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Abstract

Age estimation from facial images is typically cast as

a nonlinear regression problem. The main challenge of

this problem is the facial feature space w.r.t. ages is in-

homogeneous, due to the large variation in facial appear-

ance across different persons of the same age and the non-

stationary property of aging patterns. In this paper, we pro-

pose Deep Regression Forests (DRFs), an end-to-end mod-

el, for age estimation. DRFs connect the split nodes to a

fully connected layer of a convolutional neural network (C-

NN) and deal with inhomogeneous data by jointly learning

input-dependant data partitions at the split nodes and data

abstractions at the leaf nodes. This joint learning follows

an alternating strategy: First, by fixing the leaf nodes, the

split nodes as well as the CNN parameters are optimized

by Back-propagation; Then, by fixing the split nodes, the

leaf nodes are optimized by iterating a step-size free update

rule derived from Variational Bounding. We verify the pro-

posed DRFs on three standard age estimation benchmarks

and achieve state-of-the-art results on all of them.

1. Introduction

There has been a growing interest in age estimation from

facial images, driven by the increasing demands for a va-

riety of potential applications in forensic research [2], se-

curity control [24], human-computer interaction (HCI) [24]

and social media [46]. Although this problem has been ex-

tensively studied, the ability to automatically estimate ages

accurately and reliably from facial images is still far from

meeting human performance.

There are two kinds of age estimation tasks. One is real

age estimation, which is to estimate the precise biological

(chronological) age of a person from his or her facial im-

age; the other is age group estimation [37], which is to pre-

dict whether a person’s age falls within some range rather
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Figure 1. (a) The large variation in facial appearance across differ-

ent persons of the same age. (b) Facial images of a person from

childhood to adulthood. Note that, Facial aging effects appear as

changes in the shape of the face during childhood and changes in

skin texture during adulthood, respectively.

than predicting the real chronological age. In this paper, we

focus on the first task, i.e., precise age regression. To ad-

dress this problem, the key is to learn a nonlinear mapping

function between facial image features and the real chrono-

logical age. However, to learn such a mapping is challeng-

ing. The main difficulty is the facial feature space w.r.t.

ages is inhomogeneous, due to two facts: 1) there is a large

variation in facial appearance across different persons of the

same age (Fig. 1(a)); 2) the human face matures in different

ways at different ages, e.g., bone growth in childhood and

skin wrinkles in adulthood [43] (Fig. 1(b)).

To model such inhomogeneous data, existing age es-

timation methods either find a kernel-based global non-

linear mapping [23, 20], or apply divide-and-conquer s-

trategies to partition the data space and learn multiple lo-

cal regressors [25]. However, each of them has drawback-

s: Learning non-stationary kernels is inevitably biased by

the inhomogeneous data distribution and thus easily caus-

es over-fitting [5]; Divide-and-conquer is a good strategy

to learn the non-stationary age changes in human faces,

but the existing methods make hard partitions according to

ages [26, 25]. Consequently, they may not find homoge-

neous subsets for learning local regressors [29].

To address the above-mentioned challenges, we propose

differentiable regression forests for age estimation. Ran-

dom forests or randomized decision trees [3, 4, 12], are

a popular ensemble predictive model, in which each tree
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structure naturally performs data partition at split nodes and

data abstraction at leaf nodes [49]. Traditional regression

forests make hard data partitions, based on heuristics such

as using a greedy algorithm where locally-optimal hard de-

cisions are made at each split node [3]. Unlike them, the

proposed differentiable regression forests perform soft data

partition, so that an input-dependent partition function can

be learned to handle inhomogeneous data. In addition, the

input feature space and the data abstractions at leaf nodes

(local regressors) can be learned jointly, which ensures that

the local input-output correlation is homogeneous at the leaf

node.

Recently, end-to-end learning with CNN has become

very popular and has been shown to be useful for improv-

ing the performance of various computer vision tasks, such

as image classification [35], semantic segmentation [38]

and object detection [44, 13]. Our differentiable regression

forests can be seamlessly integrated with any deep network-

s, which enables us to conduct an end-to-end deep age es-

timation model, named by Deep Regression Forests (DRF-

s). To build such a tree based model, we apply an alternat-

ing optimization strategy: first we fix the leaf nodes and

optimize the data partitions at split nodes as well as the

CNN parameters (feature learning) by Back-propagation;

Then, we fix the split nodes and optimize the data abstrac-

tions at leaf nodes (local regressors) by Variational Bound-

ing [33, 57]. These two learning steps are alternatively per-

formed to jointly optimize feature learning and regression

modeling for age estimation.

We evaluate our algorithm on three standard benchmark-

s for real age estimation methods: MORPH [45], FG-

NET [42] and the Cross-Age Celebrity Dataset (CACD) [8].

Experimental results demonstrate that our algorithm outper-

forms several state-of-the-art methods on these three bench-

marks.

