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Abstract

Rotation-invariant face detection, i.e. detecting faces

with arbitrary rotation-in-plane (RIP) angles, is widely re-

quired in unconstrained applications but still remains as a

challenging task, due to the large variations of face appear-

ances. Most existing methods compromise with speed or

accuracy to handle the large RIP variations. To address

this problem more efficiently, we propose Progressive Cali-

bration Networks (PCN) to perform rotation-invariant face

detection in a coarse-to-fine manner. PCN consists of three

stages, each of which not only distinguishes the faces from

non-faces, but also calibrates the RIP orientation of each

face candidate to upright progressively. By dividing the

calibration process into several progressive steps and on-

ly predicting coarse orientations in early stages, PCN can

achieve precise and fast calibration. By performing binary

classification of face vs. non-face with gradually decreas-

ing RIP ranges, PCN can accurately detect faces with full

360◦ RIP angles. Such designs lead to a real-time rotation-

invariant face detector. The experiments on multi-oriented

FDDB and a challenging subset of WIDER FACE contain-

ing rotated faces in the wild show that our PCN achieves

quite promising performance.

1. Introduction

Face detection serves as an important component in com-

puter vision systems which aim to extract information from

face images. Practical applications, such as face recogni-

tion and face animation, all need to quickly and accurately

detect faces on input images in advance. Same as many oth-

er vision tasks, the performance of face detection has been

substantially improved by Convolutional Neural Network

(CNN) [4, 17, 14, 13, 20, 23, 12, 7, 15]. The CNN-based

detectors enjoy the natural advantage of strong capability

Figure 1. Many complex situations need rotation-invariant face de-

tectors. The face boxes are the outputs of our detector, and the blue

line indicates the orientation of faces.

in non-linear feature learning. However, most works focus

on designing an effective detector for generic faces without

considerations for specific scenarios, such as detecting faces

with full rotation-in-plane (RIP) angles as shown in Figure

1. They become less satisfactory in such complex appli-

cations. Face detection in full RIP, i.e. rotation-invariant

face detection, is quite challenging, because faces can be

captured almost from any RIP angle, leading to significan-

t divergence in face appearances. An accurate rotation-

invariant face detector can greatly boost the performance

of subsequent process, e.g. face alignment and face recog-

nition.

Generally, there are three strategies for dealing with

the rotation variations including data augmentation, divide-

and-conquer, and rotation router [18], detailed as follows.

Data Augmentation is the most straightforward solution

for training a rotation-invariant face detector, which aug-

ments the training data by uniformly rotating the upright
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(a) Data Augmentation (b) Divide-and-Conquer

(c) Estimate RIP angles with a router network and rotate face candidates to upright [18].

Figure 2. Three strategies for rotation-invariant face detection. “FD-full”, “FD-up”, “FD-down”, “FD-left”, and “FD-right” mean face

detectors trained with faces in full RIP angles, with faces facing up, with faces facing down, with faces facing left, and with faces facing

right, respectively.

faces to full RIP angles. The advantage of this strategy is

that the same scheme as that of the upright face detectors

can be directly used without extra operations. However, to

characterize such large variations of face appearances in s-

ingle detector, one usually needs to use large neural net-

works with high time cost, which is not practical in many

applications.

Divide-and-Conquer is another commonly used

method for dealing with this problem which trains mul-

tiple detectors, one for a small range of RIP angles, to

cover the full RIP range such as [8]. For example, four

detectors covering the faces facing up, down, left and right

respectively are constructed to detect the faces in full RIP

angles, as shown in Figure 2(b). As one detector only deals

with a small range of face appearance variations, and thus

a small neural network with low time cost is enough for

each detector. However, the overall time cost of running

multiple detectors grows and more false alarms are easily

introduced.

Rotation Router The large appearance variations of ro-

tated faces come from their diverse RIP angles. Thus, a

natural way is to estimate the faces’ RIP angles explicitly,

and then rotate them to upright, significantly reducing ap-

pearance variations of faces. In [18], a router network is

firstly used to estimate each face candidate’s RIP angle, and

then the candidates are calibrated to face upright, as shown

in Figure 2(c). After this step, an upright face detector can

easily process the calibrated face candidates. Obviously, an

inaccurate estimation of the RIP angle will cause miss de-

tection of faces, leading to a lower recall. However, precise-

ly estimating the RIP angles of faces is quite challenging, so

a large neural network is usually used as the router network,

resulting in high time cost.

