
Neural Style Transfer via Meta Networks

Falong Shen1∗ Shuicheng Yan2,3 Gang Zeng1

1Peking University 2360 AI Institute 3National University of Singapore

{shenfalong,zeng}@pku.edu.cn, yanshuicheng@360.cn

Abstract

In this paper we propose a noval method to generate

the specified network parameters through one feed-forward

propagation in the meta networks for neural style transfer.

Recent works on style transfer typically need to train image

transformation networks for every new style, and the style is

encoded in the network parameters by enormous iterations

of stochastic gradient descent, which lacks the generaliza-

tion ability to new style in the inference stage. To tackle

these issues, we build a meta network which takes in the

style image and generates a corresponding image transfor-

mation network directly. Compared with optimization-based

methods for every style, our meta networks can handle an

arbitrary new style within 19 milliseconds on one modern

GPU card. The fast image transformation network generated

by our meta network is only 449 KB, which is capable of

real-time running on a mobile device. We also investigate

the manifold of the style transfer networks by operating the

hidden features from meta networks. Experiments have well

validated the effectiveness of our method. Code and trained

models will be released.

1. Introduction

Style transfer is a long-standing problem that aims to mi-

grate a style from a reference style image to another input

picture [6, 7, 8, 12, 19]. This task consists of two steps: (i)

texture extraction from the style image and (ii) rendering

the content image with the texture. For the first step, lots of

methods have been proposed to represent the texture, most

of which exploit the deep mid-layer features from the pre-

trained convolutional neural network (CNN) [9]. Gatys et al.

used the second-order statistics between feature activations

across all channels in their pioneer work [9], while Li et

al. [23] found the channel-wise feature statistics (e.g., mean

and variance) are enough to give similar performance on

representing the texture. For the second step, Gatys et al. [9]

used a gradient-descent-based method to find an optimal

∗This work was done when Falong Shen was an intern at 360 AI.

�ݐ݁� ͳͲͲ~ݏ�ݎ�ݐ݁݊ ��

�݉�݃݁ ݊�ݐ�݉ݎ݂ݏ݊�ݎݐ ݏ�ݎ�ݐ݁݊ ~ͳ ��
ݐݑ݊�݁ݐ�ݎ݁݊݁�

ݐݑ݊�

ݐݑݐݑ
Figure 1: Flowchart of the meta network solution for neural style

transfer. The new style image is uploaded to the meta networks,

which generate an image transformation network by performing

one forward propagation (cost about 20 ms). The architecture

(layer numbers, filter kernel size, etc.) of the image transformation

network is pre-defined while the weight values are generated by

meta networks. Once the image transformation network is generat-

ed, it is able to real-time transfer any content image to the target

style.

image, which minimizes the distance to both the content

image and the style image. Despite the surprising success,

their method needs thousands of iterations of gradient de-

scent through large networks for a new input image. Re-

cently, Johnson et al. [17] proposed an image transformation

network, solving the gradient-descent-based optimization

problem by one feed-forward propagation under the condi-

tion of a fixed style image. The effectiveness of this method

indicates that the texture information of a style image can be

encoded in one convolutional network. Several other work-

s on image transformation networks have been proposed

ever since the neural art transfer has emerged, but these

pre-trained image transformation networks are limited to

single [33, 21] or several styles [5, 22, 35]. Given a new

style image, the image transformation network has to be re-

trained end-to-end by an enormous number of iterations of

stochastic gradient descent (SGD) to encode the new texture,

which limits its scalability to large numbers of styles.

Let us re-think how the image transformation network

replaces the gradient-descent-based optimization. It uses a

CNN to learn a direct-mapping from the input image to the

near-optimal solution image [17]. To obtain such an image

43218061

transformation network, we need to minimize the empirical

loss on the training content images for a fixed style image,

which can be solved by SGD [17].

Inspired by the work [17] which indicates the gradient-

descent-based optimization is not the only method to find

the local minima for a content image, we would further ask

a question, “Is SGD the only method to get the solution

network for a new style image? "

As the target output is a near-optimal network and the

input is a style image, it is natural to build a direct mapping

between the two domains. Instead of SGD, we propose to

build a meta network which takes in the style image and

produces the corresponding image transformation network

as shown in Figure 1.