Our algorithm was inspired by Deep Neural Decision

Forests (dNDFs) [34] and Label Distribution Learning

Forests (LDLFs) [50], but differs in its objective (regres-

sion vs classification/label distribution learning). Extending

differentiable decision trees to deal with regression is non-

trivial, as the distribution of the output space for regression

is continuous, but the distribution of the output space for the

two classification tasks is discrete. The contribution of this

paper is three folds:

1) We propose Deep Regression Forests (DRFs), an end-

to-end model, to deal with inhomogeneous data by jointly

learning input-dependant data partition at split nodes and

data abstraction at leaf nodes.

2) Based on Variational Bounding, the convergence of

our update rule for leaf nodes in DRFs is mathematically

guaranteed.

3) We apply DRFs on three standard age estimation

benchmarks, and achieve state-of-the-art results.

2. Related Work

Age Estimation One way to tackle precise facial age es-

timation is to search for a kernel-based global non-linear

mapping, like kernel support vector regression [23] or ker-

nel partial least squares regression [20]. The basic idea is

to learn a low-dimensional embedding of the aging mani-

fold [19]. However, global non-linear mapping algorithms

may be biased [29], due to the heterogenous properties of

the input data. Another way is to adopt divide-and-conquer

approaches, which partition the data space and learn mul-

tiple local regressors. But hierarchical regression [25] or

tree based regression [40] approaches made hard partitions

according to ages, which is problematic because the subsets

of facial images may not be homogeneous for learning local

regressors. Huang et al. [29] proposed Soft-margin Mixture

of Regressions (SMMR) to address this issue, which found

homogenous partitions in the joint input-output space, and

learned a local regressor for each partition. But their regres-

sion model cannot be integrated with any deep networks as

an end-to-end model.

Several researchers formulated age estimation as an or-

dinal regression problem [7, 41, 10], because the relative

order among the age labels is also important information.

They trained a series of binary classifiers to partition the

samples according to ages, and estimated ages by summing

over the classifier outputs. Thus, ordinal regression is lim-

ited by its lack of scalability [29]. Some other researchers

formulated age estimation as a label distribution learning

(LDL) problem [15], which paid attention to modeling the

cross-age correlations, based on the observation that faces

at close ages look similar. LDL based age estimation meth-

ods [16, 17, 55, 50] achieved promising results, but the label

distribution model is usually inflexible in adapting to com-

plex face data domains with diverse cross-age correlation-

s [27].

With the rapid development of deep networks, more

and more end-to-end CNN based age estimation method-

s [46, 41, 1] have been proposed to address this non-linear

regression problem. But how to deal with inhomogeneous

data is still an open issue.

Random Forests Random forests are an ensemble of

randomized decision trees [4]. Each decision tree consists

of several split nodes and leaf nodes. Tree growing is usual-

ly based on greedy algorithms which make locally-optimal

hard data partition decisions at each split node. Thus, this

makes it intractable to integrate decision trees and deep

networks in an end-to-end learning manner. Some effort

has been made to combine these two worlds [34, 31, 36].

The newly proposed Deep Neural Decision Forests (dNDF-

s) [34] addressed this shortcoming by defining a soft par-

tition function at each split node, which enabled the deci-

sion trees to be differentiable, allowing joint learning with

deep networks. Shen et al. [50] then extended this differ-
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entiable decision tree to address label distribution learning

problems. As we mentioned in Sec. 1, our DRFs model is

inspired by these two works, but differs in the objective (re-

gression vs classification/label distribution learning). One

recent work proposed Neural Regression Forest (NRF) [48]

for depth estimation, which is similar to our DRFs. But

mathematically, the convergence of their update rule for leaf

nodes was not guaranteed.

3. Deep Regression Forests

In this section, we first introduce how to learn a single d-

ifferentiable regression tree, then describe how to learn tree

ensembles to form a forest.

3.1. Problem Formulation

Let X = R
dx and Y = R

dy denote the input and out-

put spaces, respectively. We consider a regression problem,

where for each input sample x ∈ X , there is an output tar-

get y ∈ Y . The objective of regression is to find a mapping

function g : x → y between an input sample x and its out-

put target y. A standard way to address this problem is to

model the conditional probability function p(y|x), so that

the mapping is given by ŷ = g(x) =
∫

yp(y|x)dy.

We propose to model this conditional probability by a

decision tree based structure T . A decision regression tree

consists of a set of split nodes N and a set of leaf n-

odes L. Each split node n ∈ N defines a split function

sn(·;Θ) : X → [0, 1] parameterized by Θ to determine

whether a sample is sent to the left or right subtree. Each

leaf node ℓ ∈ L contains a probability density distribution

πℓ(y) over Y , i.e,
∫

πℓ(y)dy = 1. Following [34, 50], we

use a soft split function sn(x;Θ) = σ(fϕ(n)(x;Θ)), where

σ(·) is a sigmoid function, ϕ(·) is an index function to bring

the ϕ(n)-th output of function f(x;Θ) in correspondence

with a split node n, and f : x → R
M is a real-valued fea-

ture learning function depending on the sample x and the

parameter Θ. f can take any forms. In our DRFs, it is a

CNN and Θ is the network parameter. The index function

ϕ(·) specifies the correspondence between the split nodes

and output units of f (it is initialized randomly before tree

learning). An example to demonstrate the sketch chart of

our DRFs as well as ϕ(·) is shown in Fig. 2 (There are two

trees with index functions, ϕ1 and ϕ2 for each). Then, the

probability of the sample x falling into leaf node ℓ is given

by

P (ℓ|x;Θ) =
∏

n∈N

sn(x;Θ)1(ℓ∈Lnl
)(1−sn(x;Θ))1(ℓ∈Lnr ),

(1)

