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Abstract

We propose a strategy for improving camera location esti-

mation in structure from motion. Our setting assumes highly

corrupted pairwise directions (i.e., normalized relative location

vectors), so there is a clear room for improving current state-of-

the-art solutions for this problem. Our strategy identifies severely

corrupted pairwise directions by using a geometric consistency

condition. It then selects a cleaner set of pairwise directions

as a preprocessing step for common solvers. We theoretically

guarantee the successful performance of a basic version of our

strategy under a synthetic corruption model. Numerical results on

artificial and real data demonstrate the significant improvement

obtained by our strategy.

1. Introduction

The problem of Structure from Motion (SfM), that is,

reconstructing 3D structure from 2D images, is critical in

computer vision. The common pipeline for 3D reconstruction

consists of the following steps: 1. Matching keypoints among

images using SIFT [12]; 2. Computing the essential matrices

from the matched image pairs and extracting relative camera

rotations [8]; 3. Finding global camera orientations via rotation

synchronization and estimating relative camera translations

[1, 3, 6, 9, 13, 17]; 4. Estimating camera locations from estimated

pairwise directions [1, 2, 4, 5, 6, 7, 15, 16, 17, 21, 22], where a

pairwise direction between two cameras is the normalized relative

location vector between them; 5. Recovering the 3D structure

using bundle adjustment [20]. The key for successful 3D recovery

is the accurate estimation of camera parameters, including camera

locations and orientations. These parameters can be misestimated

due to erroneous keypoint matching, which results in inaccurate

estimates of the essential matrices [18]. This paper develops

a robust and theoretically-guaranteed strategy for improving

camera location estimation from corrupted pairwise directions.

1.1. Previous Works

A variety of camera location solvers have been proposed in

the past two decades [18]. The least squares methods [1, 2, 5] are

among the earliest solvers. However, these methods are not robust

to outliers (namely, maliciously corrupted pairwise directions) and

furthermore they typically produce collapsed location estimates.

That is, the estimated camera locations are usually clustered

around few points. The constrained least squares (CLS) method

[21, 22] introduced an anti-collapsed constraint, which makes it

more stable to noise but not outliers. The semidefinite relaxation

(SDR) solver [17] converts the least squares problem into an SDP

formulation with a nonconvex anti-collapse constraint. However,

it is not outliers-robust, and its computation is challenging even

after convex relaxation. Other solvers include the ℓ∞ method

[15] and the Lie-algebraic averaging method [6], but the ℓ∞
norm is sensitive to outliers and [6] suffers from convergence

to local minima and from sensitivity to outliers.

Recent outlier-robust methods have been proposed for camera

location estimation. One class of solvers use outlier detection

algorithms as a preprocessing step to improve their subsequent

estimator. For the different problem of camera rotation estimation,

cycle-consistency constraints were proposed in [15, 24] to

remove outlying relative orientation measurements. For camera

location recovery, the 1DSfM algorithm was proposed in [23] for

removing outlying pairwise directions. It projects the 3D direction

vectors onto 1D, reformulates the cycle-consistency constraints as

an ordering problem and solves it using a heuristic combinatorial

method. However, its convergence to the global minimum is

not guaranteed. Another class of methods directly solve robust

convex optimization problems and include the least unsquared

deviations (LUD) algorithm [16] and the ShapeFit algorithm [7].

Exact recovery guarantees under a certain corruption model were

established for ShapeFit and LUD in [7] and [11] respectively.

An ADMM-accelerated version of ShapeFit, called ShapeKick,

was proposed in [4]. However, it sacrifices accuracy for speed.

A robust formulation for estimating the fundamental matrices

was presented in [19]. However, it may suffer from convergence

to local minima and requires good initialization.

1.2. Contribution of This Work

We propose a novel algorithm for detecting and removing

highly corrupted pairwise directions. We use it as a preprocessing

step for existing location recovery algorithms. Our method

forms a statistic for any pairwise direction between two given

cameras. This statistic estimates the average inconsistency of this

pairwise direction with any two pairwise directions associated

with an additional camera. This inconsistency is based on the
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shortest path in S2 between a direction vector and a base of a

spherical triangle. We thus refer to this inconsistency and statistic

as All-About-that-Base (AAB). After computing a fast version of

the AAB statistic, we remove edges with large statistics and apply

a preferable solver. This method is fast and easy to implement,

and it can be used as a preprocessing step for any camera location

solver. Most importantly, we are able to theoretically guarantee its

successful classification on corrupted and uncorrupted edges. We

are not aware of any other theoretically-guaranteed algorithm for

removing corrupted pairwise direction measurements. We also

present an iterative procedure for improving the AAB statistic,

so outliers could be identified more accurately. Experiments on

synthetic and real data demonstrate significant improvement of

camera location accuracy by our proposed method.

2. Setting for Camera Location Estimation

A mathematical setting for camera location estimation

assumes n unknown camera locations {t∗i }i∈[n] ⊆ R
3, where

[n] = {1,2, ... ,n}. The ground truth pairwise direction γ∗
ij

between cameras i, j∈ [n] is defined by

γ∗
ij=

t∗i−t∗j

‖t∗i−t∗j‖
, (1)

where ‖·‖ denotes the Euclidean norm. In practice, one often

measures a corrupted pairwise direction γij between cameras

i and j. The mathematical problem assumes possibly corrupted

pairwise measurements γij ∈ E for some E ⊆ [n]× [n] and

asks to estimate the camera locations {t∗i }i∈[n] up to ambiguous

translation and scale. Note that E may not include all the pairs

of indices, so that some values can be missing.

