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Figure 1. Exemplar stylized results by the proposed Avatar-Net, which faithfully transfers the Lena image by arbitrary style.

Abstract

Zero-shot artistic style transfer is an important image

synthesis problem aiming at transferring arbitrary style into

content images. However, the trade-off between the gener-

alization and efficiency in existing methods impedes a high

quality zero-shot style transfer in real-time. In this pa-

per, we resolve this dilemma and propose an efficient yet

effective Avatar-Net that enables visually plausible multi-

scale transfer for arbitrary style. The key ingredient of our

method is a style decorator that makes up the content fea-

tures by semantically aligned style features from an arbi-

trary style image, which does not only holistically match

their feature distributions but also preserve detailed style

patterns in the decorated features. By embedding this mod-

ule into an image reconstruction network that fuses multi-

scale style abstractions, the Avatar-Net renders multi-scale

stylization for any style image in one feed-forward pass.

We demonstrate the state-of-the-art effectiveness and effi-

ciency of the proposed method in generating high-quality

stylized images, with a series of successive applications in-

clude multiple style integration, video stylization and etc.

1. Introduction

Unlike taking days or months to create a particular artis-

tic style by a diligent artist, modern computational meth-

ods have enabled fast and reliable style creation for natural

images. Especially inspired by the remarkable representa-

tive power of convolutional neural networks (CNNs), the

seminal work by Gatys et al. [8, 9] discovered that multi-

level feature statistics extracted from a trained CNN no-

tably represent the characteristics of visual styles, which

boosts the development of style transfer approaches, either

by iterative optimizations [9, 16, 30, 20] or feed-forward

networks [5, 13, 18, 20, 31, 28, 29, 25, 3]. However, a

dilemma in terms of generalization and quality versus ef-

ficiency hampers the availability of style transfer for arbi-

trary style. Since the optimization-based approaches render

visually plausible results for various styles at the sacrifice

of executing efficiency[9, 16, 30], while the feed-forward

networks are either restricted by a finite set of predefined

styles [5, 13, 18, 20, 31, 28], or simplify the zero-shot trans-

fer with compromised visual quality [12, 25, 29].

Valuable efforts have been devoted to solving this

dilemma. A common practice is employing external style

signals to supervise the content modification [12, 25, 31, 29,

3] on a feed-forward network. But these methods require

the networks trained by the perceptual loss [13], which has

been known instable and produces compromised stylized

patterns [10, 30]. In contrast, another category [19, 4] ma-

nipulates the content features under the guidance of the style

features in a shared high-level feature space. By decoding

the manipulated features back into the image space with

a style-agnostic image decoder, the reconstructed images

will be stylized with seamless integration of the style pat-

terns. However, current techniques may either over-distort

the content and add unconstrained patterns [19], or fail to

retrieve complete style patterns when large domain gap ex-
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ists between the content and style features [4].

Facing the aforementioned challenges, we propose a

zero-shot style transfer model Avatar-Net that follows a

similar style-agnostic paradigm [19, 4] in the aforemen-

tioned latter category. Specifically, we introduce a novel

patch-based style decorator module that decorates the con-

tent features with the characteristics of the style patterns,

while keeps the content semantically perceptible. The style

decorator does not only match the holistic style distribu-

tion, but also explicitly retrieves detailed style patterns

without distortion. In the meanwhile, other than auto-

encoders [4, 19, 3] for semantic feature extraction and style-

agnostic image decoder, we introduce an innovative hour-

glass network with multiple skip connections for multi-

scale holistic style adaptation. It is thus straightforward to

perform multi-scale zero-shot style transfer by 1) extract-

ing the content and style features via its encoding module,

2) decorating the content features by the patch-based style

decorator, and 3) progressively decoding the stylized fea-

tures with multi-scale holistic style adaptation. Note that the

proposed hourglass network is trained solely to reconstruct

natural images. As shown in Fig. 1, the proposed Avatar-

Net can synthesize visually plausible stylized Lena images

for arbitrary style. Comprehensive evaluations have been

conducted to compare with the prior style transfer meth-

ods [12, 4, 19, 13], our method achieves the state-of-the-art

performance in terms of both visual quality and efficiency.