where 1(·) is an indicator function and Lnl
and Lnr

denote

the sets of leaf nodes held by the subtrees Tnl
, Tnr

rooted

at the left and right children nl, nr of node n (shown in

Fig. 3), respectively. The conditional probability function
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Figure 2. Illustration of a deep regression forest (DRF). The top

red circles denote the output units of the function f parameterized

by Θ. Here, they are the units of a fully-connected (FC) layer

in a CNN. The blue and green circles are split nodes and leaf n-

odes, respectively. Two index functions ϕ1 and ϕ2 are assigned

to these two trees respectively. The black dash arrows indicate the

correspondence between the split nodes of these two trees and the

output units of the FC layer. Note that, one output unit may cor-

respond to the split nodes belonging to different trees. Each tree

has independent leaf node distribution π (denoted by distribution

curves in leaf nodes). The output of the forest is a mixture of the

tree predictions. f(·;Θ) and π are learned jointly in an end-to-end

manner.

� 

��  �� 

Figure 3. The subtree rooted at node n: Tn and its left and right

subtrees: Tnl
and Tnr .

p(y|x; T ) given by the tree T is

p(y|x; T ) =
∑

ℓ∈L

P (ℓ|x;Θ)πℓ(y). (2)

Then the mapping between x and y modeled by tree T is

given by ŷ = g(x; T ) =
∫

yp(y|x; T )dy.

3.2. Tree Optimization

Given a training set S = {(xi,yi)}
N
i=1, learning a re-

gression tree T described in Sec. 3.1 leads to minimizing

the following negative log likelihood loss:

R(π,Θ;S) = −
1

N

N
∑

i=1

log(p(yi|xi, T ))

= −
1

N

N
∑

i=1

log
(

∑

ℓ∈L

P (ℓ|xi;Θ)πℓ(yi)
)

, (3)
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where π denotes the density distributions contained by all

the leaf nodes L. Note that, optimizingR(π,Θ;S) requires

estimating both the split node parameter Θ and the density

distributions π held by leaf nodes, i.e.,

(Θ∗,π∗) = argmin
Θ,π

R(π,Θ;S). (4)

To solve Eqn. 4, we alternate the following two steps: (1)

fixing π and optimizing Θ; (2) fixing Θ and optimizing

π, until convergence or a maximum number of iterations is

reached.

3.2.1 Learning Split Nodes by Gradient Descent

Now, we discuss how to learn the parameter Θ for split n-

odes, when the density distributions held by the leaf nodes

π are fixed. Thanks to the soft split function, the tree loss

R(π,Θ;S) is differentiable with respect to Θ. The gradi-

ent of the loss is computed by the chain rules as follows:

∂R(π,Θ;S)

∂Θ
=

N
∑

i=1

∑

n∈N

∂R(π,Θ;S)

∂fϕ(n)(xi;Θ)

∂fϕ(n)(xi;Θ)

∂Θ
.

(5)

Note that in the right part of Eqn. 5, only the first term de-

pends on the tree and the second term depends only on the

specific form of the function fϕ(n). The first term is com-

puted by

∂R(π,Θ;S)

∂fϕ(n)(xi;Θ)
=

1

N

(

sn(xi;Θ)Γinr
−
(

1−sn(xi;Θ)
)

Γinl

)

,

(6)

where for a generic node n ∈ N

Γin =
p(yi|xi; Tn)

p(yi|xi; T )
=

∑

ℓ∈Ln
P (ℓ|xi;Θ)πℓ(yi)

p(yi|xi; T )
. (7)

Γin can be efficiently computed for all nodes n in the tree T
by a single pass over the tree. Observing that Γin = Γinl

+
Γinr

, the computation for Γin can be started at the leaf nodes

and conducted in a bottom-up manner. Based on Eqn. 6, the

split node parameters Θ can be learned by standard Back-

propagation.

3.2.2 Learning Leaf Nodes by Variational Bounding

By fixing the split node parameters Θ, Eqn. 4 becomes a

constrained optimization problem:

min
π

R(π,Θ;S), s.t., ∀ℓ,

∫

πℓ(y)dy = 1. (8)

For efficient computation, we represent each density distri-

bution πℓ(y) by a parametric model. Since ideally each leaf

node corresponds to a compact homogeneous subset, we as-

sume that the density distribution πℓ(y) in each leaf node is

a Gaussian distribution, i.e.,

πℓ(y) =
1

√

(2π)kdet(Σℓ)
exp(−

1

2
(y − µℓ)

TΣ−1
ℓ (y − µℓ)),

(9)

where µℓ and Σℓ are the mean and the covariance matrix of

the Gaussian distribution. Based on this assumption, Eqn. 8

is equivalent to minimizing R(π,Θ;S) w.r.t. µℓ and Σℓ.