In order to establish theoretical guarantees and conduct

synthetic data experiments for the AAB procedure, we assume

that the true camera locations and corrupted pairwise directions

are generated by the following slight modification of the Uniform

Corruption Model UC(n, p, q, σ) [16]: Let V = {t∗i }i∈[n]
be generated by i.i.d. N(0, I3) and let G(V,E) be a graph

generated by the Erdös-Rényi model G(n,p), where p denotes

the connection probability among edges. For any ij ∈ E, a

corrupted pairwise direction γij is generated by

γij=

{

vij, w.p. q;
γ
∗

ij+σǫij

‖γ∗

ij
+σǫij‖

, w.p. 1−q,
(2)

where 0<q<1 is the probability of corruption, σ≥0 is the noise

level and vij, ǫij are independently drawn from a uniform dis-

tribution on S2. The UC model of [16] assumes instead that ǫij
are i.i.d. N(0,I3). We have noticed similar numerical results for

data generated from both models, however, our theory described

below is easier to state and verify under the uniform assumption.

3. Statistics for Corruption Reduction

We describe a statistic that may distinguish corrupted edges.

It uses the geometric notion of cycle-consistency of uncorrupted

edges. Cycle-consistency measures were used in [15, 23, 24]

as criteria for outlier removal. For location recovery, the

cycle-consistency of 3 vectors γ1, γ2, γ3 ∈ S2 refers to the

existence of λ1, λ2, λ3>0 such that

λ1γ1+λ2γ2+λ3γ3=0. (3)

One may easily observe that the pairwise directions γ∗
ij,γ

∗
jk, γ∗

ki

are cycle-consistent by substituting in (3) λij=‖t∗i−t∗j‖, λjk=
‖t∗j−t∗k‖ and λki=‖t∗k−t∗i ‖. However, if any of the three vec-

tors is randomly corrupted, the consistency constraint is most pro-

bably violated. Thus, we may define a certain cycle-inconsistency

measure that indicates the underlying corruption level.

Section 3.1 describes a basic measure of inconsistency of a

given pairwise direction with respect to 2 other pairwise directions,

where the 3 directions result from 3 unknown locations. It is

referred to as the AAB inconsistency. A formula for efficiently

computing it is proposed at the end of this section. Section 3.2 uses

these inconsistencies to define the naive AAB statistic of a given

pairwise direction that is used to remove corrupted edges. Section

3.3 discusses the iteratively reweighted AAB (IR-AAB) statistic,

which aims to further improve the accuracy of naive AAB in remo-

ving corrupted edges. At last, Section 3.4 discusses some issues

regarding practical implementation of naive AAB and IR-AAB.

3.1. AAB Inconsistency and Formula

We define the cycle-consistency region of γ1, γ2 ∈ S2 as

Ω(γ1,γ2) = {γ ∈ S2 : γ1,γ2,γ are cycle-consistent}. We

denote by dg the great-circle distance, i.e., the length of the

shortest path on S2. The AAB inconsistency of γ3 ∈S2 with

respect to γ1 and γ2 is defined by

IAAB(γ3;γ1,γ2)=dg(γ3,Ω(γ1,γ2))

= min
γ∈Ω(γ1,γ2)

dg(γ3,γ). (4)

Figure 1 shows that IAAB(γ3;γ1,γ2) is the smallest angle

needed to rotate γ3 so that γ1,γ2,γ3 are cycle-consistent.

Figure 1. Clarification of the AAB Inconsistency. The red arc is the

cycle-consistency region Ω(γ1,γ2). Indeed, it follows from (3) that

the points in Ω(γ1,γ2) are linear combinations in S2 with positive coef-

ficients of −γ1 and −γ2. The AAB inconsistency IAAB(γ3;γ1,γ2)
is the distance in S2 of γ3 from Ω(γ1,γ2) and is the length of the blue

arc. Similarly, IAAB(γ4;γ1,γ2) is the length of the green arc.

The following formula for computing the AAB inconsistency

is crucial for efficient implementation of the algorithms described

below. Its proof appears in the supplemental material. For

γ1, γ2, γ3 ∈ S2, x = γT
1 γ3, y = γT

2 γ3, z = γT
1 γ2 and
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a=I(x<yz)·I(y<xz), where I is the indicator function,

IAAB(γ3;γ1,γ2)=

cos−1

(

a·x
2+y2−2xyz

1−z2
+(a−1)min(x,y)

)

. (5)

3.2. The Naive AAB Statistic

We initially define the naive AAB statistic of an edge ij∈E
as the average of the AAB inconsistencies IAAB(γij;γjk,γki)
over the set Cij={k∈ [n] :ik∈E and jk∈E}. That is,

Sinitial
AAB(ij)=

1

|Cij|
∑

k∈Cij

IAAB(γij;γjk,γki). (6)

We use it as an indication for the corruption level of γij and thus

remove the edges with largest AAB statistics. Note that the AAB

formula in (5) enables computation of the naive AAB statistic

through vectorization instead of using a loop, and thus allows ef-

ficient coding in programming languages with an effective linear

algebra toolbox. However, the average over Cij can be costly and

we thus advocate using a small random sample from Cij of size s,

where the default value of s is 50. We summarize this basic pro-

cedure of computing the AAB statistic, S
(0)
AAB, in Algorithm 1.

