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Abstract

Crowd counting or density estimation is a challenging

task in computer vision due to large scale variations, per-

spective distortions and serious occlusions, etc. Existing

methods generally suffer from two issues: 1) the model av-

eraging effects in multi-scale CNNs induced by the widely

adopted ℓ2 regression loss; and 2) inconsistent estimation

across different scaled inputs. To explicitly address these

issues, we propose a novel crowd counting (density estima-

tion) framework called Adversarial Cross-Scale Consisten-

cy Pursuit (ACSCP). On one hand, a U-net structured gen-

eration network is designed to generate density map from

input patch, and an adversarial loss is directly employed to

shrink the solution onto a realistic subspace, thus attenu-

ating the blurry effects of density map estimation. On the

other hand, we design a novel scale-consistency regular-

izer which enforces that the sum up of the crowd counts

from local patches (i.e., small scale) is coherent with the

overall count of their region union (i.e., large scale). The

above losses are integrated via a joint training scheme, so

as to help boost density estimation performance by further

exploring the collaboration between both objectives. Exten-

sive experiments on four benchmarks have well demonstrat-

ed the effectiveness of the proposed innovations as well as

the superior performance over prior art.

1. Introduction

With the rapid increase of population of major cities,

crowd scene analysis [11, 33] has already become an im-

portant security technique in video surveillance [16, 20,

36]. However, generating high-quality crowd density map

(crowd count) is a challenging task due to complex illu-

mination, severe occlusions, perspective distortions and di-

verse distributions of people sizes. Among them, scale vari-

ation problem is the major obstacle.

Recent CNN-based works [20, 37, 25] utilize multi-path

architectures to address the scale variation issue and have

achieved good improvements in crowd density estimation.
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Figure 1. Two motivations of our proposed algorithm: 1) Adver-

sarial loss to “generate” density map for sharper and higher reso-

lution; 2) Cross-scale consistency constraints.

Namely, different sizes of convolutional kernels are applied

to the input images to deal with different scaled human-

s, and the convolution maps from multiple-scale paths are

fused to yield the final density estimation. However, most

of these methods suffer inherent algorithmic drawbacks. On

one hand, only traditional Euclidean loss is employed to op-

timize these models, which is known to have certain dis-

advantages [10] such as sensitivity to outliers and image

blur. In particular, although different sizes of convolutional

kernels are used to extract multi-scale features, each sub-

network path attempts to minimize the regression loss in-

dependently (i.e., multi-scale model competition) and to

predict the correct density map for patches with all human

scales. As shown in Figure 1 Motivation 1, since each scale-

specific sub-network can only work well on its correspond-

ing scale and its performance drop drastically on other s-

cales, it is easy to result in low-quality and blurry results.

On the other hand, most existing approaches do not explore

the coherence between the estimated density maps from d-

ifferent scales. Namely, the sum up of the crowd counts

from local patches (i.e., small scale) does NOT necessarily

correspond to the overall count of their region union (i.e.,

large scale) as shown in Figure 1 Motivation 2. Further, as

most algorithms employ sliding window scheme, accumu-

lation of boundary loss of local patches will affect the global

crowd count. It is thus demanding to develop a cross-scale

consistency regularization scheme which is beneficial for

further improving crowd density estimation.
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To address these issues, we propose a novel crowd count-