The meta network is composed of a frozen VGG-16 net-

work [31] which extracts texture features from the given

style image, and a series of fully connected layers to project

the texture features to the transformation network space. It

is optimized by the empirical risk minimization across both

the training content images and the style images. In this way,

for the first time, we provide a new approach to generate an

image transformation network for neural style transfer. We

name it the “meta network” because it is able to generate

different networks for different style images. The model

architecture is depicted in Figure 2.

The image transformation network is embedded as a hid-

den vector in the bottle-neck layer of the meta network. By

interpolating the embedding hidden vectors of two network-

s induced from two real textures, we verify that the meta

network generalizes the image textures rather than simply

memorizing them.

Recently many progresses have been made in video style

transfer on mobile device [13, 1]. The meta network enjoys

the feature of the separation of style image and content im-

age, which means that the user can upload a style image

to the cloud server and download the corresponding image

transformation network generated by the meta network. The

generated image transformation network from the meta net-

work is capable of real-time running on a mobile device.

The contributions of this paper are summarized as fol-

lows:

• We address the network generation task and provide

a meta network to generate networks for neural style

transfer. Specifically, the meta network takes in the new

style image and produces a corresponding image trans-

formation network in one feed-forward propagation.

• Our method provides an explicit representation of im-

age transformation networks for neural style transfer,

which enables texture synthesis and texture generation

naturally.

• The generated networks from the meta network have

similar performance compared with SGD-based meth-

ods, but with orders of magnitude faster speed (19 ms

vs. 4 h) to adapt to a new style.

• We provide a new perspective on algorithm design for

neural style transfer, which indicates convolutional neu-

ral networks can be applied to optimization problems.

2. Related Work

Hypernetworks and Meta Networks. A hypernetwork is

a small network which is used to generate weights for a

larger network. HyperNEAT [32] takes in a set of virtual

coordinates to produce the weights. Recently, Ha et al. [11]

proposed to use static hypernetworks to generate weights for

a convolutional neural network and to use dynamic hypernet-

works to generate weights for recurrent networks, where they

took the hypernetwork as a relaxed form of weight sharing.

The works on meta networks adopt a two-level learning,

where a slow learning of a meta-level model performing

across tasks and a rapid learning of a base-level model acting

within each task [25, 34]. Munkhdalai and Yu [26] proposed

a kind of meta networks for one-shot classification via fast

parameterizations for the rapid generalization . Similarly

to our works, dynamic filter networks were proposed to

generated filters dynamically conditioned on an input [28,

15].

Style Transfer. Gatys et al. [9] for the first time proposed

the combination of content loss and style loss based on

the pre-trained neural networks on ImageNet [4]. They ap-

proached the optimal solution image with hundreds of gra-

dient descent iterations and produced high quality results.

Then [17] proposed to use image transformation networks

to directly approach the near-optimal solution image instead

of gradient descent. However, it needs to train an image

transformation network for each new style, which is time

consuming.

Recently, considerable improvements on [9] have been

made. Instead of using the gram matrix of feature map-

s to represent the style, Li et al. [23] demonstrated that

several other loss functions can also work, especially the

mean-variance representation that is much more compact

than the gram matrix representation while giving similar per-

formance. There are also other representations of the style,

such as histogram loss [30], MRF loss [20] and CORAL

loss [29]. Chen et al. [2] built a explicit representation for

each style. Dumoulin et al. [5] proposed to use conditional

instance normalization to accommodate each style. This

method adjusts the weights of each channel of features and

successfully represents many different styles. Unfortunately,

it cannot be generalized to a new style image. Huang and

Belongie [14] found matching the mean-variance statistics of

features from VGG-16 between the style image and the input

image is enough to transfer the style. Although this method

is able to process arbitrary new style, it heavily relies on a

43228062

Content Loss

Style Loss

Style Image Content Image

Transferred Image

VGG-16

Image Transformation Network

hidden filters

Figure 2: Model architecture. The style image is fed into the fixed VGG-16 to get the style feature, which goes through two

fully connected layers to construct the filters for each conv layer in the corresponding image transformation network. We

fixed the scale and bias in the instance batchnorm layer to 1 and 0. The dimension of hidden vector is 1792 without

specification. The dimension of filters vector is in the range from 1× 105 to 2× 106, depending on the size of image

transformation networks. The hidden features are connected with the filters of each conv layer of the network in a group

manner to decrease the parameter size, which means a 128 dimensional hidden vector for each conv layer. Then we compute

the style loss and the content loss for the transferred image with the style image and the content image respectively through the

fixed VGG-16.