Our contributions in this paper are threefold: (1) A

novel patch-based feature manipulation module named as

style decorator, transfers the content features to semanti-

cally nearest style features and simultaneously minimizes

the discrepancy between their holistic feature distributions.

(2) A new hourglass network equipped with multi-scale

style adaptation enables visually plausible multi-scale trans-

fer for arbitrary style in one feed-forward pass. (3) Theoret-

ical analysis proves that the style decorator module owns

superior transferring ability, and the experimental results

demonstrate the effectiveness of the proposed method with

superior visual quality and economical processing cost.

2. Related Work

Style transfer is a kind of non-realistic rendering tech-

niques [15] that is closely related to texture synthesis [6, 7].

It usually exploits local statistics for efficient cross-view

dense correspondences and texture quilting [11, 6, 26, 21].

Although these methods produce appealing stylized im-

ages [26, 21], dense correspondences are limited to a pair

of images with similar contents, thus inapplicable to zero-

shot style transfer.

Optimization-based Stylization. Gatys et al. [9, 8] at the

first time formulated the style as multi-level feature corre-

lations (i.e., Gram matrix) from a trained neural network

for image classification, and defined the style transfer as

an iterative optimization problem that balances the content

similarity and style affinity in the feature level (or termed

as perceptual loss [13]). A number of variants have been

developed thereafter to adapt this framework to different

scenarios and requirements, including photorealistic render-

ing [23], semantically composite transfer [2], temporal co-

herence [24] and so on. Changing the global style statistics

into Markovian feature assembling, a similar framework is

also proposed for semantic image synthesis [16]. Despite

visual appealing performances for arbitrary style, the results

are not stable [24, 30] and the perceptual loss usually re-

quires careful parameter tunning for different styles [10].

Moreover, the inefficiency of the optimization-based ap-

proaches restrains real-time applications.

Feed-Forward Approximation. Recent researches [13, 28,

17, 31, 3, 25, 29, 18, 5] try to tackle the complexity issue

by approximating the iterative back-propagating procedure

to feed-forward neural networks, either trained by the per-

ceptual loss or Markovian generative adversarial loss [17].

However, [13, 28, 17] have to train a independent network

for every style. To strengthen the representation power for

multiple styles, StyleBank [3] learns filtering kernels for

styles and Li et al. [18] transfered styles by binary selection

units, as well as Dumoulin et al. proposed conditional in-

stance normalization [5] controlled by channel-wise statis-

tics learned for each style. But the manually designed style

abstractions are often short for the representation of un-

seen styles and the combinational optimization over multi-

ple styles often compromises the rendering quality [20, 10].

Zero-shot Style Transfer. To achieve zero-shot style trans-

fer in a feed-forward network, Huang et al. [12] adjusted

channel-wise statistics of the content features by adaptive

instance normalization (AdaIN), and trained a feature de-

coder by a combinational scale-adapted content and style

losses. Chen et al. [4] swapped the content feature patches

with the closest style features (i.e. Style-Swap) at the inter-

mediate layer of a trained auto-encoder, while Li et al. [19]

transferred multi-level style patterns by recursively apply-

ing whitening and coloring transformation (WCT) to a set

of trained auto-encoders with different levels. However,

AdaIN over-simplifies the transferring procedure and Style-

Swap cannot parse sufficient style features when content

and style images are semantically different. WCT is the

state-of-the-art method, but the holistic transformation may

results in distorted style patterns in the transferred features,

and generate unwanted patterns in the output image.

The proposed zero-shot style transfer is related to [19,

4, 12]. But the style decorator improves AdaIN and WCT

as it reserves the detailed style patterns rather than the pa-

rameterized feature statistics. It also outperforms Style-

Swap as it effectively parses the complete set of style fea-

tures regardless of their domain gap. Moreover, the pro-

posed network performs multi-scale style adaptation in one
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(b) Content Image (c) Style-Swap

The Starry Night
Vincent Van Gogh

(a) Style Image (d) Style Decorator

Figure 2. Style patterns are overlaid onto the content patches ac-

cording to their semantic similarity rather than their texture agree-

ment. (a) and (b) are the style and content images. (c)-(d) are the

results by Style-Swap [4] and the proposed style decorator. Style-

Swap pays too much attention on the textural similarity, thus re-

ceives fewer high-level style patterns.

feed-forward pass, which surpasses AdaIN and WCT since

AdaIN requires a style-oriented image decoder and WCT

needs a set of recursive feed-forward passes to enable multi-

scale style transfer.