Algorithm 1 Computation of the Naive AAB Statistic

Input: {γij}ij∈E: pairwise directions, s: number of samples

for each ij∈E do

Sij = s random samples with replacement from Cij

S
(0)
AAB(ij)=

1
s

∑

k∈Sij
IAAB(γij;γjk,γki)

end for

Output: Naive AAB statistic
{

S
(0)
AAB(ij)

}

ij∈E

3.3. Iteratively Reweighted AAB

The naive AAB statistic may suffer from unreliable AAB

inconsistencies when the corruption level q is high. Specifically,

for an uncorrupted direction γij, its AAB inconsistency with

respect to γjk and γki can be unreasonably high if either γjk

or γki is severely corrupted. Moreover, if many adjacent edges

of ij are corrupted, then the naive AAB statistic of this edge

may not accurately measure its corruption level. The main issue

is not the misleading effect of neighboring edges, but the fact

that only such edges are considered and relevant information

from other edges is not incorporated. To overcome this issue,

the iteratively reweighted AAB (IR-AAB) statistic computes a

weighted mean of AAB inconsistencies and iteratively updates

these weights. This results in propagation of global information

from other non-neighboring edges to edge ij.

Initially, the IR-AAB procedure computes the naive AAB sta-

tistic. The reweighting strategy of IR-AAB tries to reduce the

weights of IAAB(γij;γjk,γki) when either ki or kj are highly

corrupted. In order to do this, at each iteration the AAB incon-

sistencies IAAB(γij;γjk,γki) involving suspicious edges are

penalized by the reweighting function exp(−τ(t)x). The number

x is the maximal value of the reweighted AAB statistics computed

in previous iteration for edges ik and kj. The parameter τ(t) in-

creases iteratively and depends on the initial maximal and minimal

values of inconsistencies, denoted by M and m. Figure 2 illustra-

tes the reweighting functions withM=1, m=0 and 10 iterations.

The use of slowly-decreasing reweighting functions in the first ite-
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Figure 2. Demonstration of the reweighting function exp(−τ(t)x) used

in IR-AAB. Here, t∈ [10] and the rate of decrease is τ(t)=π/(1.1−
0.1t), which increases with t. The labels on the x-axis are of the points

xt=1.1−0.1t, 1≤t≤10. At each iteration t, exp(−τ(t)x)<e−π
≈

0.04 for x>xt. The red line separates for each curve the values in [0,xt]

and [xt,1]. Therefore, exp(−τ(t)x) gives little weight to points in [xt,1].

rations ensures that only the most unreliable AAB inconsistencies

are ignored. As the data is iteratively purified, the AAB incon-

sistencies involving “good” edges are weighted more and more.

We remark that increasing τ(t) corresponds to focusing more on

“good” edges and ignoring more “suspicious” edges. The details

of computing the IR-AAB statistic are described in Algorithm 2.

Algorithm 2 Computation of the IR-AAB statistic

Input: {γij}ij∈E: pairwise directions, s: number of samples,

T : number of iterations

Compute Sij, S
(0)
AAB(ij) ∀ij∈E by Algorithm 1

M=maxij∈E,k∈Sij
IAAB(γij;γjk,γki)

m=minij∈E,k∈Sij
IAAB(γij;γjk,γki)

L=(M−m)/T
for t=1:T do

τ(t)=π/M
M=M−L
for ij∈E and k∈Sij do

w
(t)
ij,k=exp

(

−τ(t)max
{

S
(t−1)
AAB (ki),S

(t−1)
AAB (jk)

})

w
(t)
ij,k=w

(t)
ij,k/

∑

k∈Sij
w

(t)
ij,k

S
(t)
AAB(ij)=

∑

k∈Sij
w

(t)
ij,kIAAB(γij;γjk,γki)

end for

end for

Output: IR-AAB statistic:
{

S
(T)
AAB(ij)

}

ij∈E

Note that IR-AAB alternatively updates the weights using the

AAB statistics and then updates the AAB statistics using the new

2870



weights. This way better weights can reduce the effect of highly

corrupted edges so that the updated AAB statistics measures

more accurately the corruption level of edges. Similarly, better

estimates of the corruption level by the AAB statistics provide

more accurate weights, which emphasize the more relevant

edges. In the special practical case of repetitive patterns (e.g.,

due to identical windows), this procedure can help in identifying

corrupted edges that are self-consistent with each other.

At last we comment that the failure mode for any AAB

procedure is when there are no outliers, so the task of identifying

corruptions is ill-posed. This can also happen when the noise

magnitude is enormous and outliers are not distinguishable.

3.4. Numerical Considerations

As mentioned earlier, implementations for naive AAB and

IR-AAB may avoid loops and use instead vectorization due to

the AAB formula. An efficient Matlab code will be provided in

the future supplemental webpage. For naive AAB and IR-AAB

we recommend using s = 50 as default, and we applied this

value in all of our experiments. For IR-AAB we recommend

and implement the default value T=10.

We note that the computational complexity of naive AAB is

O(s·|E|), where |E| is the number of edges. In general, for dense

graphs the complexity is O(s·n2), but for sparser graphs the com-

plexity decreases, e.g., for sparse Erdös-Rényi graphs with p≪1,

the complexity is OP (s · p ·n2) since E[|E|] = n(n− 1)p/2.

The computational complexity of IR-AAB is also O(s · |E|).
While IR-AAB is iterated T =10 times, its main computation

is due to the initial application of naive AAB, which requires

the computation of the AAB inconsistencies. On the other hand

the weight computations in the subsequent iterations is much

cheaper. Therefore in practice, the computational complexity

of naive AAB and IR-AAB are truly comparable.

For synthetic data, we demonstrate in Section 5 that a threshold

on the naive AAB and IR-AAB statistics can be chosen by their

corresponding histograms. We also demonstrate performance with

differently chosen thresholds via ROC curves. The histograms of

real data are not so simple, and thus in this case we keep half of

the edges with the lowest values of the corresponding statistic. We

have noticed that the less edges we keep the higher accuracy we

obtain for location estimation. However, extremely low threshold

results in limited number of camera locations. Demonstrations

of other thresholds appear in the supplemental material.

4. Theoretical Guarantees for Outliers Removal

We show that the naive AAB statistic can be used for

near-perfect separation of corrupted and uncorrupted edges.