VGG-16 network to encode the image and also decode the

feature by a corresponding network, which makes it difficult

to control the model size. Chen and Schmidt [3] introduced

a style swap layer to handle an arbitrary style transfer. Sim-

ilar to [14] they also proposed to adjust the feature in the

content image towards the style image but in a patch-by-

patch manner, which is much slower. Another concurrent

works by [10] propose learning to predict the conditional

instance normalization parameters from a style image. Simi-

lar to [14] their method also exploit the the mean-variance

statistics of features and their image transformation network

has less freedom to adapt to different styles comparing to

our method.

3. Meta Networks for Neural Style Transfer

To find the optimal point of a function, gradient descent is

typically adopted. To find the optimal function for a specific

task, the traditional method is to parameterize the function

and optimize the empirical loss function on the training data

by SGD.

In this paper, we propose meta networks to find the near-

optimal network for neural style transfer directly, which will

be detailed in this section.

3.1. Definition of Neural Style Transfer

Neural style transfer was first proposed by Gatys et al. [9]

to render a content image in the style of another image based

on features extracted from a pre-trained deep neural network

like VGG-16 [31]. For a pair of given images (Is, Ic), the

target of neural style transfer is to find an optimal image I

which minimizes the perceptual loss function to combine the

style of Is and the content of Ic:

min
Ix

PLoss(Ix|Ic, Is), (1)

where the perceptron loss function PLoss is defined as the

Euclidean distances between the output features from two

perceptrons

λc||CP(I)− CP(Ic)||
2
2 + λs||SP(I)− SP(Is)||

2
2. (2)

In the formulation of Gatys et al. [9], the content perceptron

CP is defined as the features from VGG-16 relu3_3 and

the style perceptron SP is defined as the gram matrix of

features from VGG-16 relu1_2, relu2_2, relu3_3 and

relu4_3. λs and λc are scalars which are used to balance

the importance of the content image and the style image.

For a fixed content image Ic and a fixed style image Is,

it is straightforward to apply the gradient descent method

to Equation 1 as the loss function is founded on the con-

volutional neural network which is differentiable. Started

from a random image I0, the gradient information from

back-propagation is used to synthesize an image to minimize

the loss function. According to the definition of the loss

function of neural style transfer, this method often produces

high quality results for the given style images and content

images because gradient descent method is good at finding

local minima. However, it needs hundreds of optimization

iterations to get a converged result for each sample, which

can bring a large computation burden.

43238063

3.2. Fast Neural Style Transfer via Image Transfor
mation Networks

If the style image Is is fixed, then for a given content im-

age Ic, there is always a solution image I∗x which minimizes

the loss function in Equation 1. The optimal image I∗x can

be approached by gradient descent. That is, there always

exists a mapping function

N : Ic| → I∗x . (3)

A simple solution to get the mapping functionN in Equation

3 is to construct both the domain {Ic} and the domain {I∗x}
and train an end-to-end neural network by SGD using a pre-

defined loss function. Instead of explicitly finding out the

solution image I∗x for every content image Ic, Johnson et

al. [17] approached the image transformation networks by

optimized the empirical risk minimization (ERM) problem

across a large natural image dataset,

min
w

∑

Ic∈Dc

PLoss(Ix|Ic, Is), (4)

where Ix = N (Ic;w) and N is the image transformation

network which is parameterized by w. Ic is the content im-

age from a large natural image dataset Dc and Is is a fixed

given style image. The content image Ic is used as one of

the supervised target in the Ploss function as well as input

features to the transformation network N . The image trans-

formation network N is optimized using the gradient of the

parameters by back propagation. Once the training stage is

finished, we get an image transformation network N which

encodes the style of Is in parameter w. For a new content

image Ic, it only needs a forward propagation through the

transformation network N to generate the transferred image

I∗x .

