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Abstract

We present a neural architecture that takes as input a 2D or

3D shape and outputs a program that generates the shape.

The instructions in our program are based on construc-

tive solid geometry principles, i.e., a set of boolean op-

erations on shape primitives defined recursively. Bottom-

up techniques for this shape parsing task rely on primitive

detection and are inherently slow since the search space

over possible primitive combinations is large. In contrast,

our model uses a recurrent neural network that parses the

input shape in a top-down manner, which is significantly

faster and yields a compact and easy-to-interpret sequence

of modeling instructions. Our model is also more effective

as a shape detector compared to existing state-of-the-art de-

tection techniques. We finally demonstrate that our network

can be trained on novel datasets without ground-truth pro-

gram annotations through policy gradient techniques.

1. Introduction

In recent years, there has been a growing interest in gen-

erative models of 2D or 3D shapes, especially through

the use of deep neural networks as image or shape pri-

ors [28, 9, 12, 16]. However, current methods are limited

to the generation of low-level shape representations con-

sisting of pixels, voxels, or points. Human designers, on the

other hand, rarely model shapes as a collection of these indi-

vidual elements. For example, in vector graphics modeling

packages (Inkscape, Illustrator, and so on), shapes are often

created through higher-level primitives, such as parametric

curves (e.g., Bezier curves) or basic shapes (e.g., circles,

polygons), as well as operations acting on these primitives,

such as boolean operations, deformations, extrusions, and

so on. The reason for choosing higher-level primitives is not

incidental. Describing shapes with as few as possible primi-

tives and operations is highly desirable for designers since it

is compact, makes subsequent editing easier, and is perhaps

better at capturing aspects of human shape perception such

as view invariance, compositionality, and symmetry [5].

Figure 1. Our shape parser produces a compact program that

generates an input 2D or 3D shape. On top is an input image of

2D shape, its program and the underlying parse tree where primi-

tives are combined with boolean operations. On the bottom is an

input voxelized 3D shape, the induced program, and the resulting

shape from its execution.

The goal of our work is to develop an algorithm that parses

shapes into their constituent modeling primitives and oper-

ations within the framework of Constructive Solid Geome-

try (CSG) modeling [29] as seen in Figure 1. This poses a

number of challenges. First, the number of primitives and

operations is not the same for all shapes i.e., our output does

not have constant dimensionality, as in the case of pixel ar-

rays, voxel grids, or fixed point sets. Second, the order of

these operations matters. Figure 1 demonstrates an example

where a complex object is created through boolean opera-

tions that combine simpler objects. If one performs a small

change e.g., swap two operations, the resulting object be-

comes entirely different. From this aspect, the shape mod-

eling process could be thought of as a visual program i.e.,

an ordered set of modeling instructions. Finally, a challenge

is that we would like to learn an efficient parser that gener-

ates a compact program (e.g., with the fewest instructions)

without relying on a vast number of shapes annotated with

their programs for a target domain.
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To tackle these challenges we designed a memory-enabled

network architecture, that given a target 2D image of a

shape, or a target 3D shape, generates a CSG program to

generate it. To train our network we created a large syn-

thetic dataset of automatically generated 2D and 3D pro-

grams. Networks trained on this dataset however lead to

poor generalization when applied to new domains. To

adapt models to new domains without program annotations

we employ policy gradient techniques from the reinforce-

ment learning literature [44]. Combining our parser with a

CSG rendering engine allows the parser to receive feedback

based on the visual difference between the target shape and

generated shape. Thus the parser network can be trained to

minimize this difference.

Our contributions are as follows. First we show that the

proposed architecture is efficient and effective at inferring

CSG programs for 2D and 3D shapes across a number of do-

mains. Second we show that the parser can be learned using

reinforcement learning techniques on novel datasets with-

out program annotations. Third, we show that the parser is

a better and faster shape detector than state-of-the art detec-

tion approaches that only rely on bottom-up cues. We con-

jecture that this is because the parser jointly reasons about

presence and ordering during parsing unlike the detector.