Given pairwise directions generated on an edge set E by the

uniform corruption model, we denote by Eg the uncorrupted

edges, namely, all edges ij∈E such that γij=γ∗
ij. We denote

the rest of edges in E by Eb. The theorem below states that under

the uniform corruption model with sufficiently small corruption

probability and noise level, the naive AAB statistic is able to

perfectly separate Eg as well as a large portion of Eb.

Theorem 4.1. There exist absolute positive constants C0,C
such that for any ǫ∈ [0,1] and for pairwise directions randomly

generated by the uniform corruption model UC(n,p,q,σ) with

n=Ω(1/pqǫ), np2(1−q)2≥C0logn and q+σ<Cǫ/
√
logn,

there exists a set E′⊆Eb such that |E′|≥(1−ǫ)|Eb| and with

probability 1−O(n−5),

min
ij∈E′

E[S
(0)
AAB(ij)]>max

ij∈Eg

E[S
(0)
AAB(ij)]. (7)

The theorem can be extended to other synthetic models. For

instance, the assumption in the UC model that the locations are

sampled from a Gaussian distribution can be generalized to any

distribution that generates “c-well-distributed locations”, which

are explained in Section 4.1.1. One can show that a compactly

supported distribution with continuous and positive density

satisfies this criterion with an absolute constant c (unlike the

Gaussian case) and consequently the theorem may have the wea-

ker assumption: q+σ<Cǫ. The uniform noise assumption in the

UC model of this paper can be directly extended to any compactly

supported distribution. For Gaussian noise, one needs to slightly

modify the theorem so the RHS of (7) is maximized over a

sufficiently large subset of Eg (similarly to the LHS w.r.t. Eb).

4.1. Proof of Theorem 4.1

After reviewing preliminary results and notation in Section

4.1.1, Section 4.1.2 describes the main part of the proof. It starts

with stating two essential bounds: An upper bound on the ex-

pectation of S
(0)
AAB(ij) when ij∈Eg and a lower probabilistic

bound on the expectation of S
(0)
AAB(ij) when ij∈Eb. The upper

bound is stated in (9) and later proved in Section 4.1.3. The lower

bound is stated in (10) and later proved in proved in Section 4.1.4.

While the upper bound is uniform over ij∈Eg, the lower bound

depends on the corruption level of each edge ij∈Eb. However,

there is an absolute bound which holds within a large subset of Eb.

We show that the uniform upper bound is lower than the absolute

lower bound and thus conclude that with high probability the ex-

pected values of S
(0)
AAB(ij) when ij∈Eg are separated from the

expected values of S
(0)
AAB(ij) when ij is in a large subset of Eb.

4.1.1 Preliminaries

We first summarize some properties of the AAB inconsistency:

(i) IAAB(γ3;γ1,γ2)∈ [0,π] ∀ γ1,γ2,γ3∈S2.

(ii) IAAB(γ3;γ1,γ2)=0 iff γ1,γ2,γ3 are cycle-consistent.

(iii) The AAB inconsistency is rotation-invariant. That is, for

any rotation R: IAAB(γ3;γ1,γ2)=IAAB(Rγ3;Rγ1,Rγ2).
We denote by U(S2) the uniform distribution on S2 and

define Z := IAAB(z;x,y), where x, y, z i.i.d. ∼U(S2). For

x∈ [0,π], let f(x) :=E[IAAB(v2(x);v1,v)|v∼U(S2)], where

v1 =(−1,0,0)T and v2(x)= (cosx,sinx,0)T . The following

property is proved in the supplemental material.

Lemma 4.1. If x∈ [0,π], then f(x)= 1
2(x+sinx).

We will use the following definition and Lemma of [7].
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Definition 4.1 (Definition 2 of [7]). Let G = G(V,E) be a

graph with vertices V ={ti}ni=1⊆R
3. For x, y∈R

3, c>0 and

A⊆V , we say that A is c-well-distributed with respect to (x,y)
if the following holds for any h∈R

3:

1

|A|
∑

t∈A

‖PSpan{t−x,t−y}⊥(h)‖≥c‖P(x−y)⊥(h)‖. (8)

We say that V is c-well-distributed along G if for all distinct

1 ≤ i, j ≤ n, the set Sij = {tk ∈ V : ik, jk ∈ E(G)} is

c-well-distributed with respect to (ti,tj).

Lemma 4.2 (Lemma 18 of [7]). Assume that V = {ti}ni=1 is

i.i.d. generated by N(0,I3) and the graph G(V,E) is generated

by the Erdös-Rényi model G(n,p). There exist absolute positive

constants C0,C1 such that if np2≥C0logn, then with probability

1−n−5, the set V is C1/
√
logn-well-distributed along G.

4.1.2 The Main Part of the Proof

Let eij :=∡(γij,γ
∗
ij) denote the corruption level of edge ij∈E.