3.3. Meta Networks for Neural Style Transfer

To find an image transformation network N (·;w) which

is parameterized by w for a given style image Is, it needs

tens of thousands of SGD iterations to get a satisfied net-

work. That is to say, there is always an image transformation

network N for every style image Is,

Is
SGD
−−−→ N (·;w∗). (5)

The architecture (layer numbers, filter kernel size, etc.) of

the network N is pre-defined and is only parameterized by

w∗ (weight value). To achieve the target of supervised train-

ing, we can construct the style image domain {Is} and the

network parameter domain {w∗}. Once the two domains are

built explicitly, it is straightforward to train an end-to-end

neural networks by minimizing a pre-defined loss function.

However, there are two defects in this explicit method. First-

ly, it is time consuming to get an optimal w∗ for every style

image Is. Second, even though the domain {Is} and the

domain {w∗} have been built, it is difficult to measure the

distance between two networks which is necessary in defin-

ing the loss function.

To avoid the above defects, we propose an implicit way to

get the transformation network N (·;w∗) by a meta network:

MetaN : Is → N (·;w). (6)

Here the meta network is parameterized by θ. In the training

stage, the parameter θ is optimized by minimizing the empir-

ical loss across a dataset of content images Dc and a dataset

of style images Ds by

min
θ

∑

Ic∈Dc

∑

Is∈Ds

PLoss(Ix|Ic, Is), (7)

where Ix = N (Ic;wθ) and wθ = MetaN (Is; θ). In the

training stage, the style image Is is used as one of the su-

Algorithm 1 Minibatch SGD training of meta networks for neural style transfer. We use k = 20, m = 8, λc = 1 and λs = 250
in our experiments.

for number of training iterations do
• Sample a style image Is.

for k steps do
• Feed-forward propagation of the meta network to get the transformation network

w ← metaN (Is; θ).

• Sample minibatch of m input images {I
[1]
c , ..., I

[m]
c }.

• Feed-forward propagation of the transformation network N (·;w) to get transferred images {I [1], ..., I [m]}.
• Compute the content loss and style loss and update θ

∇θ

m
∑

i=1

(

λc||(CP(I [i])− CP(I
[i]
c))||22 + λs||(SP(I [i])− SP(Is))||

2
2

)

.

end for

end for

43248064

pervised target in the Ploss function as well as input image

to the meta network MetaN . The content image Ic is also

used as the supervised target in the Ploss function as well

as input initial image to the transformation network N . In

the inference stage, the meta network takes in a new style

image Is as input and generates a transformation networkN
which is able to transfer any given content image Ic towards

the style image Is.

Both the style image Is and the content image Ic are taken

as inputs in Equation 7. According to our experiments, the

training of meta networks will collapse if the pair of (Is, Ic)
changes too frequently. As is shown in [17], for every given

style image Is, there exists an optimal w∗. In the training

stage it needs iterations of SGD steps to update the meta

network parameter θ in order to produce an appropriate w

for the given style image Is. Algorithm 1 details the training

strategy.

4. Experiment

4.1. Implementation Details

The meta networks for neural style transfer are trained

on the content images from MS-COCO [24] trainval set and

the style images from the test set of the WikiArt dataset [27].

There are about 120k images in MS-COCO trainval set and

about 80k images in the train set of WikiArt. During training,

each content image or style image is resized to keep the

smallest dimension in the range [256, 480], and randomly

cropped regions of size 256 × 256. We use Adam [18]

with fixed learning rate 0.001 for 600k iterations without

weight decay. The batch size of content images is 8 and the

meta network is trained for 20 iterations before changing

the style image. The transferred images are regularized

with total variations loss with a strength of 10. Our image

transformation network shares the same structure with [17],

except that we remove the Tanh layer at last and the instance

BN layer after the first Conv layer.

Gatys et al. [9] firstly proposed to use the gram matrix

of features to represent the style. Recently Li et al. [23]

found the mean-variance representation of the style is much

more compact while having similar performance. Therefore

in this paper, we adopt the mean-variance representation of

the style. We compute the content loss at the relu3_3 lay-

er and the style loss at layers relu1_2, relu2_2,relu3_3

and relu4_3 of VGG-16. The weight of content loss is 1
while the weight of style loss is 250. The content loss is the

Euclidean distance between two feature maps of the content

image and the transferred image while the style loss is the

Euclidean distance between the mean and stand deviations

of two feature maps of the style image and the transferred

image.