Now, we propose to address this optimization problem by

Variational Bounding [33, 57]. In variational bounding, an

original objective function to be minimized gets replaced by

a sequence of bounds minimized in an iterative manner. To

obtain an upper bound of R(π,Θ;S), we apply Jensen’s

inequality to it:

R(π,Θ;S) = −
1

N

N
∑

i=1

log
(

∑

ℓ∈L

P (ℓ|xi;Θ)πℓ(yi)
)

= −
1

N

N
∑

i=1

log
(

∑

ℓ∈L

ζℓ(π̄;xi,yi)
P (ℓ|xi;Θ)πℓ(yi)

ζℓ(π̄;xi,yi)

)

≤ −
1

N

N
∑

i=1

∑

ℓ∈L

ζℓ(π̄;xi,yi) log
(P (ℓ|xi;Θ)πℓ(yi)

ζℓ(π̄;xi,yi)

)

= R(π̄,Θ;S)−
1

N

N
∑

i=1

∑

ℓ∈L

ζℓ(π̄;xi,yi) log
(πℓ(yi)

π̄ℓ(yi)

)

,

(10)

where ζℓ(π;xi,yi) = P (ℓ|xi;Θ)πℓ(yi)
p(yi|xi;T ) . Note that

ζℓ(π;xi,yi) has the property that ζℓ(π;xi,yi) ∈ [0, 1]
and

∑

ℓ∈L ζℓ(π;xi,yi) = 1 to ensure that Eqn. 10 holds

Jensen’s inequality. Let us define

φ(π, π̄) = R(π̄,Θ;S)−
1

N

N
∑

i=1

∑

ℓ∈L

ζℓ(π̄;xi,yi) log
(πℓ(yi)

π̄ℓ(yi)

)

.

(11)

Then φ(π, π̄) is an upper bound for R(π,Θ;S), which has

the properties that for any π and π̄, φ(π, π̄) ≥ φ(π,π) =
R(π,Θ;S) and φ(π̄, π̄) = R(π̄,Θ;S). These two prop-

erties hold the conditions for Variational Bounding.

Recall that we parameterize πℓ(y) by two parameter-

s: the mean µℓ and the covariance matrix Σℓ. Let

µ and Σ denote these two parameters held by all the

leaf nodes L. We define ψ(µ, µ̄) = φ(π, π̄), then

ψ(µ, µ̄) ≥ φ(π,π) = ψ(µ,µ) = R(π,Θ;S), which indi-

cates that ψ(µ, µ̄) is also an upper bound for R(π,Θ;S).
Assume that we are at a point µ

(t) corresponding to

the t-th iteration, then ψ(µ,µ(t)) is an upper bound

for R(µ,Θ;S). In the next iteration, µ
(t+1) is chosen

such that ψ(µ(t+1),µ) ≤ R(µ(t),Θ;S), which implies

R(µ(t+1),Θ;S) ≤ R(µ(t),Θ;S). Therefore, we can min-

imize ψ(µ, µ̄) instead of R(µ,Θ;S) after ensuring that
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R(µ(t),Θ;S) = ψ(µ(t), µ̄), i.e., µ̄ = µ
(t). Thus, we have

µ
(t+1) = argmin

µ

ψ(µ,µ(t)). (12)

The partial derivative of ψ(µ,µ(t)) w.r.t. µℓ is computed

by

∂ψ(µ,µ(t))

∂µℓ
=
∂φ(π,π(t))

∂µℓ

= −
1

N

N
∑

i=1

ζℓ(π
(t);xi,yi)

∂ log(πℓ(yi))

∂µℓ

= −
1

N

N
∑

i=1

ζℓ(π
(t);xi,yi)Σ

−1
ℓ (yi − µℓ). (13)

By setting
∂ψ(µ,µ(t))

∂µℓ
= 0, where 0 denotes zero vector or

matrix, we have

µ
(t+1)
ℓ =

∑N
i=1 ζℓ(π

(t);xi,yi)yi
∑N
i=1 ζℓ(π

(t);xi,yi)
. (14)

Similarly, we define ξ(Σ, Σ̄) = φ(π, π̄), then

Σ(t+1) = argmin
Σ

ξ(Σ,Σ(t)). (15)

The partial derivative of ξ(Σ,Σ(t)) w.r.t. Σℓ is obtained by

∂ξ(Σ,Σ(t))

∂Σℓ

=
∂φ(π,π(t))

∂Σℓ

= −
1

N

N
∑

i=1

ζℓ(π
(t);xi,yi)

∂ log(πℓ(yi))

∂Σℓ

= −
1

N

N
∑

i=1

ζℓ(π
(t);xi,yi)

[

−
1

2
Σ−1
ℓ

+
1

2
Σ−1
ℓ (yi − µ

(t+1)
ℓ )(yi − µ

(t+1)
ℓ )TΣ−1

ℓ

]

(16)

By Setting
∂ξ(Σ,Σ(t))

∂Σℓ
= 0, we have

N
∑

i=1

ζℓ(π
(t);xi,yi)

[

−Σℓ+(yi−µ
(t+1)
ℓ )(yi−µ

(t+1)
ℓ )T

]

= 0,

(17)

which leads to

Σ
(t+1)
ℓ =

∑N
i=1 ζℓ(π

(t);xi,yi)(yi − µ
(t+1)
ℓ )(yi − µ

(t+1)
ℓ )T

∑N
i=1 ζℓ(π

(t);xi,yi)
.