We later prove in Sections 4.1.3 and 4.1.4 respectively the fol-

lowing two inequalities. The first one holds for any fixed ij∈E:

E[S
(0)
AAB(ij)|ij∈Eg]≤πσ(1−q)2+πq(1−q)+q2E[Z]. (9)

The second one holds with probability 1−n−5 for all ij∈E:

E[S
(0)
AAB(ij)|ij∈Eb]≥(1−q)2

[

C′

√
logn

min(eij,π−eij)−
π

2
σ

]

+q2E[Z]. (10)

We conclude the proof by assuming these inequalities. Recall

that there exists an absolute constant C such that

q+σ<
Cǫ√
logn

. (11)

Multiplying both sides of (11) by 3π(1− q)2/2, noting that

for n sufficiently large 1−q≥ 1−Cǫ/
√
logn> 2/3 and thus

3q(1−q)2/2>q(1−q) and setting C′=6C yield

π

[

q(1−q)+
3

2
σ(1−q)2

]

<(1−q)2
C′

√
logn

·πǫ
4
. (12)

Clearly (12) can be rewritten as

πσ(1−q)2+πq(1−q)<(1−q)2
[

C′

√
logn

·πǫ
4
−π

2
σ

]

. (13)

Combining (9), (10) and (13) results in

max
ij∈Eg

E[S
(0)
AAB(ij)]< min

ij∈Eb

min(eij,π−eij)>
πǫ
4

E[S
(0)
AAB(ij)]. (14)

Let E′ = {ij ∈Eb : min(eij,π−eij)>πǫ/4}. Since eij is

i.i.d.∼U [0,π], Xij :=I(ij /∈E′) is a Bernoulli random variable

with mean µ=ǫ/2. Applying Chernoff bound [14] yields

Pr
(

∑

ij∈Eb

Xij>2|Eb|µ
)

<exp(−Ω(|Eb|µ)). (15)

That is, with probability 1 − exp
(

−Ω(n2pqǫ)
)

, |E′| >
(1−ǫ)|Eb|. Since n=Ω(1/pqǫ) this probability is sufficiently

high. Thus, Theorem 4.1 is concluded if (9) and (10) are correct.

4.1.3 Proof of Inequality (9)

We investigate the distribution of IAAB(γij;γjk,γki) for fixed

ij∈Eg and k∈Cij in the following 3 complementary cases:

Case 1. jk, ki∈Eg.

In this case,γij=γ∗
ij+vij,γjk=γ∗

jk+vjk andγki=γ∗
ki+vki,

where vij =(γ∗
ij+σǫij)/‖γ∗

ij+σǫij‖−γ∗
ij, ǫij ∼U(S2) and

vjk and vki are defined in the same way. We note that if σ=0,

then the AAB inconsistency is 0 in the current case. If σ>0, then

since ‖ǫij‖=1 the AAB inconsistency is bounded as follows:

Xg
ij(k):=IAAB(γij;γjk,γki)

=dg
(

γ∗
ij+vij,Ω(γ

∗
jk+vjk,γ

∗
ki+vki)

)

≤dg
(

γ∗
ij+vij,γ

∗
ij

)

+dg
(

γ∗
ij,Ω(γ

∗
jk+vjk,γ

∗
ki+vki)

)

≤dg
(

γ∗
ij+vij,γ

∗
ij

)

+dg
(

γ∗
ij,Ω(γ

∗
jk,γ

∗
ki)

)

+max
(

dg(γ
∗
jk,γ

∗
jk+vjk),dg(γ

∗
ki,γ

∗
ki+vki)

)

≤π

2
σ+0+

π

2
σ=πσ. (16)

Case 2. Either jk∈Eg or ki∈Eg, but not both in Eg.

We assume WLOG that jk ∈Eg and ki ∈Eb. According to

the uniform corruption model, γki∼U(S2), γjk =γ∗
jk+vjk,

γij =γ∗
ij+vij. For any indices ijk, let θijk denotes the angle

between γij and γkj. By choosing appropriate rotation matrix R,

Y g
ij(k):=IAAB(γij;γjk,γki)=IAAB(Rγij;Rγjk,Rγki)

=IAAB(v2(θijk);v1,v), (17)

where v1 and v2(θijk) were defined in Section 4.1.1 and

v ∼ U(S2). Lemma 4.1 and the fact that f(x) ∈ [0,π/2] for

x∈ [0,π] imply the inequality

E[Y g
ij(k)]=Eθijk [f(θijk)]≤

π

2
. (18)

Case 3. jk, ki∈Eb

Let Zg
ij(k) be defined as follows with distribution equivalent

formulations that use an arbitrary rotation R and x, y∼U(S2):

Zg
ij(k):=IAAB(γij;γjk,γki)

d
=IAAB(Rγij;Rγjk,Rγki)

d
=IAAB(Rγij;x,y). (19)

Since R is arbitrary, Zg
ij(k) is independent of γij and for

z∼U(S2)

Zg
ij(k):=IAAB(γij;γjk,γki)

d
=IAAB(z;x,y)=Z. (20)

At last, combining (16), (18) and (20) with probabilities

(1−q)2, 2q(1−q) and q2 for each case respectively yields (9).

4.1.4 Proof of Inequality (10)

We investigate the distribution of IAAB(γij;γjk,γki) for fixed

ij∈Eb and k∈Cij in the following 3 complementary cases:

Case 1. jk,ki∈Eg. Observe that

IAAB(γij;γ
∗
jk,γ

∗
ki)= min

v∈Ω(γ∗

jk
,γ∗

ki
)
dg(γij,v)

≥ min
v∈Span{γ∗

jk
,γ∗

ki
}
dg(γij,v)≥ min

v∈Span{γ∗

jk
,γ∗

ki
}
‖γij−v‖

=‖PSpan{t∗
k
−t∗

i
,t∗

k
−t∗

j
}⊥(γij)‖ (21)
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and

Xb
ij(k):=IAAB(γij;γjk,γki)

=dg
(

γij,Ω(γ
∗
jk+vjk,γ

∗
ki+vki)

)

≥dg
(

γij,Ω(γ
∗
jk,γ

∗
ki)

)

−max
(

dg(γ
∗
jk,γ

∗
jk+vjk),dg(γ

∗
ki,γ

∗
ki+vki)

)

=IAAB(γij;γ
∗
jk,γ

∗
ki)

−max
(

dg(γ
∗
jk,γ

∗
jk+vjk),dg(γ

∗
ki,γ

∗
ki+vki)

)

≥‖PSpan{t∗
k
−t∗

i
,t∗

k
−t∗

j
}⊥(γij)‖−

π

2
σ. (22)

Denote Cg
ij := {k∈Cij : ki∈Eg,jk∈Eg} so that k∈Cg

ij.