2. Related Work

Our work is primarily related to neural program induc-

tion methods. Secondly, it is also related to “vision-as-

inverse-graphics” approaches, as well as neural network-

based methods that predict shape primitives or parameters

of procedural graphics models. Below, we briefly overview

these prior methods, and explain differences from our work.

Neural program induction. Our method is inspired by

recent progress in neural network-based methods that infer

programs expressed in some high-level language to solve a

task. These methods often employ variants of recurrent neu-

ral networks whose parameters are trained to predict desired

program outputs given exemplar inputs, such as answers to

questions involving complex arithmetic, logical, or seman-

tic parsing operations [32, 35, 11, 4, 23, 49, 48, 24, 30].

In the context of visual reasoning, several authors [22, 20]

proposed architectures that produce programs composed of

functions that perform compositional reasoning on the in-

put image. They also incorporate an execution engine that

produces the result of the program through a neural mod-

ule network [3]. In contrast our method aims to produce a

generative program consisting of shape modeling functions

that match a target image.

Vision-as-inverse-graphics. A well-known approach to

visual analysis is to generate and fit hypotheses of scenes

or objects to input image data i.e., perform analysis-by-

syntesis [47]. Kulkani et al. [27] proposed sampling-based

probabilistic inference to estimate parameters of stochas-

tic graphics models (e.g., human body parameters, or pa-

rameters of rotationally symmetric objects) representing

the space of hypothesized scenes given an input image.

Shape grammars (or so-called inverse procedural model-

ing techniques) have alternatively been used in analysis-by-

synthesis image parsing frameworks [42, 31], yet they have

the disadvantage of not modeling long-range dependencies

in the parsing task, and are often specific to a particular

shape class (e.g., buildings). More recent approaches em-

ploy Convolutional Neural Network (CNN) to infer param-

eters of objects [28] or whole scenes [39]. A similar trend is

observed in graphics applications where CNNs are used to

map input images or partial shapes to procedural model pa-

rameters [21, 38, 33]. Wu et al. [45] detect objects in scenes

by employing a network for producing object proposals and

a network that predicts whether there is an object in a pro-

posed segment, along with various object attributes. Eslami

et al. [15] uses a recurrent neural network to attend to one

object at a time in a scene, and learn to use an appropriate

number of inference steps to recover object counts, identi-

ties and poses.

In contrast, we do not aim at parsing images or scenes into a

collection of objects and their parameters. We instead parse

input images or 3D shapes into a sequence of modeling op-

erations on primitives (i.e, a visual program) to match a

target image. In our setting, the space of outputs is much

larger and the order of operations in our visual programs

matter. To deal with this complexity, we use a combination

of supervised pretraining, reinforcement learning, reward

design, and post-optimization of modeling parameters, de-

scribed in the next Section.

Neural primitive fitting. Tulsiani et al. [43] proposed a

volumetric convolutional network architecture that predicts

a fixed number of cuboidal primitives to describe an input

3D shape. To better handle a variable number of prim-

itives, Zou et al. [50] instead proposed an LSTM-based

architecture that predicts boxes given input depth images.

We also aim at deriving geometrically interpretable expla-

nations of shapes in terms of primitives. However, our net-

work is not limited to predicting a single type of primitives

(e.g., cubes), but also outputs modeling operations acting on

them, or in other words supports a significantly richer mod-

eling paradigm. The program can be used not only to geo-

metrically describe the input shape but can also be directly

edited to manipulate it if desired. Finally, Ellis et al. [14]

proposed a neural network architecture to extract various

hand-drawn primitives (lines, circles, rectangles) in images,

which are then grouped into Latex programs. Their pro-

gram synthesis is posed as a constraint satisfaction problem
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Figure 2. Architecture of our neural shape parser (CSGNet). CSGNet consists of three parts, first an encoder takes a shape (2D or

3D) as input and outputs a feature vector through a CNN. Second, a decoder maps these features to a sequence of modeling instructions

yielding a visual program. Third, the rendering engine processes the program and outputs the final shape. The primitives annotated as

P1, P2, P3, P4 are predicted by the network, while E1, E2 are the outputs of boolean modeling operations acting on intermediate shapes.

which is computationally expensive and can take hours to

solve. Instead, our program is created by a neural network

that takes a fraction of a second to evaluate at test time.