3. Style Transfer via Feature Manipulation

Let a trained feed-forward network extract the features

in the bottleneck layer for an image x as z = Eθenc
(x) ∈

R
H×W×C , with height H , width W and channel C. The

extracted features are decoded via x̃ = Dθdec
(z) to the re-

constructed images. The encoder and decoder modules are

parameterized by θenc and θdec, respectively.

Denote zc and zs as the features for the content image xc

and style image xs. By transferring zc into the domain of

zs, it is desired that the transferred features zcs = F(zc; zs)
infer the spatial distribution of the content features and the

textural characteristics of the style features. The key chal-

lenge is to design a feature transfer module that both holisti-

cally adapts the domain of zcs to that of zs and semantically

links elements in zcs to paired elements in zs and zc.

3.1. Revisiting Normalized Cross­correlation

A type of modules generates zcs by non-parametrically

swapping the patches in zc by their nearest neighbors in zs.

It encourages concrete style patterns in zcs and explicitly

binds zc and zcs by their spatial distributions.

Normalized Cross-correlation (NCC). It is one effective

metric for patch-wise nearest neighbor searching [16, 4], by

scoring the cosine distance between a content patch φi(zc)
and a style patch φj(zs) and returning the nearest patch

φi(zcs) = argmax
j∈{1,...,Ns}

〈φi(zc), φj(zs)〉

‖φi(zc)‖‖φj(zs)‖
, i ∈ {1, . . . , Nc}.

However, each φi(zc) is required to compare with any patch

in zs. Thanks to the GPU accelerated convolution opera-

tions, NCC can be converted into several steps of efficient

convolutions, such as the way applied in Style-Swap [4, 16].

Discussions. Although concrete style patterns are preserved

in zcs, it is highly biased towards the content features in zc,

since it suggests the matched style patches strictly follow

the local variations as the content patches. Therefore, the

spiral patterns in sky in Vincent Van Gogh’s starry night

cannot be propagated to a sky patch in the content image,

as shown in Fig. 2. And only a limited portion of style pat-

terns are parsed to assemble zcs when the domain of zc and

that of zs are far apart, as depicted by the swapping proce-

dure shown in Fig. 3(c). Thus the stylized images preserve

more content patterns with only a small portion of seman-

tically aligned style patterns. In fact, two patches can be

matched as long as they are paired in some forms of seman-

tic agreement rather than this over-restrictive patch similar-

ity. It means that a desired patch matching can be invariant

to their domain gap and the patches are paired by compar-

ing their local statistics in a common space that the textural

characteristics have been dispelled.

3.2. Style Decorator

To resolve drawbacks raised from the existing feature

transfer modules, we propose a novel style decorator mod-

ule that robustly propagates the thorough style patterns onto

the content features so that the distributions of zcs and zs

are maximally aligned and the detailed style patterns are se-

mantically perceptible in zcs. It is achieved by a relaxed

cross correlation between patches in a normalized coordi-

nate that sufficiently whitens the textures from the original

feature spaces for both features. The swapped normalized

features z̄cs explicitly correspond to the original style fea-

tures, thus from which we are able to reconstruct the styl-

ized features zcs that both statistically follow the style of zs
and the spatial layout of the content feature zc. The style

decorator is achieved by a three-step procedure:

Step-I: Projection. We project zc and zs onto the same

space, written as z̄c and z̄s, with sufficient compactness and

similar scale in magnitude. In detail, the projection opera-

tion for the content (style) feature is

z̄c = Wc ⊗ (zc − µ(zc)), z̄s = Ws ⊗ (zs − µ(zs)), (1)

where ⊗ denotes convolutional operator, and the whitening

kernels Wc and Ws are derived by some forms of whiten-

ing matrices onto the covariance matrices C(zc) and C(zs).
And µ(zc) and µ(zs) are the mean features. z̄c and z̄s keep

the characteristics from their original data, but both of them

statistically follow standard normal distribution.