ing framework called Adversarial Cross-Scale Consisten-

cy Pursuit Networks (ACSCP). On one hand, inspired by

the recent success of GANs in image translation [9], we

propose a patch-to-density generation network endowed

with an adversarial training loss, to mitigate blurring ef-

fect caused by optimization only over traditional Euclidean

loss. Further, the proposed multi-scale U-net [24] genera-

tion architecture executes a pixel-wise translation from ev-

ery crowd image pixel to its corresponding density value,

which ensures high resolution and high quality density map

estimation. On the other hand, a new regularizer is pro-

posed to further enforce cross-scale model calibration and

encourage different scale paths to work collaboratively. In

particular, our model is made of two complementary den-

sity map generators: one takes large scale patch input, and

the other takes small scale patch input. We enforces that the

sum up of the crowd counts from local patches (i.e., small

scale) is coherent with the overall count of their region u-

nion (i.e., large scale). The above objectives are integrated

via a joint training scheme, so as to help boost density es-

timation performance by further exploring their collabora-

tion. Extensive experiments on four benchmarks have well

demonstrated the effectiveness of the proposed innovations

as well as the superior performance over prior art.

2. Related Work

A large number of algorithms have been proposed to

tackle crowd counting task in computer vision. Early works

estimate the number of pedestrians via head or body detec-

tion [32, 18, 31]. Such detection-based methods are limit-

ed by severe occlusions in extremely dense crowd scenes.

Methods [1, 6, 5, 12, 2, 22, 4] use regressors trained with

low-level features (e.g. HOG, SIFT, Fourier Analysis, de-

tections and trajectories) to predict global counts. These

methods cannot provide the distribution of crowd, and such

low-level features are outperformed by features extracted

from CNN [34] which have better and deeper representa-

tions.

In recent years, crowd counting has entered the era of

deep CNN. A comprehensive survey of recent CNN-based

methods for crowd counting can be found in [29]. Wang

et al. [30] trained a classic Alexnet style CNN model to

predict crowd counts. Regrettably, this model has limita-

tion in crowd analysis as it does not provide the estimation

of crowd distribution. Zhang et al. [34] proposed a deep

convolutional neural network for crowd counting which is

alternatively regressed with two related learning objectives:

crowd count and density map. Such switchable objective-

learning helps improve the performance of both objectives.

But the application of this method is limited as it requires

perspective maps which are not easily available in practice

during the process of both training and testing.

Multi-column CNN is employed by [37, 3]. Different

CNN columns with varied receptive fields are designed to

capture scale variation and perspective, and then features

from these columns are fused together by a 1×1 convo-

lutional layer to regress crowd density. Switch-CNN [25]

inspired by MCNN [37] proposes a patch-based switching

architecture before the crowd patches go into multi-column

regressors. The switch-net is trained as a classifier to intelli-

gently choose the most appropriate regressor for a particular

input patch, which takes advantage of patch-wise variation-

s in density within a single image. These methods have

made great contributions to the progress of crowd counting

by deep learning. By using max pooling layers and ℓ2 loss,

they pay more attention to the accuracy of predicted crowd

count, and neglect the quality of the regressed density map.

As a result, these poor quality maps adversely affect oth-

er higher level cognition tasks such as counting and scene

recognition which depend on them. The latest research CP-

CNN [28] proposes a contextual Pyramid CNNs for incor-

porating global and local contexts which are obtained by

learning various density levels. Contextual information is

fused with high-dimensional feature maps extracted from

a multi-column CNN by a Fusion-CNN consisting of a set

of convolutional and fractionally-strided layers. Both our

method and CP-CNN are contemporary works starting to

consider the quality of density map. Besides proposing

a patch-to-density translation through adversarial training,

we further introduce a novel regularizer to enforce cross-

scale model calibration and encourage different scale paths

to work collaboratively.

3. Methodology

3.1. Density Regression Revisited

As discussed in Section 1, recent state-of-the-art meth-

ods [34, 37, 3, 20, 25] dominantly choose L2 based loss

function to regress crowd density map. In most cas-

es [37, 3, 20, 28], to deal with human scale changes, mul-

tiple convolution paths (sub-networks) with varying sized

kernels are fused to yield the final density map prediction.