Our code is based on Caffe [16]. Training a meta network

takes about 3 days on four modern GPUs. The results are

shown in Figure 3. We tested three kinds of image trans-

formation networks. The dim32 version is similar to the

architecture proposed in [17] while dim16 version has half

the feature channel numbers and dim8 version has a quarter.

Figure 3(a) plots the training curves for image transforma-

tion networks with different feature channel numbers. As it

is shown in Figure 3(b), the trained meta networks perform

well on the test set of 40k style images and reach a much

lower perceptron loss comparing to the baseline of the initial

content images. In our experiments, the converged loss-

es on the training styles and testing styles are both around

4.0 × 105, which equal approximately 200 steps of gradi-

ent descent in [9] (our own implementation) as shown in

Figure 3(c). While the converged loss of meta networks is

still relatively large, the transferred images from even the

Iterations
0 100k 200k 300k 400k 500k 600k

T
ra

in
in

g
 L

o
s
s

×10
5

3

4

5

6

7

8

9

10

dim8

dim16

dim32

0 1 2 3 4 5

Perceptron loss (1e6)

0

0.5

1

1.5

2

2.5

3

3.5

4

p
ro

p
o

rt
io

n
 (

%
)

dim32

dim16

dim8

content image

50 100 150 200 250 300

Iteration of SGD

0

0.5

1

1.5

2

2.5

P
e

rc
e

p
tr

o
n

 l
o

s
s

#10
6

(a) Perceptron loss in the training stage (b) Statistics on 40k testing styles (c) Gradient descent optimization for 40 styles.

Figure 3: The meta network is trained over 80k style images in the train set and the training loss converges to about 4.0× 10
5 in figure (a).

dim32 denotes the filter numbers is 32 in the first conv layer of the image transformation network. The same to dim16 and dim8 .

After the training of the meta networks, we evaluate the performance on 40k style images in the test set. We compute the average perceptron

loss of 100 content images for every style image in the test set. The changing of the perceptron loss distribution across 40k style images

in the test set is depicted in figure (b). The perceptron losses of the initial content images are concentrated on 3.5 × 10
6 and the meta

network moves them to around 4.0× 10
5. In figure (c) we compare the gradient descent method and compute the perceptron loss over 40

styles. The perceptron loss of the images from meta networks equals about 200 gradient descent steps.

43258065

(a) Input (b) Style (c) Gatys et al. (d) John et al. (e) Ours (e) Ours-Fast

Figure 4: Qualitative Comparisons of different methods. Both the style images and the content images are unseen in the train set for our

model.

Table 1: Comparison of different models. Our image transfor-

mation networks share a similar structure with [17] but our meta

networks are much faster to encode the new style. The model in

Huang and Belongie [14] can also be adapted to the new style

efficiently at the price of relying on a VGG-16 network in the trans-

ferring stage. As comparison, our meta network only needs a 449

KB model in the transferring stage, which is capable of executing

on a mobile device. Both the style image and content image are

resized to 256× 256. Time is measured on a Pascal Titan X GPU.

Method Encode Transfer Model†

Gatys et al. [9] N/A 9.52 s N/A

Johnson et al. [17] 4 h 15 ms 7 MB

Chen and Schmidt [3] 0.4 s 0.17 s 10 MB

Huang and Belongie [14] 27 ms 18 ms 25 MB

Ours 19 ms 15 ms 7 MB

Ours-Fast 11 ms 8 ms 449 KB

dim8 generated model still seem visually good as displayed

in Figure 5. Both the style images and content images in the

test stage are not observed in the train set. We do not use

any cherry-picking for style images or content images.

4.2. Comparison with Other Methods

We compare our method with other style transfer methods

to evaluate its effectiveness and efficiency. Gatys et al. [9]

proposed to find the optimal image by gradient descent and

Johnson et al. [17] proposed to find the near-optimal im-

age transformation network by SGD. Compared with these

†We compare the model size of image transformation networks as it is

often used to real-time transfer content images.

two previous works, our meta network produces the im-

age transformation network for each style by one forward-

propagation. As the gradient-descent-based optimization

and direct-mapping-based optimization share the same loss

function, we make the comparison in terms of the converged

loss, transferred image quality and running speed.