Step-II: Matching and Reassembling. In this normalized

domain, we want to align any element in z̄c with the near-

est element in z̄s, so as to reconstruct z̄c by reassembling

the corresponded elements in z̄s. In this case, the reassem-

bled normalized style features z̄cs contains concrete nor-

malized style patterns but their spatial layouts come from

the normalized content features. Therefore, the matching

and reassembling operations seamlessly incorporate the de-

sired content and style characteristics in the resultant z̄cs .

8244



(a) AdaIN (b) WCT (c) Style-Swap (d) Style Decorator

Figure 3. Comparison of distribution transformation by different feature transfer modules. (a) AdaIN cannot completely dispel the textures

from zc and propagate enough style textures to zcs. (b) WCT has optimal matching between G(zcs) and G(zs) but it introduces rare

patterns observed in the transformed features. (c) Style-Swap matches patches from zc and zs, and thus only captures the overlapped

features. (d) Style decorator matches the normalized features z̄c and z̄s, the generated zcs parses all possible style patterns to the content

features. The red boxes show the normalization and the green boxes visualize the normalized cross-correlation.

Cubist

Figure 4. Stylization controlled by different patch size. With an

increasing patch size, the stylized image tends to be more blocky

like the geometric patterns in the style image cubist.

Inputs
A
daIN

ZC
A

Figure 5. Both ZCA and AdaIN are effective for the projection

and reconstruction steps. AdaIN will preserve a bit more amount

of content patterns but it is much more efficient than ZCA.

We apply the patch matching and reassembling via the

help of normalized cross-correlation, which can be effi-

ciently transformed into several convolutional operations as

z̄cs = Φ(z̄s)
⊤ ⊗ B(Φ̄(z̄s)⊗ z̄c), (2)

where Φ(z̄s) ∈ R
P×P×C×(H×W ) is the style kernel con-

sists of patches in z̄s, and P is the patch size. In addition,

Φ̄(z̄s) is the normalized style kernel that is divided by the

channel-wise ℓ2 norm of each patch. The patch matching

procedure is at first convolving the normalized content fea-

ture z̄c with Φ̄(z̄s) and then binarizing the resultant scores

(i.e., B(·)) such that the maximum value along the channel

is 1 and the rest are 0. Then the reassembling procedure ap-

plies a deconvolutional operation by Φ(z̄s)
⊤ to regenerate

the style patterns from the binary scores.

This patch matching between z̄c and z̄s parses effec-

tive and complete correspondences since z̄c and z̄s have the

maximal overlap with each other, thus each element in z̄c

can find a suitable correspondence in z̄s whilst possibly ev-

ery element in z̄s can be well retrieved, as demonstrated

in Fig. 3(d). The matching and reassembling step actually

adds two style-controlled convolutional layers to the feed-

forward network and thus its implementation is usually ef-

ficient in modern deep learning platforms.

Step-III: Reconstruction. After reorganizing the normal-

ized style patches into z̄cs, we will reconstruct it into the

domain of the style feature zs. In detail, we apply the color-

ing transformation with respect to zs into the reassembled

feature, the reconstruction of the stylized feature is

zcs = Cs ⊗ z̄cs + µ(zs), (3)

where the coloring kernel Cs is also derived from the co-

variance matrix C(zs).

Discussions. Similar as WCT and AdaIN, the projection

and reconstruction steps are designed to encourage that

the second-order statistics of the stylized feature zcs to be

matched to those of the style feature zs
1, i.e., their Gram

matrices G(zs) ≃ G(zcs). Actually, we may employ Adap-

tive Instance Normalization (AdaIN) [12], or Zero-phase

Component Analysis (ZCA) [14] used in WCT [19] as the

whitening and coloring kernels. Whitened features z̄ by

ZCA minimize the ℓ2 distance with respect to z, thus they

1They will not be exactly the same, since the population of z̄cs has

been changed to follow a similar spatial distribution of z̄c.
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Figure 6. (a) Stylization comparison by auto-encoder and style-augmented hourglass networks. Style decorator is applied as the feature

transfer module. The auto-encoder and the hourglass networks share the same main branch. (b) The network architecture of the proposed

style-augmented hourglass network. Detailed implementation is depicted in Sec. 5.1.