Suppose the network forward computation of scale path i is

denoted as Si, the overall loss function could be expressed

as:

L = min
F

‖F (S1, S2, S3...)−M‖
2
2 , (1)

where M is the ground truth density map and

F (S1, S2, S3...) is output map fused from multiple s-

cale paths. These state-of-the-art methods have two major

issues:

1. First, although different sizes of convolutional kernels

are utilized to extract multi-scale features [37, 28], (i.e., as

each sized kernel is sensitive to different human scales), d-

ifferent scale-paths work in a “competing way” rather than
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Figure 2. Explainations of inability of L2 regression loss for multi-

scale density estimation. Left: three scale-sensitive models; Right:

L2 regression (red) leads to model competition, which yields

degraded accuracy in all density regions, while adversarial loss

(black) encourages model collaboration, thus yields consolided

performances in all density regions.

a “collaborating way”, to deal with human scale varia-

tion. Namely, each scale-sensitive network path attempts

to minimize the regression loss independently and to pre-

dict the correct density map for patches with all human s-

cales. There, it is very easy for each sub-network to gen-

erate a blurry estimation due to the model averaging effect

(i.e., widely acknowledged to result in low-quality and blur-

ry results especially for image reconstruction tasks [9, 15]).

Indeed, this is the inherent drawback/fundamental problem

of regression based density map estimation methods, which

CANNOT be alleviated by simply applying multi-scale con-

volution paths. See explainations in Figure 2.

2. Second, there lacks a calibration among various scale-

sensitive paths of the multi-scale crowd density estimation

network. Namely, as each sub-network behaves differently

for input paths with varying human scales, given the exact-

ly same input patch, the output density maps from different

sub-networks are different (i.e., sometimes the gap might

be very significant). This directly causes unreliable density

estimation. That is, if we divide a large parent patch in-

to several non-overlapping small child patches, it is highly

possible that the sum of the human counts from all child

patches is NOT equal to the direct estimation of the human

counts from the parent patch. In other words, the existing

multi-scale crowd density estimation network is very sen-

sitive to how we extract local patches. A small change of

patch sizes might cause large error of human count estima-

tion.

To deal with these two issues, a novel crowd counting

framework called Adversarial Cross-Scale Consistency Pur-

suit Networks (ACSCP) is proposed. Details are presented

in following Sections 3.2, 3.3, 3.4.

3.2. Network Architecture

Figure 3 shows the architecture of our proposed patch-to-

density map generation network, which is partly motivated

by the recent success of pixel-to-pixel translation architec-

ture [9]. In our method, a generator network G learns an

end-to-end mapping from input crowd image patch to it-

s corresponding density map with the same scale. More

Layer Glarge Layer Gsmall

1 6 x 6 x 64 conv, stride 2 1 4 x 4 x 64 conv, stride 2

2-7 4 x 4 x 64 conv, stride 2 2-6 4 x 4 x 64 conv, stride 2

8 4 x 4 x 64 conv, stride 1 7 4 x 4 x 64 conv, stride 1

9 4 x 4 x 64 decv, stride 1 8 4 x 4 x 64 decv, stride 1

10-15 4 x 4 x 64 decv, stride 2 9-13 4 x 4 x 64 decv, stride 2

16 6 x 6 x 3 decv, stride 2 14 4 x 4 x 3 decv, stride 2

Table 1. Network architectures of Glarge and Gsmall.

specific, following [9, 21, 10], a U-net [24] structure is

employed for constructing the generator G, as an encoder-

decoder structure. To handle scale variation, we employ a

structure of two back-to-back encoder-decoder structures,

i.e., Glarge and Gsmall. These two complementary gen-

erators cooperate with each other. Generator Glarge ex-

tracts large-scale information, while Gsmall concentrates

on small-scale details. For generator Glarge, eight convo-

lutional layers along with batch normalization layers and

LeakyReLU activation layers are stacked in the encoder part

acting as feature extraction layers, which are followed by

eight deconvolutional layers along with batch normalization

layers and ReLU activation layers (except for the last one)

in the decoder part. The decoder layer is further connected

to a tanh function. Note that the deconvolutional layers are

a mirrored version of the foregone convolutional layers. In

addition, three dropout layers are added after the first three

deconvolutional layers with dropout ratio as 0.5 in order to

alleviate overfitting. Skip connections are also added be-

tween mirror-symmetry convolutional and deconvolution-

al layers to help improve the performance and efficiency.

