial which involve counting the product of number of ones

and zeros in the clique. The unary potentials are assigned

randomly. In experiments on real images from Pascal VOC

dataset we have used count based potentials and unary costs

are based on the score received from SegNet for the image

under consideration.

6.1. Performance Comparison

Tables 1 and 2 compare the performance of the two al-

gorithms on images of size (50 × 50) as small clique size

is changed. The unary potentials, seeding of the large

cliques, as well as the number of small cliques is the same.

Note that HybridMNGC takes significantly less time than

SOSMNP at all points of comparison. Observe that run

time for SOSMNP does not show any monotonic pattern.

Since at each iteration both algorithms work with optimal
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Figure 1. Energy as a function of the number of iterations of the

HybridMNGC algorithm. Primal is the function value for the set

defined by the negative elements of the current base vector.

subsolutions this fluctuation is possibly due to different

ways in which values get transmitted among large number

of small cliques under SOSMNP. In comparison HybridM-

NGC, which is an order of magnitude faster than SOSMNP,

exhibits typical GC trends where performance decreases

with increase in clique size. Similar trend is observed with

both count as well as edge based potentials.

Tables 3 and 4 give the results of changes in time taken

when both the number of big cliques and the image size

is increased. The time for both the algorithms increase,

but HybridMNGC continues to outperform the baseline

SOSMNP.

6.2. Comparing Object Segmentation Quality

We show some indicative results in Figures 2 and 3 for

pixel wise object segmentation. Each image has a single ob-

ject consistent with our binary labeling formulation. In the

images in Figure 3 Gaussian noise with zero mean and in-

tensity dependent variance has been added. We use Segnet

[4], output in two ways. First as the basis for comparison of

deep network based object segmentation, and second as a

source for generating singleton confidence scores for inde-

pendent pixel labels. The other points of comparison of the

output of HybridMNGC are GC as an example of an algo-

rithm for MRF MAP optimization using small clique mod-

els, and SOSMNP for an algorithm which can handle large

cliques. The pairwise cliques span the image in 4-connected

neighborhood style. Big cliques are region grown as in [32].

The number of big cliques and their size varies from image

to image. Suffice to say that the number of big cliques range

from 300 to 500. The average big clique size is 1000 with

the max being 1500. The images themselves are 250× 250
pixels in size.

Since both the images and the big clique sizes are too

large for HybridMNGC and SOSMNP to terminate with op-

timal solutions in acceptable times, these algorithms are run

in ǫ-approximate mode where ǫ is defined as in [5]. We run
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Original Image Ground-truth Segnet GC SOSMNP HybridMNGC

Figure 2. Object Segmentation results from various methods using input image with no noise.

Original Image Ground-truth Segnet GC SOSMNP HybridMNGC

Figure 3. Object Segmentation results from various method using input images with Gaussian noise.

these algorithms with ǫ as 100. This condition seems to be

arrived, on the average, after about 12000 iterations. Exper-

imental evidence indicates Figure 1 that the primal labeling

stabilizes much before the termination condition is reached.

Figure 3 has the comparative output images. Note the sig-

nificant improvement in HybridMNGC output in compari-

son to that of GC and SOSMNP.

Figure 2 contains an example of object segmentation

with no added noise. Note that Segnet output deteriorates

greatly with added noise. Output of HybridMNGC seems

to be much more resilient to noise.

The object segmentation experiments have been done

with the objective of establishing the usefulness of working

simultaneously with both higher order and small cliques.

What should their sizes be, how should they be seeded in

the image, how should the potentials be chosen for an ob-

ject segmentation system based on the ideas outlined here

is a subject for future research.

7. Conclusions

Our objective in this paper has been to establish the ef-

ficacy of combining algorithms like Generic Cuts [2] and

SOSMNP [31] which have complimentary strengths and

weaknesses. The resultant algorithm, HybridMNGC, not

only is shown to be more efficient, but has the potential

of providing very high quality solutions to computer vision

problems. Not only does it open up possibilities of devel-

oping new algorithms around HybridMNGC, it shows the

way in which seemingly different techniques can be com-

bined under the block coordinate descent framework. Solv-

ing problems in parallel by suitably defining blocks is an

obvious possibility and future research direction for us.
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