marginally preserve the original feature orientations and

element-wise distributions. AdaIN is much faster than ZCA

but it cannot optimally dispel feature correlations as what

ZCA does, thus the transferred features contain a slightly

more content patterns, as shown in Fig. 3(a) and (b). But

for the sake of efficiency, the AdaIN induced style decora-

tor is good enough for a real-time zero-shot style transfer,

as shown in Fig. 5.

On the other hand, the matching and reassembling step

pairs the elements in zc and zs by matching their normal-

ized counterparts, thus it effectively reduces the bias and

enriches the parsing diversity, which is much more effec-

tive than the way by Style-Swap [4]. In addition, the patch

size P affects the scale of the presented styles since a larger

patch size leads to a more global style patterns, for example

the blocky geometric patterns of style cubist in Fig. 4.

4. Multi-scale Zero-shot Style Transfer

The proposed Avatar-Net employs a hourglass network

with multi-scale style adaptation modules that progressively

fuse the styles from the encoded features into the corre-

sponded decoded features, thus it enables multi-scale style

transfer in one feed-forward pass, as shown in Fig. 6(a).

As shown in Fig. 6(b), the main branch of the Avatar-Net

is analogous to conventional encoder-decoder architectures

that stack an encoder Eθenc
(·) and an decoder Dθdec

(·). In

detail, the encoder is a concatenation of several encoding

blocks El
θenc

(·) that progressively extracts the intermediate

features el = El
θenc

(el−1), l ∈ {1, . . . , L} and produces the

bottleneck feature z after the final block z = EL+1
θenc

(eL).
Inversely, the decoder progressively generates intermediate

features d
l = Dl+1

θdec
(dl+1) starting from z, in which d

l is

further updated by fusing with the corresponded encoded

features el via the style adaptive feature fusion module. The

output image is decoded by x̃ = D1
θdec

(d1).

Given the set of encoded style features and the decoded

stylized feature pairs (els,d
l
cs), l ∈ {1, . . . , L} extracted

from the main branch of the Hourglass network, the Style

Fusion module is similarly as AdaIN [12]:

FSF(d
l
cs; e

l
s) = σ(els) ◦

(

d
l
cs − µ(dl

cs)

σ(dl
cs)

)

+ µ(els), (4)

where ◦ denotes channel-wise multiplication and σ(·) is the

channel-wise standard deviation. One may argue that this

module is suboptimal to ZCA as it does not optimally match

their second-order statistics, as visualized in Fig. 3(a). But

as the proposed network suggest similar pattern distribu-

tion of dl
cs as that of the encoded features e

l
s, the training

of the decoder will let the proposed module move towards

ZCA. Moreover, its economical computational complexity

also speeds up the stylization.

The style transfer requires a special procedure to fit the

proposed network architecture. At first, Avatar-Net takes a

content image xc and an arbitrary style image xs as inputs,

and extracts zc and zs in the bottleneck layer through the

encoder module. In the meanwhile, the style image xs also

bypasses the multi-scale encoded features {els}
L
l=1. Sec-

ondly, the content feature zc is then transferred based on the

style features zs through the proposed style decorator mod-

ule. In the end, the stylized image x̃cs is inverted by the

decoded module Dθdec
(zcs) with multiple style fusion mod-

ules that progressively modify the the decoded features dl
cs

under the guidance of multi-scale style patterns e
l
s, from

l = L to 1, as shown in Fig. 6(b).