Gsmall shares a similar structure with Glarge. The detailed

architecture parameters of generator Glarge and Gsmall are

depicted in Table 1. The input sizes are 240 × 240 and

120× 120 respectively, and the output sizes are the same as

the input ones.

3.3. Density Estimation via Adversarial Pursuit

As pointed out above, using L2 based regression for

training the multi-scale path network leads to blurry esti-

mation, because of its average effect. To alleviate this issue

and motivated by recent success of generative adversarial

networks (GANs) [7, 23, 17, 14, 19], we propose an adver-

sarial loss. The adversarial loss usually involves a Gener-

ator G and Discriminator D playing a two-player minimax

game: G is trained to generate images to fool D while D is

trained to distinguish synthetic images from ground truth.

More specifically, in our problem, the adversarial loss of

generating crowd density map from image patch is denoted

as:

LA(G,D) = Ex,y∼pdata(x,y)[logD(x,y)]+

Ex∼pdata(x)[log(1−D(x, G(x)))],
(2)

where x denotes a training patch and y denotes correspond-

ing ground-truth density map. G tries to minimize this ob-
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Figure 3. The architecture of the proposed Adversarial Cross-Scale Consistency Pursuit Networks (ACSCP). Two scale G/D jointly trained

via cross-scale consistency loss.

jective, whereas D tries to maximize it.

Our discriminative structure is illustrated in Figure 3.

The input is concatenated pairs of crowd patches and (gen-

erated/ground truth) density maps. Note that a generated

density map is exactly the same size as its ground truth

map. Five convolutional layers along with batch normal-

ization layers and LeakyReLU activation layers (except for

the last one) act as a feature extractor. A tanh function is

stacked at the end of these convolutional layers to regress

a probabilistic score ranging from -1.0 to 1.0, the value of

which indicates whether the input is real (close to 1.0) or

fake (close to -1.0). The architecture and network param-

eters are described as follows: C(48, 4, 2) − C(96, 4, 2) −
C(192, 4, 2) − C(384, 4, 1) − C(1, 4, 1) − tanh, where C

is convolutional layer and the numbers inside every brace

successively represents the number of filters, filter size and

stride. According to our multi-scale generators Glarge

and Gsmall, we have correspondingly two discriminators

Dlarge, Dsmall. Dsmall shares the same structure with

Dlarge.

The advantage of an adversarial loss over a regression

loss is as follows. As the backward gradient of tradition-

al pixel-wise Euclidean loss depends on the magnitude of

deviation of the certain pixel, it tends to incentivize a blur

when it confronts sharp edges and outliers, thus results in

average and blurry maps on image generation problem-

s [13]. An adversarial loss, however, gives each pixel a

binary judgement whether it is ‘real’ or ‘fake’, and encour-

ages matching the true distribution. It can in principle avoid

blur as well as incentivize sharp images since blurry outputs

seem unrealistic [7].

For the lack of direct punishment from ground truth, sim-

ply using an adversarial loss might sometimes results in

aberrant spatial structure even it does not exist in the input

label space, as shown in previous works [23, 9]. As sug-

gested by previous works [9, 21, 35], we further include two

conventional losses to smooth/improve the solution, which

is detailed as follows.

• Euclidean loss: In our model, ℓ2 loss is chosen to force

the estimated density map generated from G to not only fool

D but also be close to the ground truth in an L2 sense. Given

a W ×H crowd image with C channels, the pixel-wise ℓ2
loss is defined as:

LE(G) =
1

C

C
∑

c=1

∥

∥pG(c)− pGT (c)
∥

∥

2

2
, (3)

where pG(c) represents the pixels in generated density map

and pGT (c) represents the pixels in ground-truth density

map, C = 3.