Note that the underlying corruption model implies that G(V,Eg)
is an Erdös-Rényi graph G(n,p(1− q)). By combining the

assumption np2(1−q)2>C0logn and Lemma 4.2, we obtain

that the set of vertices V is C1/
√
logn-well-distributed along

G(V,Eg) for some absolute constant C1 with high probability.

This fact and (22) imply that with probability 1−n−5

1

|Cg
ij|

∑

k∈Cg

ij

IAAB(γij;γjk,γki)

≥ 1

|Cg
ij|

∑

k∈Cg

ij

‖PSpan{t∗
k
−t∗

i
,t∗

k
−t∗

j
}⊥(γij)‖−

π

2
σ

≥ C1√
logn

‖P(t∗
i
−t∗

j
)⊥γij‖−

π

2
σ=

C1√
logn

‖Pγ∗⊥

ij
γij‖−

π

2
σ

≥ C1π

2
√
logn

min(eij,π−eij)−
π

2
σ. (23)

Case 2. Either jk∈Eg or ki∈Eg, but not both in Eg.

Let Y b
ij(k) :=IAAB(γij;γjk,γki). The arguments used for the

estimates of case 2 of Section 4.1.3 and the fact that f(x)≥ 0
imply that E[Y b

ij(k)]≥0.

Case 3. jk,ki∈Eb

This case is exactly the same as case 3 of Section 4.1.3 and we

thus use (20) for z∼U(S2).
At last, combining the estimates of the 3 cases with respective

probabilities (1−q)2, 2q(1−q) and q2 yields (10).

5. Experiments on Synthetic Data

We first illustrate the ability of the statistics obtained by naive

AAB, IR-AAB and 1DSfM [23] to separate corrupted and uncor-

rupted edges for a special synthetic dataset. The dataset was rand-

omly generated by the uniform corruption model with n=200,

p=0.5, q=0.2 and σ=0. Figure 3 first shows the three statistics’

values of edges as a function of their corruption levels. These

corruption levels are measured by the angles of the corresponding

pairwise directions with the uncorrupted pairwise directions. We

first note that 1DSfM may assign zero values to corrupted edges,

unlike naive AAB and IR-AAB, and has the largest variance per

corruption level. We also note that IR-AAB assigns negligible

values to uncorrupted points, unlike naive AAB and 1DSfM,

and has the lowest variance at low corruption levels. The figure

also shows the histograms of the statistics for both corrupted and

uncorrupted points. Since the 1DSfM statistic (which is referred

to in [23] as inconsistency) obtains zero values for both corrupted

and uncorrupted edges, it is hard to separate the whole histogram

into two modes. On the other hand, naive AAB and IR-AAB can

be nicely separated into two modes for this and other synthetic

examples. For IR-AAB, but not naive AAB, this separation

exactly recovers the uncorrupted edges in this particular example.

0 0.5 1 1.5 2 2.5

0
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Figure 3. Demonstration of corruption identification for a synthetic da-

taset by naive AAB, IR-AAB and 1DSfM. The dataset was generated by

the uniform corruption model UC(200,0.5,0.2,0). The 3 columns of sub-

figures correspond to naive AAB, IR-AAB and 1DSfM respectively. The

subfigures in the first row show the correlation of the computed statistics

(on y-axis) with the corruption level (on x-axis). Edges with no corruption

are blue and the rest are red. The subfigures in the second row are the his-

tograms of computed statistics for both corrupted and uncorrupted edges.
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Figure 4. ROC curves for corruption detection of naive AAB, IR-AAB

and 1DSfM with varying corruption and noise levels.

Next we use ROC curves to diagnose the ability of naive

AAB, IR-AAB and 1DSfM to detect corrupted edges in a similar

synthetic data with varying percentages of corrupted edges
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and noise levels. The datasets were randomly generated by the

uniform corruption model with n=200, p=0.5, q=0.2, 0.4,

0.6 and σ=0, 0.05, 0.1 and 0.2. For each statistic and choice

of parameters, we assign 1000 equidistant thresholds between the

largest and smallest values of this statistic, compute the true and

false positive rates for recognizing uncorrupted points with values

of this statistic above each threshold, and plot the corresponding

ROC curve. We remark that the edges ij ∈E are recognized

as corrupted when ∡(γij,γ
∗
ij)>sin−1(σ). The resulting ROC

curves are shown in Figure 4, where a larger area under the ROC

curve corresponds to better classification performance.

We note that classification based on IR-AAB consistently

outperforms that of naive AAB and 1DSfM. Moreover, IR-AAB

has a clear advantage over naive AAB and 1DSfM at low and

moderate noise levels (σ = 0, 0.05, 0.1) among all levels of

tested corruption. However, IR-AAB requires a certain portion of

pairwise directions to be accurately estimated, and it thus does not

significantly improve over the other two methods at high noise

levels (σ=0.2). Naive AAB works well when the corruption and

noise levels are relatively low. However, due to the misleading

effect of corrupted neighboring edges, it may misclassify

uncorrupted edges when the overall corruption or noise level

is high (q=0.6 or σ=0.2). The performance of 1DSfM is not

competitive. Indeed, it may frequently misclassify edges even

at low corruption and noise levels, since it may converge to local

extrema and also the 1D projection loses information.

6. Experiments on Real Data

We consider real datasets and compare the improvement obtai-

ned by preprocessing current camera location solvers with naive

AAB, IR-AAB and 1DSfM. We use the 14 datasets from [23].