Bottom-up parsing. Our work is related to approaches

for shape parsing using grammars [18, 17, 46, 7, 6, 42, 31,

41, 37]. These have been applied to objects that can be rep-

resented using tree-structured grammars (e.g., human bod-

ies, buildings). However such approaches often use shallow

grammars or accurate bottom-up proposals (e.g., face and

limb detection) to guide parsing. In the context of CSG,

primitive detection is challenging as shapes change signifi-

cantly when boolean operations are applied to them. Parse

trees for CSG also tend to be deeper. As a result, bottom-up

parsing becomes computationally expensive since the com-

plexity scales exponentially with the program length.

3. Designing a Neural Shape Parser

In this section, we first present our neural shape parser

that can induce programs for 2D/3D shapes. The goal

of the parser π is to produce a sequence of instructions

given an input shape. The parser can be implemented

as an encoder-decoder using neural network modules as

shown in Figure 2. The encoder takes as input an im-

age I and produces an encoding Φ(I) using a CNN. The

decoder Θ takes as input Φ(I) and produces a probabil-

ity distribution over programs P represented as a sequence

of instructions. Decoders can be implemented using Re-

current Neural Networks (RNNs). We employ Gated Re-

current Units (GRUs) [10] that have been widely used for

sequential prediction tasks such as generating natural lan-

guage and speech. The overall network can be written as

π(I) = Θ ◦ Φ(I). The space of programs can be effi-

ciently described according to a context-free grammar [19].

For example, in constructive solid geometry the instructions

consist of drawing primitives (e.g., spheres, cubes, cylin-

ders, etc.) and performing boolean operations described as

a grammar with the following production rules:

S → E

E → E E T | P

T → OP1|OP2| . . . |OPm

P → SHAPE1|SHAPE2| . . . |SHAPEn

Each rule indicates possible derivations of a non-terminal

symbol separated by the | symbol. Here S is the start sym-

bol, OPi is chosen from a set of defined modeling opera-

tions and the SHAPEi is a primitive chosen from a set of

basic shapes at different positions, scales, orientations, etc.

Instructions can be written in a standard post-fix notation,

e.g. SHAPE1SHAPE2OP1SHAPE3OP2. Figure 2 also gives

an example of a program predicted by the network, that fol-

lows the grammar described above.

3.1. Learning

Given an input I the parser network π generates a program

that minimizes a reconstruction error between the shape

produced by executing the program and a target shape. Note

that not all programs are valid hence the network must also

learn to generate grammatical programs.
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Supervised learning: When target programs are avail-

able the architecture can be trained with standard supervised

learning techniques. Training data in this case consists of

shape and program pairs (Ii, P i), i = 1, . . . , N . In our im-

plementation, the RNN produces a categorical distribution

πθ over instructions a ∈ A at every time step. Similarly

the ground-truth program P i can be written as sequence of

instructions gi1, gi2 .. giTi
, where Ti is the length of the pro-

gram P i. The parameters θ can be learned to maximize the

log-likelihood of the ground truth instructions:

L(θ) =

N
∑

i=1

Ti
∑

t=1

log πθ(g
i
t|g1:t−1, I

i). (1)

Learning with policy gradients. Without target pro-

grams one can minimize a reconstruction error between

the shape obtained by executing the program and the tar-

get. However, directly minimizing this error using gradient-

based techniques is not possible since the output space is

discrete and execution engines are typically not differen-

tiable. Policy gradient techniques [44] from the reinforce-

ment learning (RL) literature can instead be used in this

case.

Concretely, the parser πθ, that represents a policy network,

can be used to sample a program y = (a1,a2 .. aT ) con-

ditioned on the input shape I . Then a reward R can be

estimated by measuring the similarity between the gener-

ated image Î obtained by executing the program and the

target shape I . With this setup, we want to learn the net-

work parameters θ that maximize the expected rewards over

programs sampled under the predicted distribution πθ(I)
across images I sampled from a distribution D:

EI∼D

[

Jθ(I)
]

= EI∼DEy∼πθ(I)) [R] .