We show example style transfer results of different meth-

ods in Figure 4. Visually, there is no significantly difference

between the three methods. Note that both the style images

and the content images are unseen during the training stage

of our meta networks while the model in [17] needs to be

specifically trained end-to-end for every style. The image

transformation network of our model and the model in [17]

share the same architecture. Our model can be easily gen-

eralized to any new style by only one forward propagation

of the meta network. According to our experiments, it costs

about 19 ms to produce an image transformation network

which is used in [17] for a single Titan X GPU card. Table

1 lists the advantages and defects of these methods. The

gradient descent method of optimization in [9] is flexible

but cannot process images in real time. The method of [14]

is restricted by the VGG-16 network. Our method enjoys

the flexibility while can process images in real time for both

encoding the style and transferring images.

4.2.1 Difference with SGD solution

Comparing to [17], our meta network also takes in all the

style features and generates almost the whole image transfor-

mation networks. Similar to SGD solution, our meta network

has both the complete supervised information (all style fea-

tures) and the total freedom (the weight values of almost the

43268066

Figure 5: Examples of style transfer by the fast version of our meta

networks. Both the style images and content images are unseen in

the training stage. The size of image transformation network is 449

KB, which is able to real-time execute on a mobile device. Best

viewed in color.

Layer Activation size

Input style image 3× 256× 256
VGG-16 perceptron 1920× 1

FC, 1792× 1920 1792× 1
Group FC, group = 14 ∼ 1.1× 105

Input content image 3× 256× 256
Reflection Padding (40× 40) 3× 336× 336

8× 9× 9 conv, stride 1 8× 336× 336
16× 3× 3 conv, stride 2 16× 168× 168
32× 3× 3 conv, stride 2 32× 84× 84
Residual block, 32 filters 32× 80× 80
Residual block, 32 filters 32× 76× 76
Residual block, 32 filters 32× 72× 72
Residual block, 32 filters 32× 68× 68
Residual block, 32 filters 32× 64× 64
16× 3× 3 deconv, stride 2 16× 128× 128
8× 3× 3 deconv, stride 2 8× 256× 256
3× 9× 9 conv, stride 1 3× 256× 256

Table 2: The fast version of image transformation networks and

its corresponding meta network. Every conv layer except for

the first and the last is followed by a instance batchnorm layer

and a relu layer sequentially, which are omitted in the table for

clarity. The meta network is in the purple region, which takes

in a style image and gets the 1920-dim style features from VGG-

16 perceptron. The style features go through two fully connected

layers to generate the parameters for the filters of the conv layers

in the pink region of the image transformation network. The

filters of the conv layers in the gray region are jointly trained

with meta networks and are fixed in the inference stage. There is

no parameters in other layers of the image transformation network.

whole image transformation networks). Therefore our image

transformation networks can adopt any other useful structure,

which is the same with SGD. To show the adaptive ability of

the meta network for different styles, we have experimented

with much smaller image transformation networks (449 K-

B) and the network architecture is characterized in Table 2.

This small and fast image transformation network also gives

satisfying results as shown in Figure 5.

4.2.2 Difference with AdaIN solution

Recently Huang and Belongie [14] also proposed an ap-

proach which can process an arbitrary style. They transfer

images by adjusting the statistics (mean and std deviations)

of the feature map in AdaIN layer and achieve surprisingly

good results. However, their model needs to encode the

image by fixed VGG and decoding the features also requires

a VGG-like architecture. This makes their image transfor-

mation network relatively large (∼25 MB). The difference

between this work and our method lies in the freedom of

image transformation network for different style images.

Huang and Belongie [14] align the mean and variance of the

content feature maps to those of style feature map, which

means the style image only injects a 1024-dim vector to

influence one layer in image transformation networks. The

influence is quite limited because not all style features in su-

pervised training stage is used and only one layer is changed

for different styles. The high-level encoded features from

VGG are important in [14] and they rely on VGG for both

style image and image transformation networks. In the work

by [14], both the encoder (fixed to VGG) and decoder (by

training) of the image transformation network is fixed except

the AdaIN layer to adapt to a new style image. Although

the image transformation network is large (∼25 MB), it has

little freedom for a new style image, while our method gen-

erates the weight values of the whole image transformation

network to adapt to a new style image.

4.3. Additional Experiments

In this subsection, we further explore the fascinating fea-

tures of the network manifold from the meta network.