• Perceptual loss: Perceptual loss is first introduced by

Johnson et al. [10] for image transformation and super res-

olution task. In our model, high-level perceptual features of
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the synthetic image and the objective image are respective-

ly extracted from a pre-trained VGG-16 [26] model at layer

relu2 2. The basic idea is: by minimizing the perceptual d-

ifferences between the two images, the synthetic image can

be more semantically similar to the objective image. For-

mally, a perceptual loss is defined as:

LP (G) =
1

C

C
∑

c=1

∥

∥

∥
fG(c)− fGT (c)

∥

∥

∥

2

2
, (4)

where fG(c) represents the pixels in high level perceptu-

al features of generated density map and fGT (c) represents

the pixels in high level perceptual features of ground-truth

density map, C = 128.

Therefore, the integrated loss is expressed as:

LI =arg min
G

max
D

LA(G,D)+

λeLE(G) + λpLP (G).
(5)

Here, λe and λp are predefined weights for Euclidean loss

and perceptual loss. Suggested by previous works [35], we

set λe = λp = 150.

3.4. CrossScale Consistency Pursuit Loss

As mentioned earlier, we propose a new regularizer

called cross-scale consistency constraint to restrain the

cross-scale consistency of parent-child-relationship density

maps. In other words, this novel constraint targets at mini-

mizing the residual error between the overall human count

estimation of a large image patch and the sum up of counts

from its four child patches (i.e., we divide the large patch

into four equal sized non-overlapping small patches). This

regularization scheme is to address the inability of previous

density estimation methods, which easily produce inconsis-

tent results since each of their multiple scale sub-networks

is ONLY sensitive to a certain human scale and these sub-

models do not work in a collaborative way (i.e., thus induces

large cross-scale errors). More specific, at training time, a

crowd patch is fed into Glarge and Gsmall to get the esti-

mated density map Pparent and four density maps Pchild.

Then, these four density maps Pchild are concatenated to

get Pconcat according to Pparent . Cross-Scale Consistency

Pursuit loss, being defined as the discrepancy/distance be-

tween Pconcat and Pparent, is computed by L2-norm in this

work. Mathematically, the Cross-Scale Consistency Pursuit

loss of a W × H density map with C channels can be de-

scribed as follows:

LC(G) =
1

C

C
∑

c=1

∥

∥pprt(c)− pcnt(c)
∥

∥

2

2
(6)

where pprt(c) represents the pixels in density map Pparent

and pcnt(c) represents the pixels in density map Pconcat,

C = 3. Via minimizing this regularizer, density estima-

tion gap between parent and child scales is forced to be s-

mall. It is worth nothing that if we know the ground-truth

human counts for child patches, we might also define ℓ2
losses for each Pchild, which may yield similar effect as the

proposed cross-scale consistency loss. We MUST empha-

size here that in most cases, we are ONLY given the overall

human count annotation for the entire image (i.e., without

any local annotation such as head locations or ground-truth

density maps), therefore ONLY our proposed cross-scale

consistency regularizer could be applied (i.e., it does not

require density map annotation, and a human count annota-

tion is sufficient). Therefore, our proposed new regularizer

is more generally applicable.

Final objective: The above four loss functions are

weightedly combined to get the final objective,

LII = LI + λcLC(G). (7)

Here, λc is predefined weight for cross-scale consistency

pursuit loss. If λc is set to 0, then two generators in our

model will be trained independently. In order to determine

its value, we have made an experiment on parameter sensi-

tivity in Section 4.4, the λc is finally set to 10.