(18)

Eqn. 14 and Eqn. 18 are the update rule for the density dis-

tribution π held by all leaf nodes, which are step-size free

and fast-converged. One issue remained is how to initial-

ize the starting point µ
(0)
ℓ and Σ

(0)
ℓ . The simplest way is

to do k-means clustering on {yi}
N
i=1 to obtain |L| subsets,

then initialize µ
(0)
ℓ and Σ

(0)
ℓ according to cluster assign-

ment, i.e., let Ii denote cluster index assigned to yi, then

µ
(0)
ℓ =

∑N
i=1 1(Ii = ℓ)yi

∑N
i=1 1(Ii = ℓ)

,

Σ
(0)
ℓ =

∑N
i=1 1(Ii = ℓ)(yi − µ

(0)
ℓ )(yi − µ

(0)
ℓ )T

∑N
i=1 1(Ii = ℓ)

.

(19)

This initialization can be understood in this way that we first

perform data partition only according to ages by k-means,

and then the input facial feature space and output age space

are jointly learned to find homogeneous partitions during

tree building.

3.2.3 Learning a Regression Forest

A regression forest is an ensemble of regression trees F =
{T 1, . . . , T K}, where all trees can possibly share the same

parameters in Θ, but each tree can have a different set of

split functions (assigned by ϕ, as shown in Fig. 2), and

independent leaf node distribution π. We define the loss

function for a forest as the averaged loss functions of all

individual trees: RF = 1
K

∑K
k=1RT k , where RT k is the

loss function for tree T k defined by Eqn. 3. Learning the

forest F also follows the alternating optimization strategy

described in Sec. 3.2.

Algorithm 1 The training procedure of a DRF.

Require: S: training set, nB : the number of mini-batches

to update π

Initialize Θ randomly and π by Eqn. 19. Set B = {∅}
while Not converge do

while |B| < nB do

Randomly select a mini-batch B from S
Update Θ by computing gradient (Eqn. 20) on B

B = B
⋃

B

end while

Update π by iterating Eqn. 14 and Eqn. 18 on B
B = {∅}

end while

To learn Θ, by referring to Fig. 2 and our derivation in

Sec. 3.2.1, we have

∂RF

∂Θ
=

1

K

N
∑

i=1

K
∑

k=1

∑

n∈Nk

∂RT k

∂fϕk(n)(xi;Θ)

∂fϕk(n)(xi;Θ)

∂Θ
,

(20)

where Nk and ϕk(·) are the split node set and the index

function of T k, respectively. The index function ϕk(·) for

each tree is randomly assigned before tree learning, which

means the split nodes of each tree are connected to a ran-

domly selected subset of output units of f . This strategy
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is similar to the random subspace method [28], which can

increase the randomness in training to reduce the risk of

overfitting.

As each tree in the forest F has its own leaf node dis-

tribution π, we update them independently according to E-

qn. 14 and Eqn. 18. In our implementation, we do not con-

duct this update scheme on the whole dataset S but on a

set of mini-batches B. The training procedure of a DRF is

shown in Algorithm. 1.

In the testing stage, the output of the forest F is given by

averaging the predictions from all the individual trees:

ŷ = g(x;F) =
1

K

K
∑

k=1

g(x; T k)

=
1

K

K
∑

k=1

∫

yp(y|x; T k)dy

=
1

K

K
∑

k=1

∫

y
∑

ℓ∈Lk

P (ℓ|x;Θ)πℓ(y)dy

=
1

K

K
∑

k=1

∑

ℓ∈Lk

P (ℓ|x;Θ)µℓ, (21)

where Lk is the leaf node set of the k-th tree. Here, we

take the fact that the expectation of the Gaussian distribution

πℓ(y) is µℓ.

4. Experiments

In this section we introduce the implementation details

and report the performance of the proposed algorithm as

well as the comparison to other competitors.

4.1. Implementation Details

Our realization of DRFs is based on the public available

“caffe” [32] framework. Following the recent deep learn-

ing based age estimation method [46], we use the VGG-16

Net [51] as the CNN part of the proposed DRFs.

Parameters Setting The model-related hyper-

parameters (and the default values we used) are: number of

trees (5), tree depth (6), number of output units produced

by the feature learning function (128), iterations to update

leaf-node predictions (20), number of mini-batches used

to update leaf node predictions (50). The network training

based hyper-parameters (and the values we used) are:

initial learning rate (0.05), mini-batch size (16), maximal

iterations (30k). We decrease the learning rate (×0.5) every

10k iterations.