5. Experimental Results and Discussions

5.1. Network Architecture And Training

Avatar-Net copies the architecture of a pretrained VGG-

19 (up to conv4 1) [27] to the encoder Eθenc
(·). The de-
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Figure 7. Comparison of some exemplar stylization results. The top row shows the content and style pairs and the rest rows present the

stylized results by AdaIN [12], Style-Swap [4], WCT [19], Gatys et al. [9], and the proposed method.

coder Dθdec
(·) is randomly initialized and mirrors the en-

coder with all pooling layers replaced by nearest upsam-

pling and padding layers by reflectance padding. The short-

cut connections link conv1 1, conv2 1 and conv3 1 to

their corresponded decoded layers. Normalization is not ap-

plied in each conv layer so as to increase the reconstruction

performance and stability, as suggested by [12].

The proposed model is to reconstruct perceptually simi-

lar images as the input images [13]:

ℓtotal = ‖x− x̃‖22+

λ1
1

|I|

∑

i∈I

‖Ψi
VGG(x)−Ψ

i
VGG(x̃)‖

2
2 + λ2ℓTV(x), (5)

where Ψ
i
VGG(x) extract the feature of x at layer i in a

fixed VGG-19 network. The set I contains conv1 1,

conv2 1, conv3 1 and conv4 1 layers. Total variation

loss ℓTV(x) is also added to enforce piece-wise smoothness.

The weighting parameters are simply set as λ1 = 0.1 and

λ2 = 1 for balancing the gradients from each term.

We train the network on the MSCOCO [22] dataset with

roughly 80, 000 training samples. Adam optimizer is ap-

plied with a fixed learning rate of 0.001 and a batch size of

16. During the training phase, the training images are ran-

domly resized and cropped to 256× 256 patches. Note that

our method is suitable for images with arbitrary size.

5.2. Comparison with Prior Arts

To validate the effectiveness of the proposed method, we

compare it with two types of zero-shot stylization methods

based on (1) iterative optimization [9] and (2) feed-forward

network approximation [12, 19, 4]2.

Qualitative Evaluations. The optimization-based ap-

proach [9] is able to transfer arbitrary style but the gener-

ated results are not stable because the weights trading off

the content and style losses are sensitive and the optimiza-

tion is vulnerable to be stuck onto a bad local minimum, as

2The results by the reference methods are obtained by their public

codes with default configurations.
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Rain Princess SketchContent image

Figure 8. Style Interpolation between Rain Princess and Sketch.

Inputs

Figure 9. Trading off between the content and style images. The left half shows the trading off between the normalized features z̄cs and

z̄c. The right half illustrates the balancing between the content and stylized features zcs and zc.

AdaIN Style-Swap WCT Avatar-Net Style

Figure 10. Result close-ups. Regions marked by bounding boxes

are zoomed in for a better visualization.

(a)

(b)

Figure 11. Memory reduction. (a) The economical style decorator

by sampling the style kernels with a stride of 4, in which the patch

width is 5. (b) The complete style decorator. The number of style

patches in (a) are 1

16
of that in (b) but the performances are similar

except a slight lost of detailed style patterns.

shown in 4th and 5th columns in Fig. 7. Both AdaIN [12] and

WCT [19] holistically adjust the content features to match

the second-order statistics of the style features, but AdaIN

mimics the channel-wise means and variances and thus pro-

Method
Execution Time

256× 256 (sec) 512× 512 (sec)

Gatys et al. [9] 12.18 43.25

AdaIN [12] 0.053 0.11

WCT [19] 0.62 0.93

Style-Swap [4] 0.064 0.23

Ours-ZCA 0.26 0.47

Ours-ZCA-Sampling 0.24 0.32

Ours-AdaIN 0.071 0.28

Table 1. Execution time comparison.

vides a suboptimal solution and the learned decoder usually

add similar repeated texture patterns for all stylized images.

Although WCT optimally matches the second-order statis-

tics, it cannot always parse the original style patterns and

may generate unseen and distorted patterns, for example the

background clutters in the 2nd column and unwanted spiral

patterns in the 3rd column, as well as missed circular pat-

terns in the last column for the style candy. Style-Swap is

too rigorous so that the stylized features strictly preserve the

content features and only receive low-level style patterns.

This artifact almost occurs in every examples in Fig. 7.

The proposed method seamlessly reassembles the style

patterns according to the semantic spatial distribution of the

content image, which works for different kinds of styles,

from global hue to local strokes and sketches, as shown in

Fig. 7. Even though style patterns replace the content infor-

mation to regenerate the stylized images, necessary content

components like human faces, building and skylines are still

visually perceived as the combination of the style patterns.