3.5. Density Map for Training

During training and testing, paired crowd image patch

and its corresponding ground-truth density map are re-

quired. We follow the same scheme as in [34] for prepar-

ing ground-truth density maps. As all crowd datasets are

given in the form of point annotation at the center of the

head of each person, point cloud to density map conversion

is required. To this end, Gaussian kernels are applied to

match the center (mean) and area (variance) of each per-

son head. The number of Gaussian modals therefore rep-

resents the number of people in the image. To deal with

head size variations and perspective distortions on datasets

that do not provide perspective information, we follow the

method proposed by Zhang et al. [37] to utilize geometry-

adaptive Gaussian kernels to generate density maps.

3.6. Training Details

During training, inputs are image pairs composed of

a crowd patch and its corresponding density map. Such

image pair is first input to the large-scale sub-network

Glarge, which is then evenly divided into 4 equational im-

age pairs without overlapping and input to the small scale

sub-network Gsmall. Both sub-networks are trained joint-

ly. RMSprop optimizer, the learning rate of which is set to

0.00005, is used to update the parameters of our network.

We follow the rule of update as: four updates of Gsmall are

followed by one of Glarge in each iteration.

To augment training data, one of the general approaches

is to resize the input image pair to a larger size and random-
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Figure 4. Comparison of estimated density maps. First column: test image; Second column: ground-truth density maps with crowd count;

Third column: estimated density maps by our method (ACSCP); Forth column: estimated density maps by MCNN [37].

ly crop a specific sized image pair. However, in our crowd

counting task, such data augmentation is not appropriate as

image interpolation algorithms such as nearest and bilinear

inevitably change the crowd count from a density map. We

therefore replace image-resizing with image padding and

flip image pairs with a probability of 50% for data augmen-

tation in our experiments.

Our model takes about 300 epochs of training to con-

verge. For the sake of balanced training for both sub-

networks, in the first 100 epochs, the predefined weight λc

in Equation 7 is set as 0 and afterwards adjusted to 10 and

the training procedure continues. Finally, the sufficient-

ly trained generator Glarge is employed to predict density

maps for test images. Training and testing of the proposed

network are implemented on Torch7 framework.

4. Experiments

4.1. Crowd Counting Datasets

We evaluate our method on four major crowd counting

datasets:

ShanghaiTech. ShanghaiTech dataset is created by

Zhang et al. [37] that consists of 1198 annotated images, in-

cluding internet images and street view images. Our model

is trained and tested on the training and testing sets split by

author respectively. To augment the training data, we resize

all the images to 720 × 720 and crop patches from each

image. Each patch is 240 × 240 and is cropped from dif-

ferent locations. Ground-truth density maps are generated

by geometry-adaptive Gaussian kernels mentioned in Sec-

tion 3.5. At test time, a window of size 240 × 240 slides on

a test image to crop patches with 50% overlapping as inputs

of the well trained generator. The above steps are similarly

applied to the other three datasets.

WorldExpo’10. WorldExpo’10 dataset is created by

Zhang et al. [34] with 1132 annotated video sequences

captured by 108 surveillance cameras from Shanghai 2010

WorldExpo. 3380 frames are treated as training set, and

the rest 600 frames are used as test set which are sampled

from 5 different scenes, each containing 120 frames. The

pedestrians’ number in the test scene ranges from 1-220.

This dataset provides perspective maps, the value of which

represents the number of pixels in the image covering one

square meter at realistic location. Different from Shang-

haiTech dataset, we choose the crowd density distribution

kernel introduced in [34]. To follow the previous methods,

only the crowd in ROI regions are taken into consideration.

UCF CC 50. The UCF CC 50 dataset is firstly intro-

duced by Idrees et al. [8] which is a very challenging dataset

composed of 50 annotated crowd images with a large vari-

ance in crowd counts and scenes. The crowd counts range

from 94 to 4543. We follow the work of [8] and use Five-

fold cross-validation to evaluate the proposed method.