For each dataset, we exactly follow the pipeline suggested by [16]

for estimating camera orientations and pairwise directions. Given

the estimated pairwise directions from [16], naive AAB, IR-AAB

and 1DSfM are applied separately to delete 50% of the edges with

the highest corresponding statistics. Different choices of 10% and

90% deleted edges are demonstrated in the supplemental material.

Since the graph may not be parallel rigid after deleting edges, we

extract its maximal parallel rigid component using a procedure

suggested in [10]. We then apply to this component the following

three different camera location solvers: LUD [16] with IRLS

implementation, CLS [21, 22] with interior point method and

ShapeFit [7] with ADMM implementation [4]. We remark that

although 50% of edges are removed, the number of locations in

the maximal parallel rigid graph is still close to the original graph.

For faster implementation of LUD, only a subset of the Piccadilly

dataset with 500 locations is used. For each dataset, each of the 3

statistics, and each of the 3 camera location solvers, we compute

average and median distance (in meters) of the estimated camera

locations to the ground truth locations1. The latter ones are pro-

vided by [23]. The experimental results are recorded in Table 1.

These results show significant improvement of IR-AAB for

all three camera location solvers. In particular, IR-AAB works

1For each solver, the unknown scale and shift are estimated by least squares
minimization with respect to the ground truth data.

best with LUD and CLS. For example, IR-AAB with LUD

outperforms naive AAB and 1DSfM with LUD on 10 out of

the 14 datasets in terms of both mean and median errors. For 2

additional datasets, IR-AAB with LUD still improves over LUD.

For the two remaining datasets, Ellis Island and Gendarmenmarkt,

which contain highly inaccurate pairwise directions, none of the

three statistics significantly improve any of the solvers. We also

note that while LUD is superior to CLS, after applying IR-AAB,

both algorithms are comparable. Furthermore, CLS with IR-AAB

outperforms plain LUD. We observe that 1DSfM outperforms IR-

AAB on a few datasets when using ShapeFit. However, 1DSfM

with ShapeFit is worse than plain ShapeFit on 6 other datasets.

The inconsistent results of ShapeFit are due to its instability.

Indeed, its formulation has a very weak constraint that cannot

avoid collapsed solutions in the presence of highly corrupted

pairwise directions and when, in particular, some locations have

low degrees. On the other hand, both LUD and CLS have a

very strong constraint, which avoids collapsed solutions. Note

that the preprocessing step results in a large component of the

original graph with a possibly different topology than the original

graph and thus ShapeFit may be more sensitive to the resulting

subgraph, especially if it has some vertices with low degrees not

present in the original graph. Due to this sensitivity, none of the

preprocessing methods consistently outperforms the other ones

when using ShapeFit. We remark that the instability of ShapeFit

can be observed from the large variation of its estimation error

using different outlier-removing methods and different datasets.

Figure 5 illustrates the improvement of the three preprocessing

algorithms (naive AAB, IR-AAB and 1DSfM) over the three

solvers (LUD, CLS and ShapeFit). The improvement is measured

by the following formula:

Improvement=
ebefore−eafter

ebefore

·100%, (24)

where ebefore is the mean/median error of estimated camera

locations on the whole graph by the given solver without

preprocessing and eafter is the mean/median error of the same

solver after removing 50% of edges by the given preprocessing

algorithm. The two datasets with highly inaccurate pairwise

directions, Ellis Island and Gendarmenmarkt, were removed.

The first three subfigures indicate results of mean error for each

solver separately and the last subfigure demonstrates the averaged

mean and median errors result among the 12 remaining datasets.

It is evident that IR-AAB has the best overall performance in

improving the three solvers. On the other hand, 1DSfM has the

worst performance. For example, IR-AAB succeeds in improving

LUD’s performance with average mean-error rate of 38% and

it consistently reduces the estimation error of LUD on all of

these datasets. On the other hand, 1DSfM has average mean-error

improvement rate for LUD of 5.7%, whereas on five datasets

preprocessing by 1DSfM increases the estimation error of LUD.

For comparison, naive AAB has average mean-error improvement

rate for LUD of 26.5%, whereas on two datasets preprocessing by

naive AAB increases the estimation error of LUD. For all of the

3 statistics, the overall improvement of preprocessing with CLS

is more significant than preprocessing with LUD and ShapeFit.

Indeed the averaged mean and median improvement rates of CLS
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Algorithms
LUD [16] CLS [21, 22] ShapeFit [7]