Texture Visualization. After one forward-propagation,

the meta network encodes the style image into the image

Figure 6: Texture Visualization. The first row displays style

images and the second row displays the corresponding textures

encoded in the image transformation networks.

43278067

Figure 7: Interpolations of different styles. The fist two rows show the combination of two styles in the hidden state. In the third row, by

feeding the content image to the meta network we can get an identity transformation network, which enables the control of the strength of

the other style.

14

224

Figure 8: Randomly generated styles at varying hidden state h ∈ {14, 224}.

transformation network. To better understand what kind of

target style is learned, we visualize the texture by feeding

Gaussian white noise as the content image to the image

transformation network to get the uniform texture. Figure 6

displays the image-texture pair.

Style Interpolation. Because of an explicit representa-

tion of every network, we could compute the linear inter-

polation of the hidden states and get a sensible network,

which proves the space continuity in the network manifold.

Figure 7 displays interpolations of hidden states between

two real styles. These style images do not come from the

training style images. The first and last columns contain

images transferred by real style images while the images

in between are the results of linear interpolation in hidden

states. In the third row, we treat the content image as the

style image and get an identity transformation

network. By interpolating the hidden state of the identi-

ty transformation network and style image transformation

network, we can control the strength of the style.

Texture Generation. Our meta network could also pro-

duce sensible texture given random hidden states. Figure 8

shows some representative stylish images drawn uniformly

from the hidden state. We observe varied light exposure,

color and pattern. The meta network works well, possessing

a large diversity of styles. We compare the effects of the

varying dimensions of hidden states. Apparently, the large

dimension of hidden states makes better style images.

5. Conclusion

In this paper we introduce the meta networks, a novel

method to generate the near-optimal network instead of s-

tochastic gradient descent for neural style transfer. The meta

network takes in a new style image and produces the cor-

responding image transformation network. Our approach

provides an efficient solution to real time neural style trans-

fer of any given style. We also explore the network manifold

by operating on the hidden state in the meta network. From

the experimental results that validate the faster speed of our

method with similar performance, we can see that meta net-

works and direct-mapping for optimization have a successful

application to neural style transfer.

ACKNOWLEDGEMENT This work is supported by

the National Key Research and Development Program of

China (2017YFB1002601) and National Natural Science

Foundation of China (61375022,61403005,61632003).

43288068

References

[1] D. Chen, J. Liao, L. Yuan, N. Yu, and G. Hua. Coherent

online video style transfer. arXiv preprint arXiv:1703.09211,

2017.

[2] D. Chen, L. Yuan, J. Liao, N. Yu, and G. Hua. Stylebank: An

explicit representation for neural image style transfer. arXiv

preprint arXiv:1703.09210, 2017.

[3] T. Q. Chen and M. Schmidt. Fast patch-based style transfer

of arbitrary style. arXiv preprint arXiv:1612.04337, 2016.

[4] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-

Fei. Imagenet: A large-scale hierarchical image database. In

Computer Vision and Pattern Recognition, 2009. CVPR 2009.

IEEE Conference on, pages 248–255. IEEE, 2009.

[5] V. Dumoulin, J. Shlens, and M. Kudlur. A learned representa-

tion for artistic style. 2017.

[6] A. A. Efros and W. T. Freeman. Image quilting for texture

synthesis and transfer. In Proceedings of the 28th annual

conference on Computer graphics and interactive techniques,

pages 341–346. ACM, 2001.

[7] A. A. Efros and T. K. Leung. Texture synthesis by non-

parametric sampling. In Computer Vision, 1999. The Pro-

ceedings of the Seventh IEEE International Conference on,

volume 2, pages 1033–1038. IEEE, 1999.

[8] M. Elad and P. Milanfar. Style-transfer via texture-synthesis.

arXiv preprint arXiv:1609.03057, 2016.

[9] L. A. Gatys, A. S. Ecker, and M. Bethge. A neural algorithm

of artistic style. arXiv preprint arXiv:1508.06576, 2015.

[10] G. Ghiasi, H. Lee, M. Kudlur, V. Dumoulin, and J. Shlens.

Exploring the structure of a real-time, arbitrary neural artistic

stylization network. arXiv preprint arXiv:1705.06830, 2017.