UCSD. This dataset consists of 2000 labeled frames with

size of 158 × 238. Ground truth is labeled at the center of

every pedestrian and the largest number of people is under

46. The ROI and perspective map are provided as well. In

order to cover the pedestrian contour, we choose a bivari-
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Part A Part B WorldExpo’10

Objective MAE MSE MAE MSE AMAE

LE 95.8 149.4 24.1 36.4 9.95

LI 83.2 131.3 18.4 28.8 8.48

LII 75.7 102.7 17.2 27.4 7.5

Table 2. Comparisons of errors for training with different losses.

ate normalized distribution kernel shaped ellipse to generate

density maps. We follow the same train-test setting in [5]:

800 frames from 601 to 1400 are treated as training set and

the rest 1200 frames as test set.

To follow previous works, mean absolute error (MAE)

and mean squared error (MSE) are used to evaluate the per-

formance of all comparative methods in our experiments.

4.2. Algorithmic Study

In this section, we perform a study to demonstrate the ef-

fect of adversarial pursuit and cross-scale consistency regu-

larizer.

Adversarial pursuit takes advantage of adversarial loss,

perceptual loss and U-net structured generator to improve

the quality of generated density maps as shown in Figure 4.

It is noted that our predicted density maps conform to the

distribution of crowd much better than MCNN’s with less

blur and noise. Furthermore, comparative experiments are

implemented on ShanghaiTech [37] and WorldExpo’10 [34]

datasets in Table 2. It can be observed that training with ad-

ditional adversarial loss and perceptual loss (i.e. LI ) results

in much lower errors than training with Euclidean loss only.

In order to show the effect of the cross-scale consistency

regularizer, we plot the mean human count estimation errors

between the parent patch and its corresponding sum up from

child patches, over all testing patches of various datasets

in Figure 5(a). We note that the proposed cross-scale con-

sistency regularizer effectively reduces the estimation gaps

from different scales. Figure 5(b) visualizes an example of

the residual error maps (i.e., the difference between map

of parent patch and the tiled map of its four child patch-

es), which further consolidates the effectiveness. Combined

with CSCP loss, the final loss LII achieves the superior re-

sults as indicated in Table 2. The performance improvement

highlights the benefits of exploiting adversarial training and

cross-scale consistency regularizer.

4.3. Comparisons with Stateoftheart

The proposed method is compared with several state-

of-the-art approaches on four benchmarks. The results are

shown in Table 3, 4, 5, 6. From all tables, we note that

our method consistently outperforms previous methods by a

good margin. Table 3 and Table 4 indicate comparisons on

ShanghaiTech Part B and WorldExpo’10 datasets, the im-

ages of which are closer to the realistic monitoring screens

than the others. Our proposed ACSCP obtains quite appre-
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Figure 5. (a) Comparisons of patch sum errors before and after

using CSCP loss; (b) Visualization of the effect.

Part A Part B

Methods MAE MSE MAE MSE

Zhang et al. [34] 181.8 277.7 32.0 49.8

MCNN [37] 110.2 173.2 26.4 41.3

Switch-CNN [25] 90.4 135.0 21.6 33.4

CP-CNN [28] 73.6 106.4 20.1 30.1

ACSCP (ours) 75.7 102.7 17.2 27.4

Table 3. Comparisons on ShanghaiTech dataset [37].
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Figure 6. Histogram: average crowd number estimated by different

methods on 5 groups split from Part A according to increasing

density level.

ciable improvement over prior art since a large amount of

cross-scale inconsistencies occur on these datasets . In ad-

dition, Table 5 shows that our approach acquires the best

MAE, and comparable MSE among six recent approaches

on UCF CC 50 dataset. This indicates that the proposed

approach can also achieve decent results in the case of a
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Network Zhang et al. [34] MCNN [37] Switch-CNN [25] CP-CNN [28] ACSCP (ours)

Number of parameters 22.5 0.13 15.1 68.4 5.1

Table 7. Number of parameters(in millions).