The outer expectation can be replaced by a sample estimate

on the training data. The gradient of the inner expectation

can be obtained by rearranging the equation as:

∇θJθ(I) = ∇θ

∑

y

πθ(y)R =
∑

y

∇θ log πθ(y)
[

πθ(y)R
]

.

It is often intractable to compute the expectation Jθ(I) since

the space of programs is very large. Hence the expectation

must be approximated. The popular REINFORCE [44] al-

gorithm computes a Monte-Carlo estimate as:

∇θJθ(I) =
1

S

S
∑

s=1

T
∑

t=1

∇ log πθ(â
s
t |â

s
1:t−1, I)R

s,

by sampling S programs from the policy πθ. Each program

ys is obtained by sampling instructions âst=1:T from the dis-

tribution âst ∼ πθ(at|â
s
1:t−1; I) at every time step t, till the

stop symbol (EOS) is sampled. The reward Rs is calcu-

lated by executing the program ys. Sampling-based esti-

mates typically have high variance that can be reduced by

subtracting a baseline without changing the bias as:

∇θJθ(I) =
1

S

S
∑

s=1

T
∑

t=1

∇θ log πθ(â
s
t |â

s
1:t−1, I)(R

s − b).

(2)

A good choice of the baseline is the expected value of re-

turns starting from t [40, 44]. We compute baseline as the

running average of past rewards.

Reward. The rewards should be primarily designed to en-

courage visual similarity of the generated program with the

target. Visual similarity between two shapes is measured

using the Chamfer distance (CD) between points on the

edges of each shape. The CD is between two point sets,

x and y, is defined as follows:

Ch(x,y) =
1

2|x|

∑

x∈x

min
y∈y

‖x− y‖2+
1

2|y|

∑

y∈y

min
x∈x

‖x− y‖2 .

The points are scaled by the image diagonal, thus

Ch(x,y) ∈ [0, 1] ∀x,y. The distance can be efficiently

computed using distance transforms. In our implementa-

tion, we also set a maximum length T for the induced

programs to avoid having too long or redundant programs

(e.g., repeating the same modeling instructions over and

over again). We then define the reward as:

R =

{

f
(

Ch(Edge(I),Edge(Z(y)
)

, y is valid

0, y is invalid.

where f is a shaping function and Z is the CSG rendering

engine. Since invalid programs get zero reward, the maxi-

mum length constraint on the programs encourages the net-

work to produce shorter programs with high rewards. We

use maximum length T = 13 in all of our RL experiments.

The function f shapes the CD as f(x) = (1 − x)γ with an

exponent γ > 0. Higher values of γ encourages CD close

to zero. We found that γ = 20 provides a good trade-off

between program length and visual similarity.

3.2. Inference

Greedy decoding and beam search. Estimating the most

likely program given an input is intractable using RNNs.

Instead one usually employs a greedy decoder that picks

the most likely instruction at each time step. An alternate

is to use a beam search procedure that maintains the k-best

likely sequences at each time step. In our experiments we

report results with varying beam sizes.
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Visually-guided refinement. Our parser produces a pro-

gram with a discrete set of primitives. However, further

refinement can be done by directly optimizing the position

and size of the primitives to maximize the reward. The re-

finement step keeps the program structure of the program

and primitive type fixed but uses a heuristic algorithm [34]

to optimize the parameters using feedback from the render-

ing engine. On our dataset where shapes have up to 7 prim-

itives, the search space is relatively small and the algorithm

converges to a local minima in about 10 iterations and con-

sistently improves the results.

4. Experiments

We describe our experiments on different datasets exploring

the generalization capabilities of our network (CSGNet).

We first describe our datasets: (i) an automatically gener-

ated dataset of 2D and 3D shapes based on synthetic gen-

eration of CSG programs, (ii) 2D CAD shapes mined from

the web where ground-truth programs are not available, and

(iii) logo images mined also from the web where ground-

truth programs are also not available. We discuss our quali-

tative and quantitative results on the above datasets.

4.1. Datasets

Figure 3. Samples created from our synthetically generated

programs. 2D samples in top row and 3D samples in bottom row.