To solve the problems above, we propose a real-time and

accurate rotation-invariant face detector with progressive

calibration networks (PCN), as shown in Figure 3. Our PC-

N progressively calibrates the RIP orientation of each face

candidate to upright for better distinguishing faces from

non-faces. Specifically, PCN first identifies face candidates

and calibrates those facing down to facing up, halving the

range of RIP angles from [−180◦, 180◦] 1 to [−90◦, 90◦].
Then the rotated face candidates are further distinguished

and calibrated to an upright range of [−45◦, 45◦], shrink-

ing the RIP range by half again. Finally, PCN makes the

accurate final decision for each face candidate to determine

whether it is a face and predict the precise RIP angle. By di-

viding the calibration process into several progressive step-

s and only predicting coarse orientations in early stages,

PCN can achieve precise calibration. And the calibration

process can be implemented as rotating original image by

−90◦, 90◦, and 180◦ with quite low time cost. By perform-

ing binary classification of face vs. non-face with gradual-

ly decreasing RIP ranges, PCN can accurately detect faces

with full 360◦ RIP angles. Such designs lead to a real-time

rotation-invariant face detector.

1Y-axis corresponds to 0
◦.
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Figure 3. An overview of our proposed progressive calibration networks (PCN) for rotation-invariant face detection. Our PCN progressively

calibrates the RIP orientation of each face candidate to upright for better distinguishing faces from non-faces. Specifically, PCN-1 first

identifies face candidates and calibrates those facing down to facing up, halving the range of RIP angles from [−180◦, 180◦] to [−90◦, 90◦].
Then the rotated face candidates are further distinguished and calibrated to an upright range of [−45◦, 45◦] in PCN-2, shrinking the RIP

ranges by half again. Finally, PCN-3 makes the accurate final decision for each face candidate to determine whether it is a face and predict

the precise RIP angle.

Briefly, the novelties and advantages of our proposed

method are listed as below:

• Our PCN divides the calibration process into several

progressive steps, each of which is an easy task, re-

sulting in accurate calibration with low time cost. And

the range of RIP angles is gradually decreasing, which

helps distinguish faces from non-faces.

• In the first two stages of our PCN, only coarse cali-

brations are conducted, such as calibrations from fac-

ing down to facing up, and from facing left to facing

right. On the one hand, a robust and accurate RIP angle

prediction for this coarse calibration is easier to attain

without extra time cost, by jointly learning calibration

task with the classification task and bounding box re-

gression task in a multi-task learning manner. On the

other hand, the calibration can be easier to implement

as flipping original image with quite low time cost.

• As evaluated on the face detection datasets including

multi-oriented FDDB [10] and a challenging subset

of WIDER FACE [21] containing rotated faces in the

wild, the PCN detector achieves quite promising per-

formance with extremely fast speed.

The rest of the paper is organized as follows. Section 2

describes the proposed PCN detector in detail, explaining

the design of different stages. Section 3 presents the exper-

imental results on two challenging face detection datasets

together with analysis on the stage-wise calibration. The

final Section 4 concludes this work.

2. Progressive Calibration Networks (PCN)

2.1. Overall Framework

The proposed PCN detector is diagrammed in Figure 3.

Given an image, all face candidates are obtained accord-

ing to the sliding window and image pyramid principle, and

each candidate window goes through the detector stage by

stage. In each stage of PCN, the detector simultaneously

rejects most candidates with low face confidences, regress-

es the bounding boxes of remaining face candidates, and

calibrates the RIP orientations of the face candidates. Af-

ter each stage, non-maximum suppression (NMS) is used to

merge those highly overlapped candidates as most existing

methods do.

2.2. PCN­1 in 1st stage

For each input window x, PCN-1 has three objectives:

face or non-face classification, bounding box regression,

and calibration, formulated as follows:

[f, t, g] = F1(x), (1)

where F1 is the detector in the first stage structured with a

small CNN. The f is face confidence score, t is a vector

representing the prediction of bounding box regression, and

g is orientation score.

The first objective, which is also the primary objective,

aims for distinguishing faces from non-faces with softmax

loss as follows:

Lcls = ylogf + (1− y)log(1− f), (2)

where y equals 1 if x is face, otherwise is 0.
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The second objective attempts to regress the fine bound-

ing box, as below:

Lreg(t, t
∗) = S(t− t∗), (3)

where t and t∗ represents the predicted and ground-truth

regression results respectively, and S is the robust smooth

l1 loss defined in [5]. The bounding box regression targets

consist of three terms:

tw = w∗/w,

ta = (a∗ + 0.5w∗

− a− 0.5w)/w∗,

tb = (b∗ + 0.5w∗

− b− 0.5w)/w∗,

(4)

where a, b, and w denote the box’s top-left coordinates and

its width. Variables a and a∗ are for the box and ground-

truth box respectively (likewise for b and w).