None N-AAB IR-AAB 1DSfM None N-AAB IR-AAB 1DSfM None N-AAB IR-AAB 1DSfM

Dataset ẽ ê ẽ ê ẽ ê ẽ ê ẽ ê ẽ ê ẽ ê ẽ ê ẽ ê ẽ ê ẽ ê ẽ ê

Alamo 0.47 1.74 0.38 0.92 0.36 0.85 0.38 1.3 1.35 2.79 0.39 0.93 0.37 0.69 0.44 1.44 0.44 1.83 0.38 0.92 0.36 0.85 0.38 2.82
Madrid Metropolis 1.84 5.94 1.28 3.57 1.21 3.53 1.46 5.79 7.1 11.2 1.48 5.28 1.26 3.44 2.73 3.59 14 27.3 1.51 17.8 1.22 7.64 4.61 29.58
Montreal N.D. 0.56 1.22 0.4 0.61 0.39 0.59 0.53 1.2 0.9 1.79 0.4 0.6 0.41 0.6 0.69 1.86 0.58 3.25 0.39 0.63 0.39 0.58 0.61 4.08
Notre Dame 0.29 0.85 0.26 0.6 0.24 0.51 0.28 1 1.05 2.12 0.36 0.86 0.27 0.55 0.61 1.47 0.24 0.96 0.23 0.58 0.22 0.53 0.24 1.27
NYC Library 2.43 6.95 0.95 2.89 0.69 2.24 1.83 5.64 5.3 8.51 1.89 4.51 0.72 2.52 4.49 7.31 13.3 14.3 0.85 5.69 0.66 2.23 13.3 14.2
Piazza Del Popolo 1.66 5.28 1.12 4.03 0.91 1.54 0.94 1.95 3.42 6.46 1.22 4.31 0.98 1.57 1.47 2.57 1.48 6.81 1.09 4.07 0.89 1.51 1 5.74
Piccadilly 2.02 3.87 1.37 3.07 1.19 2.69 2.12 3.95 3.64 5.42 1.56 3.28 1.23 2.42 3.5 5.11 14.2 13.4 5.72 14.4 11.6 13.3 2.09 6.39
Roman Forum 2.21 8.33 1.74 7.28 1.62 7.13 3.4 10.1 6.2 12.4 3.11 9.24 2.56 8.58 6.62 15.3 26.7 41 1.53 12.7 7.46 17.7 26.9 33.2
Tower of London 4.03 17.9 2.41 4.79 2.33 4.36 2.83 15.8 16 27 2.6 4.87 2.36 4.34 12.6 24.8 2.41 16.9 2.34 4.74 2.27 3.92 2.48 20.1
Union Square 7.57 11.7 7.24 11.2 7.3 11.3 7.89 12.9 8.03 12.5 7.39 11.7 7.84 11.7 8.54 13.6 12.9 19 12.3 18.6 12.5 18.8 13.1 19.2
Vienna Cathedral 7.26 13.1 6.86 14.9 4.21 12.7 9.05 17.4 9.59 13.7 10 14.8 8.45 13.9 8.62 15.6 28.6 36.6 28.5 36.5 28.5 36.4 27.6 36.4
Yorkminster 2.51 5.26 1.61 6.74 1.62 4.91 2 3.69 5.95 8.72 2.8 6.95 2.29 6.36 4.76 6.89 19.9 28.4 2.35 10.9 2.03 14.6 1.65 4.51
Ellis Island 22 22.4 23.5 23.7 24.7 24.6 21.7 22.5 20.9 22 23.4 23.6 25.3 24.7 22.1 22.4 26.7 27.7 26.5 27.6 26.6 27.8 26.4 27.6
Gendermenmarkt 17.5 38.8 15.1 40.9 15 41.3 17.1 40.6 20.7 40.9 19.4 43.1 18.3 42.1 19.2 42.3 32.8 51.7 32.7 52.1 32.5 52.1 32.4 51.5

Table 1. Comparison of naive AAB, IR-AAB and 1DSfM for improving 3 location solvers (LUD, CLS, ShapeFit) using 14 datasets from [23]. The

median and mean distance from the estimated camera locations to the ground truth (provided in [23]) are denoted by ẽ and ê respectively.

when preprocessing by IR-AAB is more than 50%. This is not

surprising as CLS is not robust to corruption. For ShapeFit, the

average improvements over the mean errors when preprocessing

with naive AAB, IR-AAB and 1DSfM are 42.4%, 50.4% and

2.9% respectively. However, when considering each individual

dataset, IR-AAB and naive AAB may not consistently outperform

1DSfM due to the instability of ShapeFit discussed above.

LUD mean CLS mean ShapeFit mean LUD median CLS median ShapeFit median
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Figure 5. Percentage of improvement of location estimation by prepro-

cessing 3 solvers with the 3 statistics. The first 3 subfigures illustrate the

mean error improvement for LUD, CLS and ShapeFit respectively. Num-

bers 1-12 on the horizontal axis are the indices of the first 12 datasets in

Table 1. Negative number of improvement rate corresponds to increase of

the estimation error after removing edges. The last subfigure illustrates the

averaged mean and median improvement of the 3 statistics over the first

12 datasets when preprocessing the three solvers by the three statistics.

We report the computational speed of the algorithms on the

largest dataset: Roman Forum, which has 967 locations. While

Piccadilly has 2226 locations, it was run with 500 locations

to ease the computational time for LUD and for extracting

the maximal parallel rigid component. The computations

were performed on a machine with 2.5GHz Intel i5 quad

core processors and 8GB memory. The total time needed to

compute 1DSfM, naive AAB and IR-AAB is 2, 5 and 8 seconds

respectively. For comparison, the total time to run CLS, ShapeFit

and LUD is 8, 8 and 160 seconds respectively. We expect the

runtime of ADMM for LUD to be comparable to that of ShapeFit.

The slowest component was finding the maximal parallel rigid

component. For Roman Forum, it took 550 seconds, while it

took less than 200 seconds for the other datasets.

7. Conclusion

We proposed the AAB statistic for estimating the underlying

corruption level on camera pairwise directions. We improved this

estimation by incorporating a careful reweighting strategy. We furt-

her established theoretical guarantee on the accuracy of the non-

reweighted statistic, i.e., naive AAB, for detecting corrupted edges

when the corruption and noise levels are sufficiently low. The ex-

periments on both synthetic data and real data show the significant

advantage of applying the reweighting strategy with the AAB sta-

tistic. Applying our method as a preprocessing step significantly

improves the performance of current camera location solvers.

This work suggests several interesting future projects. First

of all, we believe that a similar strategy can be developed for

improving camera orientation estimation. Second of all, we are

interested in theoretically guaranteeing the reweighting strategy

for segmenting corrupted and uncorrupted edges. Third of all,

an interesting direction for future work is to study and provide

guarantees for synthetic models that more realistically mirror

real scenarios. At last, we find it important to develop a faster

method for extracting the maximal parallel rigid graph so that

the total runtime can be significantly reduced.
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