To train our network in the supervised learning setting, we

automatically created a large set of 2D and 3D CSG-based

synthetic programs according to the grammars described

below.

Synthetic 2D shapes. We sampled derivations of the fol-

lowing CSG grammar to create our synthetic dataset in the

2D case:

S → E;

E → EET | P (L,R);

T → intersect | union | subtract;

P → square | circle | triangle;

L →
[

8 : 8 : 56
]2
; R →

[

8 : 4 : 32
]

.

Program

Length

2D 3D

Train Val Test Train Val Test

3 25k 5k 5k 100k 10k 20k

5 100k 10k 50k 200k 20k 40k

7 150k 20k 50k 400k 40k 80k

9 250k 20k 50k - - -

11 350k 20k 100k - - -

13 350k 20k 100k - - -

Table 1. Statistics of our 2D and 3D synthetic dataset.

Primitives are specified by their type: square, circle, or tri-

angle, locations L and circumscribing circle of radius R on

a canvas of size 64×64. There are three boolean operations:

intersect, union, and subtract. L is discretized to lie on

a square grid with spacing of 8 units and R is discretized

with spacing of 4 units. The triangles are assumed to be

upright and equilateral. The synthetic dataset is created by

sampling random programs containing different number of

primitives from the above grammar, constraining the distri-

bution of various primitive types and operation types to be

uniform. We also ensure that no duplicate programs exist in

our dataset. The primitives are rendered as binary images

and the programs are executed on a canvas of 64 × 64 pix-

els. Samples from our dataset are shown in Figure 3. Table

1 provides details about the size and splits of our dataset.

Synthetic 3D shapes. We sampled derivations of the fol-

lowing grammar in the case of 3D CSG:

S → E; E → EET ;

E → sp(L,R) | cu(L,R) | cy(L,R,H)

T → intersect | union | subtract;

L →
[

8 : 8 : 56]3

R →
[

8 : 4 : 32]; H →
[

8 : 4 : 32].

The same three binary operations are used as in the 2D case.

Three basic solids are denoted by ‘sp’: Sphere, ‘cu’: Cube,

‘cy’: Cylinder. L represents the center of primitive in 3D

voxel grid. R specifies radius of sphere and cylinder, and

also specifies size of cube. H is the height of cylinder. The

primitives are rendered as voxel grids and the programs are

executed on a 3D volumetric grid of size 64 × 64 × 64.

We used the same random sampling method as described

for the synthetic 2D dataset, resulting in 3D CSG programs.

3D shape samples from this dataset are shown in Figure 3.

2D CAD shapes. We collected 8K CAD shapes from the

Trimble 3DWarehouse dataset [2] in three categories: chair,

desk and lamps. We rendered the CAD shapes into 64 × 64
binary masks from their front and side views. In Section 4,

we show that the rendered shapes can be parsed effectively

through our visual program induction method. We split this

dataset into 5K shapes for training, 1.5K validation and

1.5K for testing.
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Web logos. We mined a collection of binary logos from

the web that can be modeled using the primitives in our out-

put shapes. We test our approach on these logos without

further training or fine-tuning our net on this data.

4.2. Implementation details

The input 2D or 3D shape I is represented as pixel and

voxel occupancy grid respectively. Our encoder is based

on an image-based convnet in the case of 2D inputs, and

a volumetric convnet in the case of 3D inputs. The output

of the encoder Φ(I) is passed as input to our GRU-based

decoder at every program step. The hidden state of our

GRU units is passed through two fully-connected layers,

which are then converted into a probability distribution over

program instructions through a classification layer. For the

2D CSG there are 400 unique instructions corresponding to

396 different primitive types, discrete locations and sizes,

the 3 boolean operations and the stop symbol. For the 3D

CSG there are 6635 unique instructions with 6631 different

types of primitives with different sizes and locations, plus

3 boolean modeling operations and a stop symbol. During

training, on synthetic dataset, we sample images rendered

from programs of variable length (up to 13 for 2D and up to

7 for 3D dataset) from training dataset. More details about

the architecture of our encoder and decoder (number and

type of layers) are provided in the supplementary material.