We also provide result close-ups in Fig. 10, the visual

result by Avatar-Net receives concrete multi-scale style pat-

terns (e.g., color distribution, brush strokes and circular pat-

terns in candy image). WCT distorts the brush strokes and

circular patterns. AdaIN cannot even keep the color distri-

bution, while style-swap fails in this example.
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Figure 12. Video stylization. A sequence in MPI Sintel dataset [1] is stylized by Henri Matisse’s Woman With Hat. Style Decorator: The

stylized patterns in one object keep coherent among adjacent frames. WCT: The results have shape distortions around the face region and

contain flickering artifacts among adjacent frames. Please refer to the supplementary materials for a video demonstration.

Efficiency. In Tab. 1, we compare the running time with the

reference methods. We implemented these methods on the

Tensorflow platform for a fair comparison. The method by

Gatys et al. [9] is slow since it requires hundreds of forward

and backward passes to converge. WCT [19], AdaIN [12]

and Style-Swap [4] are all based on feed-forward networks,

in which WCT is relatively slower as it requires several

feed-forward passes and the operation of SVD has to be ex-

ecuted in CPU. Our implemented Style-Swap is efficient in

GPU and thus much faster than the reported speed [4].

The proposed method is more efficient than WCT, be-

cause the hourglass architecture enables multi-scale pro-

cessing in one feed-forward pass. But the style decora-

tor equipped by ZCA also needs a CPU-based SVD, its

speed is thus not comparable to AdaIN and Style-Swap.

We can improve the efficiency by replacing it by AdaIN, in

which case the execution time is tremendously reduced to

the same level of Style-Swap and AdaIN. Note that the pro-

posed method can be economical in memory, by randomly

(or grid) sampling the style patches in the style decorator

procedure. Due to the local coherence in the style features,

we find the resultant stylized images have similar perfor-

mances as the complete version (in Fig. 11).

5.3. Applications

The flexibility of the Avatar-Net is further manifested by

several applications as follows:

Trade-off Between Content and Style. The degree of styl-

ization can be adjusted by two variants. (1) Adjust the nor-

malized stylized features z̄cs ← αz̄c + (1 − α)z̄cs, ∀α ∈
[0, 1], and then recover the stylized features zcs. (2) Di-

rectly adjust the stylized features zcs ← αzc + (1− α)zcs.

In the former variant, α = 0 lets the model degrade to the

WCT, while α = 1 means the image is only reconstructed

by the style patterns. It is harder to control the latter vari-

ant due to the magnitude dissimilarities between the content

and style features. We depict these variants in this experi-

ment (in Fig. 9), but we do not adjust the low-level style

adaptation in the shortcut links, which can be interpolated

by [12] to enable multi-scale transfer.

Style Interpolation. Convexly integrating multiple style

images {xk
s}

K
k=1 with weights {wk}

K
k=1 that

∑K

k=1 wk = 1,

the stylized features are zcs =
∑K

k=1 wkz
k
cs. The style

adaptations in the shortcut links are also extended to a con-

vex combination of the stylized features. But due to the

magnitude dissimilarities among different style features, the

interpolated stylization is also affected by their feature mag-

nitudes, as shown in Fig. 8.

Video Stylization. In addition to image-based stylization,

our model can perform video stylization merely based on

per-frame style transfer, as visualized in Fig. 12. The

style decorator module is stable and coherent over adja-

cent frames since the alignment between feature patches is

usually spatially invariant and robust to small content varia-

tions. On the contrary, WCT, as an example, contains severe

content distortions and temporal flickering.

6. Concluding Remarks

In this work, we propose a fast and reliable multi-scale

zero-shot style transfer method integrating an style decora-

tor for semantic style feature propagation and a hourglass

network for multi-scale holistic style adaptation. Experi-

mental results demonstrate its superiority in generating ar-

bitrary stylized images. As a future direction, one may re-

place the projection and reconstruction steps in the style

decorator by learnable modules for increased alignment ro-

bustness and executing efficiency.
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