Preprocessing and Data Augmentation Following the

previous method [41], faces are firstly detected by using a

standard face detectior [52] and facial landmarks are local-

ized by AAM [11]. We perform face alignment to guarantee

all eyeballs stay at the same position in the image.

FGNET 

MORPH 

CACD 

2 30 45 8 23 63 

18 36 19 39 55 53 

61 31 43 53 25 16 

Figure 4. Some examples of MORPH [45], FG-NET [42] and

CACD [8]. The number below each image is the chronological

age of each subject.

Data augmentation is crucial to train good deep network-

s. We augment the training data by: (a) cropping images at

random offsets, (b) adding gaussian noise to the original

images, (c) randomly flipping (left-right).

4.2. Experimental Results

4.2.1 Evaluation Metric

The performance of age estimation is evaluated in terms of

mean absolute error (MAE) as well as Cumulative Score

(CS). MAE is the average absolute error over the testing

set, and the Cumulative Score is calculated by CS(l) = Kl

K
·

100%, where K is the total number of testing images and

Kl is the number of testing facial images whose absolute

error between the estimated age and the ground truth age is

not greater than l years. Here, we set the same error level

5 as in [7, 9, 30], i.e., l = 5. Note that, because only some

methods reported the Cumulative Score, we are only able to

give CS values for some competitors.

4.2.2 Performance Comparison

In this section we compare our DRFs with other state-of-

the-art age estimation methods on three standard bench-

marks: MORPH [45], FG-NET [42] and the Cross-Age

Celebrity Dataset (CACD) [8]. Some examples of these

three datasets are illustrated in Fig. 4.

MORPH We first compare DRFs with other state-of-

the-art age estimation methods on MORPH, which is the

most popular dataset for age estimation. MORPH contains

more than 55,000 images from about 13,000 people of d-

ifferent races. Each of the facial image is annotated with

a chronological age. The ethnicity of MORPH is very un-

balanced, as more than 96% of the facial images are from

African or European people.

Existing methods adopted different experimental set-

tings on MORPH. The first setting (Setting I) is introduced

in [7, 9, 19, 53, 47, 46, 1], which selects 5,492 images

of Caucasian Descent people from the original MORPH

dataset, to reduce the cross-ethnicity effects. In Setting I,

these 5,492 images are randomly partitioned into two sub-

sets: 80% of the images are selected for training and others
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Method MAE CS

Human workers [25] 6.30 51.0 %*

AGES [18] 8.83 46.8 %*

MTWGP [58] 6.28 52.1%*

CA-SVR [9] 5.88 57.9%

SVR [19] 5.77 57.1%

OHRank [7] 6.07 56.3%

DLA [53] 4.77 63.4 %*

Rank [6] 6.49 49.1%*

Rothe et al. [47] 3.45 N/A

DEX [46] 3.25 N/A

dLDLF [50] 3.02 81.3%

ARN [1] 3.00 N/A

DRFs(ours) 2.91 82.9%

Table 1. Performance comparison on MORPH [45] (Setting I)(*:

the value is read from the reported CS curve).

for testing. The random partition is repeated 5 times, and

the final performance is averaged over these 5 different par-

titions. The second setting is used in [16, 50, 15, 14], under

which all of the images in MORPH are randomly split into

training/testing (80%/20%) sets. And also the random split-

ting is performed 5 times repeatedly. The final performance

is obtained by averaging the performances of these 5 dif-

ferent splitting. There are also several methods [20, 22, 56]

using the third setting (Setting III), which randomly selected

a subset (about 21,000 images) from MORPH and restrict-

ed the ratio between Black and White and the one between

Female and Male are 1:1 and 1:3, respectively. For a fair

comparison, we test the proposed DRFs on MORPH under

all these three settings. The quantitative results of the three

settings are summarized in Table 1, Table 2 and Table 3, re-

spectively. As can be seen from these tables, DRFs achieve

the best performance on all of the settings, and outperform

the current state-of-the-arts with a clear margin. There is

only one method, dLDLF [50], which can achieve slightly

worse result than DRFs (for setting II), as this method is

also based on differentiable decision forests, but used for

label distribution learning.

FG-NET We then conduct experiments on FG-

NET [42], a dataset also widely used for age estimation.

It contains 1002 facial images of 82 individuals, in which

most of them are white people. Each individual in FG-NET

has more than 10 photos taken at different ages. The im-

ages in FG-NET have a large variation in lighting condi-

tions, poses and expressions.