Methods S1 S2 S3 S4 S5 Ave

Zhang et al. [34] 9.8 14.1 14.3 22.2 3.7 12.9

MCNN [37] 3.4 20.6 12.9 13.0 8.1 11.6

Switch-CNN [25] 4.4 15.7 10.0 11.0 5.9 9.4

CP-CNN [28] 2.9 14.7 10.5 10.4 5.8 8.9

ACSCP (ours) 2.8 14.05 9.6 8.1 2.9 7.5

Table 4. Comparisons on WorldExpo’10 dataset [34]. Only MAE.

Methods MAE MSE

Idrees et al. [8] 419.5 541.6

Zhang et al. [34] 467.0 498.5

MCNN [37] 377.6 509.1

Cascaded-MTL [27] 322.8 341.4

Switch-CNN [25] 318.1 439.2

CP-CNN [28] 295.8 320.9

ACSCP (ours) 291.0 404.6

Table 5. Comparisons on UCF CC 50 dataset [8].

Methods MAE MSE

Kernel Ridge Regression [1] 2.16 7.45

Cumulative Attributes [6] 2.07 6.86

Zhang et al. [34] 1.60 3.31

MCNN [37] 1.07 1.35

Switch-CNN [25] 1.62 2.10

ACSCP (ours) 1.04 1.35

Table 6. Comparisons on UCSD dataset [5].

small number of training samples (i.e., UCF CC 50 has on-

ly 50 samples). In Table 6, our ACSCP attains the lowest

MAE and MSE errors over other five state-of-the-art meth-

ods on UCSD dataset, which states that our algorithm has a

good performance on estimating not only images with dense

crowd but also images with relatively sparse people (i.e., s-

ingle scene and maximum count under 46).

Furthermore, a more detailed comparison is implement-

ed on ShanghaiTech Part A, where test images are divid-

ed into five groups according to increasing number of peo-

ple. It can be observed from the histogram in Figure 6 that

our results outperform Switch-CNN and MCNN’s over al-

l groups, even in Group 5 (i.e., the group with extremely

dense crowd and very few training samples). From Table 3,

we note that CP-CNN achieves the lowest MAE on this part.

However, it seems unfair that the training process of CP-

CNN demands extra priori density-class labels (i.e., global

and local density classes) which are NOT directly provided

by datasets. Moreover, as the author said, the number of

density classes is determined by specific dataset, which is

not a general method.

Considering practical applications of crowd counting al-

gorithm, we perform a model complexity study. As shown

in Table 7, CP-CNN owns the most parameters, 500 times

more than the least MCNN, which limits its applications. In

contrast, our algorithm has the second least parameters and

it runs at 16 FPS on an Intel Core i7-6700K machine with a

TITAN X GPU.

4.4. Parameter λc Study

In order to choose the optimum value of λc in Equa-

tion 7, comparative experiments have been performed on

Part B of ShanghaiTech dataset. As shown in Figure 7,

MAE error decreases as the value of λc increases, and the

lowest error is obtained at λc = 10. After that, the error

rises rapidly because the weight of cross-scale consistency

loss becomes too significant compared to LI loss. Thus, we

finally assign 10 to λc in our experiments.

18.4

17.8

17.3 17.2

17.7

22.5

16

17

18

19

20

21

22

23

0.01 0.1 1 10 20 100

M
A

E

λc Value

Figure 7. Comparisons of MAE for different λc values on Shang-

haiTech Part B [37].

5. Conclusion

In this paper, we propose a GANs-based crowd count-

ing network which takes full advantage of excellent per-

formance of GANs in image generation. To better confine

the errors caused by different scales of crowd, we propose

a novel regularizer named Cross-Scale Consistency Pursuit

which provides a strong regularization constraint on cross-

scale crowd density estimation. Extensive experiments in-

dicate that our method achieves the superior performance

on four major crowd counting datasets used for evaluation.
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