For supervised learning, we use the Adam optimizer [25]

with learning rate 0.001 and dropout of 0.2 in non-recurrent

network connections. For reinforcement learning, we use

stochastic gradient descent with 0.9 momentum, 0.01 learn-

ing rate, and with the same dropout as above. Our im-

plementation is based on PyTorch [1]. Our source code

and datasets are available on our project page: https:

//hippogriff.github.io/CSGNet.

4.3. Results

We evaluate our network, called CSGNet, in two different

ways: (i) as a model for inferring the entire program, and (ii)

as model for inferring primitives, i.e., as an object detector.

4.3.1 Inferring programs

Evaluation on the synthetic 2D shapes. We perform su-

pervised learning to train CSGNet on the training split of

this synthetic dataset, and evaluate performance on its test

split under different beam sizes. We compare with a base-

line that retrieves a program in the training split using a

Nearest Neighbor (NN) approach. In NN setting, the pro-

gram for a test image is retrieved by taking the program of

the train image that is most similar to the test image. Table 2

compares CSGNet to this NN baseline using the Chamfer

distance between the test target and predicted shapes. Our

Method NN
CSGNet

k=1 k=5 k=10
CD 1.94 1.69 1.46 1.39

Table 2. Comparison of the supervised network (CSGNet) with

the NN baseline on the synthetic 2D dataset. Results are shown

using Chamfer Distance (CD) metric by varying beam sizes (k)

during decoding. CD is in number of pixels.

parser is able to outperform the NN method. One would

expect that NN would perform well here because the size

of the training set is large. However, our results indicate

that our compositional parser is better at capturing shape

variability, which is still significant in this dataset. Results

are also shown with increasing beam sizes (k) during de-

coding, which consistently improves performance. Figure 4

also shows the programs retrieved through NN and our gen-

erated program for a number of characteristic examples in

our test split of our synthetic dataset.

Figure 4. Comparison of performance on synthetic 2D dataset.

a) Input image, b) NN-retrieved image, c) top-1 prediction, and d)

best result from top-10 beam search predictions of CSGNet.

Evaluation on 2D CAD shapes. For this dataset, we re-

port results on its test split under two conditions: (i) when

training our network only on synthetic data, and (ii) when

training our network on synthetic data and also fine-tuning

it on the training split of 2D CAD dataset using policy gra-

dients.

Table 3 shows quantitative results on this dataset. We

first compare with the NN baseline. For any shape in this

dataset, where ground truth program is not available, NN re-

trieves a shape from synthetic dataset and we use the ground

truth program of the retrieved synthetic shape for compar-

ison. We then list the performance of CSGNet trained in

supervised manner only on our synthetic dataset. With

beam search, the performance of this variant improves com-

pared to NN. Most importantly, further training with Re-

inforcement Learning (RL) on the training split of the 2D

CAD dataset improves the results significantly and outper-

forms the NN approach by a considerable margin. This also
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Method Train Test
CD (@refinement iterations)

i=0 i=1 i=2 i=4 i=10 i=∞
NN - - 1.92 1.22 1.13 1.08 1.07 1.07

CSGNet Super k=1 2.30 1.13 0.97 0.91 0.90 0.90

CSGNet Super k=10 1.60 0.71 0.60 0.56 0.55 0.55

CSGNet RL k=1 1.26 0.61 0.54 0.52 0.51 0.51
CSGNet RL k=10 1.14 0.50 0.44 0.42 0.42 0.41

Table 3. Comparison of various approaches on the CAD shape

dataset. CSGNet trained with supervision (Super) is comparable

to the NN approach but reinforcement learning (RL) on the CAD

dataset significantly improves the results. Results are shown with

different beam sizes (k) during decoding. Increasing the number

of iterations (i) of visually guided refinement during testing im-

proves results significantly. CD metric is in number of pixels.

shows the advantage of using RL, which trains the shape

parser without ground-truth programs. We note that directly

training the network using RL alone does not yield good

results which suggests that the two-stage learning (super-

vised learning and RL) is important. Finally, optimizing

the best beam search program with visually guided refine-

ment yielded results with the smallest Chamfer Distance.