Following the experimental setting used in [54, 19, 5, 9,

46], we perform “leave one out” cross validation on this

dataset, i.e., we leave images of one person for testing and

take the remaining images for training. The quantitative

comparisons on FG-NET dataset are shown in Table 4. As

can be seen, DRFs achieve the state-of-the-art result with

3.85 MAE. Note that, it is the only method that has a MAE

Method MAE CS

IIS-LDL [16] 5.67 71.2%*

CPNN [17] 4.87 N/A

Huerta et al. [30] 4.25 71.2%

BFGS-LDL [15] 3.94 N/A

OHRank [7] 3.82 N/A

OR-SVM [6] 4.21 68.1%*

CCA [21] 4.73 60.5%*

LSVR [23] 4.31 66.2%*

OR-CNN [41] 3.27 73.0%*

SMMR [29] 3.24 N/A

Ranking-CNN [10] 2.96 85.0%*

DLDL [14] 2.42 N/A

dLDLF [50] 2.24 N/A

DRFs(ours) 2.17 91.3%

Table 2. Performance comparison on MORPH [45] (Setting II)(*:

the value is read from the reported CS curve).

Method MAE

KPLS [20] 4.18

Guo and Mu [22] 3.92

CPLF [56] 3.63

DRFs(ours) 2.98

Table 3. Performance comparison on MORPH [45] (Setting III).

below 4.0. The age distribution of FG-NET is strongly bi-

ased, moreover, the “leave one out” cross validation poli-

cy further aggravates the bias between the training set and

the testing set. The ability of overcoming the bias between

training and testing sets indicates that the proposed DRFs

can handle inhomogeneous data well.

Method MAE CS

Human workers [25] 4.70 69.5%*

Rank [6] 5.79 66.5%*

DIF [25] 4.80 74.3%*

AGES [18] 6.77 64.1%*

IIS-LDL [16] 5.77 N/A

CPNN [17] 4.76 N/A

MTWGP [58] 4.83 72.3%*

CA-SVR [9] 4.67 74.5%

LARR [19] 5.07 68.9%*

OHRank [7] 4.48 74.4%

DLA [53] 4.26 N/A

CAM [39] 4.12 73.5%*

Rothe et al. [47] 5.01 N/A

DEX [46] 4.63 N/A

DRFs (Ours) 3.85 80.6%

Table 4. Performance comparison on FG-NET [42](*: the value is

read from the reported CS curve).
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Trained on Dex [46] dLDLF [50] DRFs (Ours)

CACD (train) 4.785 4.734 4.637

CACD (val) 6.521 6.769 5.768

Table 5. Performance comparison on CACD (measured by

MAE) [8].

CACD CACD [8] is a large dataset which has around

160,000 facial images of 2,000 celebrities. These celebri-

ties are divided into three subsets: the training set which is

composed of 1,800 celebrities, the testing set that has 120

celebrities and the validation set containing 80 celebrities.

Following [46], we evaluate the performance of the models

trained on the training set and the validation set, respec-

tively. The detailed comparisons are shown in Table .5.

The proposed DRFs model performs better than the com-

petitor DEX [46], no matter which set they are trained on.

It’s worth noting that, the improvement of DRFs to DEX is

much more significant when they are trained on the valida-

tion set than the training set. This result can be explained in

this way: As we described earlier, the inhomogeneous da-

ta is the main challenge in training age estimation models.

This challenge can be alleviated by enlarging the scale of

training data. Therefore, DEX and our DRFs achieve com-

parable results when they are trained on the training set. But

when they are trained on the validation set, which is much

smaller than the training set, DRFs outperform DEX sig-

nificantly, because we directly address the inhomogeneity

challenge. Therefore, DRFs are capable of handling inho-

mogeneous data even learned from a small set.

4.3. Discussion

4.3.1 Visualization of Learned Leaf Nodes

To better understand DRFs, we visualize the distributions at

leaf nodes learned on MORPH [45] (Setting I) in Fig. 5(b).

Each leaf node contains a Gaussian distribution (the vertical

and horizontal axes represent probability density and age,

respectively). For reference, we also display the histogram

of data samples (the vertical axis) with respect to age (the

horizontal axis). Observed that, the mixture of these Gaus-

sian distributions learned at leaf nodes is very similar to the

histogram of data samples, which indicates our DRFs fit the

age data well. The age data in MORPH was sampled most-

ly below age 60, and densely concentrated around 20’s and

40’s. So the Gaussian distribution centered around 60 has

much larger variance than those centered in the interval be-

tween 20 and 50, but has smaller probability density. This is

because although these learned Gaussian distributions rep-

resent homogeneous local partitions, the number of sam-

ples is not necessarily uniformly distributed among parti-

tions. Another phenomenon is these Gaussian distributions

are heavily overlapped, which accords with the fact that d-

ifferent people with the same age but have quite different

facial appearances.

(a) (b) 

Figure 5. (a) Histogram of data samples with respect to age on

MORPH [45] (Setting I). (b) Visualization of the learned leaf node

distributions in our DRFs (best viewed in color).
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Figure 6. Performance changes by varying (a) tree number and (b)

tree depth on MORPH [45] (Setting I).

4.3.2 Parameter Discussion

The tree number and tree depth are two important hyper-

parameters for our DRFs. Now we vary each of them and

fix the other one to the default value to see how the perfor-

mance changes on MORPH (Setting I). As shown in Fig. 6,

using more trees leads to a better performance as we expect-

ed, and with the tree depth increase, the MAE first becomes

lower and then stable.