[11] D. Ha, A. Dai, and Q. V. Le. Hypernetworks. arXiv preprint

arXiv:1609.09106, 2016.

[12] D. J. Heeger and J. R. Bergen. Pyramid-based texture analy-

sis/synthesis. In Proceedings of the 22nd annual conference

on Computer graphics and interactive techniques, pages 229–

238. ACM, 1995.

[13] H. Huang, H. Wang, W. Luo, L. Ma, W. Jiang, X. Zhu, Z. Li,

and W. Liu. Real-time neural style transfer for videos. In

Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 783–791, 2017.

[14] X. Huang and S. Belongie. Arbitrary style transfer in real-

time with adaptive instance normalization. arXiv preprint

arXiv:1703.06868, 2017.

[15] X. Jia, B. De Brabandere, T. Tuytelaars, and L. V. Gool.

Dynamic filter networks. In Advances in Neural Information

Processing Systems, pages 667–675, 2016.

[16] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-

shick, S. Guadarrama, and T. Darrell. Caffe: Convolutional

architecture for fast feature embedding. In Proceedings of the

22nd ACM international conference on Multimedia, pages

675–678. ACM, 2014.

[17] J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual losses for

real-time style transfer and super-resolution. In European

Conference on Computer Vision, pages 694–711. Springer,

2016.

[18] D. Kingma and J. Ba. Adam: A method for stochastic opti-

mization. arXiv preprint arXiv:1412.6980, 2014.

[19] J. E. Kyprianidis, J. Collomosse, T. Wang, and T. Isenberg. S-

tate of the" art”: A taxonomy of artistic stylization techniques

for images and video. IEEE transactions on visualization and

computer graphics, 19(5):866–885, 2013.

[20] C. Li and M. Wand. Combining markov random fields and

convolutional neural networks for image synthesis. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 2479–2486, 2016.

[21] C. Li and M. Wand. Precomputed real-time texture synthesis

with markovian generative adversarial networks. In European

Conference on Computer Vision, pages 702–716. Springer,

2016.

[22] Y. Li, C. Fang, J. Yang, Z. Wang, X. Lu, and M.-H. Yang. Di-

versified texture synthesis with feed-forward networks. arXiv

preprint arXiv:1703.01664, 2017.

[23] Y. Li, N. Wang, J. Liu, and X. Hou. Demystifying neural

style transfer. arXiv preprint arXiv:1701.01036, 2017.

[24] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-

manan, P. Dollár, and C. L. Zitnick. Microsoft coco: Common

objects in context. In European Conference on Computer Vi-

sion, pages 740–755. Springer, 2014.

[25] T. M. Mitchell, S. B. Thrun, et al. Explanation-based neu-

ral network learning for robot control. Advances in neural

information processing systems, pages 287–287, 1993.

[26] T. Munkhdalai and H. Yu. Meta networks. arXiv preprint

arXiv:1703.00837, 2017.

[27] K. Nicol. Painter by numbers. wikiart.

https://www.kaggle.com/c/painter-by-numbers, 2016.

[28] H. Noh, P. Hongsuck Seo, and B. Han. Image question an-

swering using convolutional neural network with dynamic

parameter prediction. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 30–38,

2016.

[29] X. Peng and K. Saenko. Synthetic to real adaptation with deep

generative correlation alignment networks. arXiv preprint

arXiv:1701.05524, 2017.

[30] E. Risser, P. Wilmot, and C. Barnes. Stable and controllable

neural texture synthesis and style transfer using histogram

losses. arXiv preprint arXiv:1701.08893, 2017.

[31] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556, 2014.

[32] K. O. Stanley, D. B. D’Ambrosio, and J. Gauci. A hypercube-

based encoding for evolving large-scale neural networks. Ar-

tificial life, 15(2):185–212, 2009.

[33] D. Ulyanov, V. Lebedev, A. Vedaldi, and V. Lempitsky. Tex-

ture networks: Feed-forward synthesis of textures and stylized

images. In Int. Conf. on Machine Learning (ICML), 2016.

[34] R. Vilalta and Y. Drissi. A perspective view and survey of

meta-learning. Artificial Intelligence Review, 18(2):77–95,

2002.

[35] H. Zhang and K. Dana. Multi-style generative network for

real-time transfer. arXiv preprint arXiv:1703.06953, 2017.

43298069