Figure 5 shows a comparison of the rendered programs for

various examples in the test split of the 2D CAD dataset

for variants of our network. Visually guided refinement on

top of beam search of our two stage-learned network qual-

itatively produces results that best match the input image.

Logos. Here, we experiment with the logo dataset de-

scribed in Section 4.1 (none of these logos participate in

training). Outputs of the induced programs parsing the in-

put logos are shown in Figure 6. In general, our method

is able to parse logos into primitives well, yet performance

can degrade when long programs are required to generate

them, or when they contain shapes that are very different

from our used primitives.

Evaluation on Synthetic 3D CSG. Finally, we show that

our approach can be extended to 3D shapes. In the 3D

CSG setting, we train a 3D-CNN + GRU (3D-CSGNet) net-

work on the 3D CSG synthetic dataset explained in Section

4.1. The input to our 3D-CSGNet are voxelized shapes in a

64×64×64 grid. Our output is a 3D CSG program, which

can be rendered as a high-resolution polygon mesh (we em-

phasize that our output is not voxels, but CSG primitives

and operations that can be computed and rendered accu-

rately). Figure 7 show pairs of input voxel grids and our

output shapes from the test split of the 3D dataset. The qual-

itative results are shown in the Table 4, where we compare

our 3D-CSGNet at different beam search decodings with

NN method. The results indicate that our method is promis-

ing in inducing correct programs, which also have the ad-

vantage of accurately reconstructing the voxelized surfaces

into high-resolution surfaces.

Figure 5. Comparison of performance on the 2D CAD dataset.

From left column to right column: a) Input image, b) NN retrieved

image, c) top-1 prediction from CSGNet in the supervised learn-

ing mode, d) top-1 prediction from CSGNet fine-tuned with RL

(policy gradient), e) best result from beam search from CSGNet

fine-tuned with RL, f) refining our results using the visually guided

search on the best beam result (“full” version of our method).

Figure 6. Results for our logo dataset. a) Target logos, b) output

shapes from CSGNet and c) inferred primitives from output pro-

gram. Circle primitives are shown with red outlines, triangles with

green and squares with blue.

4.3.2 Primitive detection

Successful program induction for a shape requires not only

predicting correct primitives but also correct sequences of

operations to combine these primitives. Here we evaluate

the shape parser as a primitive detector (i.e., we evaluate the

output primitives of our program, not the operations them-
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Method NN
3D-CSGNet

k=1 k=5 k=10
IOU (%) 73.2 80.1 85.3 89.2

Table 4. Comparison of the supervised network (3D-CSGNet)

with NN baseline on 3D dataset. Results are shown using

IOU(%) metric by varying beam sizes (k) during decoding.

create cube create cylinder
& intersect

result of
intersection

create cube
& subtract it

create sphere create sphere
& subtract it

result of
subtraction

create cylinder
& subtract it

add 2 spheres

add one sphere
& compute union

add cylinder & subtract it

(a) Input voxelized shape
(b) Step summary

of our induced program
(c) Output CSG shape 

Figure 7. Qualitative performance of 3D-CSGNet. a) Input vox-

elized shape, b) Summarization of the steps of the program in-

duced by CSGNet in the form of intermediate shapes, c) Final out-

put created by executing induced program.

selves). This allows us to directly compare our approach

with bottom-up object detection techniques.

In particular we compare against a state-of-the-art object

detector (Faster R-CNNs [36]). The Faster R-CNN is based

on the VGG-M network [8] and is trained using bounding-

box and primitive annotations based on our 2D synthetic

training dataset. At test time the detector produces a set of

bounding boxes with associated class scores. The models

are trained and evaluated on 640×640 pixel images. We

also experimented with bottom-up approaches for primitive

detection based on Hough transform [13] and other rule-

based approaches. However, our experiments indicated that

the Faster R-CNN was considerably better.

For a fair comparison, we obtain primitive detections from

CSGNet trained on the 2D synthetic dataset only (same as

the Faster R-CNN). To obtain detection scores, we sample k

programs with beam-search decoding. The primitive score

is the fraction of times it appears across all beam programs.