5. Conclusion

We proposed Deep Regression Forests (DRFs) for age

estimation, which learn nonlinear regression between in-

homogeneous facial feature space and ages. In DRFs, by

performing soft data partition at split nodes, the forests can

be connected to a deep network and learned in an end-to-

end manner, where data partition at split nodes is learned

by Back-propagation and data abstraction at leaf nodes is

optimized by iterating a step-size free and fast-converged

update rule derived from Variational Bounding. The end-

to-end learning of split and leaf nodes ensures that partition

function at each split node is input-dependent and the local

input-output correlation at each leaf node is homogeneous.

Experimental results showed that DRFs achieved state-of-

the-art results on three age estimation benchmarks.
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Deep neural decision forests. In Proc. ICCV, pages 1467–

1475, 2015.

[35] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

Proc. NIPS, pages 1106–1114, 2012.

[36] C. Lee, P. W. Gallagher, and Z. Tu. Generalizing pooling

functions in cnns: Mixed, gated, and tree. IEEE Trans. Pat-

tern Anal. Mach. Intell., 40(4):863–875, 2018.

[37] G. Levi and T. Hassner. Age and gender classification using

convolutional neural networks. In Proc. CVPR Workshops,

pages 34–42, 2015.

2312



[38] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional

networks for semantic segmentation. In Proc. CVPR, pages

3431–3440, 2015.

[39] K. Luu, K. Seshadri, M. Savvides, T. D. Bui, and C. Y. Suen.

Contourlet appearance model for facial age estimation. In

Proc. IJCB, pages 1–8, 2011.

[40] A. Montillo and H. Ling. Age regression from faces using

random forests. In Proc. ICIP, pages 2465–2468, 2009.

[41] Z. Niu, M. Zhou, L. Wang, X. Gao, and G. Hua. Ordinal

regression with multiple output cnn for age estimation. In

Proc. CVPR, 2016.

[42] G. Panis, A. Lanitis, N. Tsapatsoulis, and T. F. Cootes.

Overview of research on facial ageing using the FG-NET

ageing database. IET Biometrics, 5(2):37–46, 2016.

[43] N. Ramanathan, R. Chellappa, and S. Biswas. Age pro-

gression in human faces: A survey. J. Vis. Lang. Comput.,

15:3349 – 3361, 2009.

[44] S. Ren, K. He, R. B. Girshick, and J. Sun. Faster R-CNN:

towards real-time object detection with region proposal net-

works. IEEE Trans. Pattern Anal. Mach. Intell., 39(6):1137–

1149, 2017.

[45] K. Ricanek and T. Tesafaye. MORPH: A longitudinal im-

age database of normal adult age-progression. In Proc. FG,

pages 341–345, 2006.

[46] R. Rothe, R. Timofte, and L. V. Gool. Deep expectation

of real and apparent age from a single image without facial

landmarks. International Journal of Computer Vision, 2016.

[47] R. Rothe, R. Timofte, and L. V. Gool. Some like it hot -

visual guidance for preference prediction. In Proc. CVPR,

pages 5553–5561, 2016.

[48] A. Roy and S. Todorovic. Monocular depth estimation using

neural regression forest. In Proc. CVPR, 2016.

[49] W. Shen, K. Deng, X. Bai, T. Leyvand, B. Guo, and Z. Tu.

Exemplar-based human action pose correction and tagging.

In Proc. CVPR, pages 1784–1791, 2012.

[50] W. Shen, K. Zhao, Y. Guo, and A. Yuille. Label distribution

learning forests. In Proc. NIPS, 2017.

[51] K. Simonyan and A. Zisserman. Very deep convolution-

al networks for large-scale image recognition. CoRR, ab-

s/1409.1556, 2014.

[52] P. A. Viola and M. J. Jones. Rapid object detection using a

boosted cascade of simple features. In Proc. CVPR, pages

511–518, 2001.

[53] X. Wang, R. Guo, and C. Kambhamettu. Deeply-learned

feature for age estimation. In Proc. WACV, pages 534–541,

2015.

[54] S. Yan, H. Wang, X. Tang, and T. S. Huang. Learning auto-

structured regressor from uncertain nonnegative labels. In

Proc. ICCV, pages 1–8, 2007.

[55] X. Yang, X. Geng, and D. Zhou. Sparsity conditional energy

label distribution learning for age estimation. In Proc. IJCAI,

pages 2259–2265, 2016.

[56] D. Yi, Z. Lei, and S. Z. Li. Age estimation by multi-scale

convolutional network. In Proc. ACCV, pages 144–158,

2014.

[57] A. Yuille and A. Rangarajan. The concave-convex proce-

dure. Neural Computation, 15(4):915–936, 2003.

[58] Y. Zhang and D.-Y. Yeung. Multi-task warped gaussian pro-

cess for personalized age estimation. In Proc. CVPR, pages

2622–2629, 2010.

2313