This is a Monte Carlo estimate of our detection score.

The accuracy can be measured through standard evaluation

protocols for object detection (similar to those in the PAS-

CAL VOC benchmark). We report the Mean Average Preci-

sion (MAP) for each primitive type using an overlap thresh-

old between the predicted and the true bounding box of 0.5
intersection-over-union. Table 5 compares the parser net-

work to the Faster R-CNN approach.

Our parser clearly outperforms the Faster R-CNN detector

on the squares and triangles category. With larger beam

search, we also produce slighly better results for circle de-

tection. Interestingly, our parser is considerably faster than

Faster R-CNN tested on the same GPU.

Method Circle Square Triangle Mean Speed (im/s)

Faster R-CNN 87.4 71.0 81.8 80.1 5

CSGNet, k = 10 86.7 79.3 83.1 83.0 80

CSGNet, k = 40 88.1 80.7 84.1 84.3 20

Table 5. MAP of detectors on the synthetic 2D shape dataset.

We also report detection speed measured as images/second on a

NVIDIA 1070 GPU.

5. Conclusion

We believe that our work represents a first step towards the

automatic generation of modeling programs given target vi-

sual content, which we believe is quite ambitious and hard

problem. We demonstrated results of generated programs

in various domains, including logos, 2D binary shapes, and

3D CAD shapes, as well as an analysis-by-synthesis appli-

cation in the context of 2D shape primitive detection.

One might argue that the 2D images and 3D shapes our

method parsed are relatively simple in structure or geom-

etry. However, we would also like to point out that even in

this ostensibly simple application scenario (i) our method

demonstrates competitive or even better results than state-

of-the-art object detectors, and most importantly (ii) the

problem of generating programs was far from trivial to

solve: based on our experiments, a combination of memory-

enabled networks, supervised and RL strategies, along with

beam and local exploration of the state space all seemed

necessary to produce good results. As future work, a chal-

lenging research direction would be to generalize our ap-

proach to longer programs with much larger spaces of pa-

rameters in the modeling operations and more sophisticated

reward functions balancing perceptual similarity to the in-

put image and program length. Other promising directions

would be to explore how to combine bottom-up proposals

and top-down approaches for parsing shapes, in addition to

exploring top-down program generation strategies.
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Learning Design Patterns with Bayesian Grammar Induction. In

Proc. UIST, 2012. 3

[42] O. Teboul, I. Kokkinos, L. Simon, P. Koutsourakis, and N. Para-

gios. Shape Grammar Parsing via Reinforcement Learning. In Proc.

CVPR, 2011. 2, 3

[43] S. Tulsiani, H. Su, L. J. Guibas, A. A. Efros, and J. Malik. Learning

Shape Abstractions by Assembling Volumetric Primitives. In Proc.

CVPR, 2017. 2

[44] R. J. Williams. Simple Statistical Gradient-Following Algorithms

for Connectionist Reinforcement Learning. Machine Learning, 8(3-

4):229–256, 1992. 2, 4

[45] J. Wu and J. B. Tenenbaum. Neural Scene De-rendering. In Proc.

CVPR, 2017. 2

[46] Y. Yang and D. Ramanan. Articulated pose estimation with flexible

mixtures-of-parts. In Proc. CVPR, 2011. 3

[47] A. Yuille and D. Kersten. Vision as Bayesian inference: analysis by

synthesis? Trends in Cognitive Sciences, pages 301–308, 2006. 2

[48] W. Zaremba, T. Mikolov, A. Joulin, and R. Fergus. Learning Simple

Algorithms from Examples. In Proc. ICML, 2016. 2

[49] W. Zaremba and I. Sutskever. Learning to Execute. arXiv preprint

arXiv:1410.4615, 2014. 2

[50] C. Zou, E. Yumer, J. Yang, D. Ceylan, and D. Hoiem. 3D-PRNN:

Generating Shape Primitives with Recurrent Neural Networks. In

Proc. ICCV, 2017. 2

5523

https://pytorch.org
https://3dwarehouse.sketchup.com/
https://3dwarehouse.sketchup.com/