The third objective, which is the one we introduce, aims

to predict the coarse orientation of the face candidate in a

binary classification manner as follows:

Lcal = ylogg + (1− y)log(1− g), (5)

where y equals 1 if x is facing up, and equals 0 if x is facing

down.

Overall, the objective for PCN-1 in the first stage is de-

fined as:

min
F1

L = Lcls + λreg · Lreg + λcal · Lcal, (6)

where λreg , λcal are parameters to balance different loss.

After optimizing Eq. (6), the PCN-1 is obtained which

can be used to filter all windows to get a small number of

face candidates. For the remaining face candidates, first-

ly they are updated to the new bounding boxes that are re-

gressed with the PCN-1. Then the updated face candidates

are rotated according to the predicted coarse RIP angles.

The predicted RIP angle in the first stage, i.e. θ1, can be

calculated by:

θ1 =

{

0◦, g ≥ 0.5

180◦, g < 0.5
(7)

Specifically, θ1 = 0◦ means that the face candidate is facing

up, thus no rotation is needed, otherwise θ1 = 180◦ means

that the face candidate is facing down, and it is rotated 180◦

to make it facing up. As a result, the range of RIP angles is

reduced from [−180◦, 180◦] to [−90◦, 90◦].
As most datasets for face detection mainly contain up-

right faces, which is not suitable for the training of rotation-

invariant face detector. Based on the upright faces dataset,

we rotate the training images with different RIP angles,

forming a new training set containing faces with 360◦ RIP

angles. During the training phase, three kinds of train-

ing data are employed: positive samples, negative sam-

ples, and suspected samples. Positive samples are those

windows with IoU (w.r.t. a face) over 0.7; negative sam-

ples are those windows with IoU smaller than 0.3; suspect-

ed samples are those windows with IoU between 0.4 and

0.7. Positive samples and negative samples contribute to

the training of classification of faces and non-faces. Posi-

tive samples and suspected samples contribute to the train-

ing of bounding box regression and calibration. For pos-

itive and suspected samples, if their RIP angles are in the

range of [−65◦, 65◦], we define them as facing up, and if

in [−180◦,−115◦]∪ [115◦, 180◦], we define them as facing

down. Samples whose RIP angles are not in the range above

will not contribute to the training of calibration.

2.3. PCN­2 in 2nd stage

Similar as the PCN-1 in the first stage, the PCN-2 in the

second stage further distinguishes the faces from non-faces

more accurately, regresses the bounding boxes, and cali-

brates face candidates. Differently, the coarse orientation

prediction in this stage is a ternary classification of the RIP

angle range, i.e. [−90◦,−45◦], [−45◦, 45◦], or [45◦, 90◦].
Rotation calibration is conducted with the predicted RIP an-

gle in the second stage:

id = argmax
i

gi,

θ2 =











− 90◦, id = 0

0◦, id = 1

90◦, id = 2

(8)

where g0, g1, and g2 are the predicted ternary orientation

classification scores. The face candidates should be rotat-

ed by −90◦, 0◦, or 90◦ correspondingly. After the second

stage, the range of RIP angles is reduced from [−90◦, 90◦]
to [−45◦, 45◦].

In the training phase of the second stage, we ro-

tate the initial training images uniformly in the range of

[−90◦, 90◦], and filter out the hard negative samples via the

trained PCN-1. Positive and suspected samples in the RIP

angles range [−90◦,−60◦], [−30◦, 30◦], [60◦, 90◦] corre-

spond to the label 0, 1, 2 for calibration. Samples whose

RIP angles are not in the range above will not contribute to

the training of calibration.

2.4. PCN­3 in 3rd stage

After the second stage, all the face candidates are cal-

ibrated to an upright quarter of RIP angle range, i.e.

[−45◦, 45◦]. Therefore, the PCN-3 in the third stage can

easily make the final decision as most existing face detec-

tors do to accurately determine whether it is a face and

regress the bounding box. Since the RIP angle has been re-

duced to a small range in previous stages, PCN-3 attempts

to directly regress the precise RIP angles of face candidates

instead of coarse orientations.
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Figure 4. The RIP angle is predicted in a coarse-to-fine cascade regression style. The RIP angle of a face candidate, i.e. θRIP , is obtained

as the sum of predicted RIP angles from three stages, i.e. θRIP = θ1 + θ2 + θ3. Particularly, θ1 only has two values, 0◦ or 180◦, θ2 only

has three values, 0◦, 90◦ or −90◦, and θ3 is a continuous value in the range of [−45◦, 45◦].

At last, the RIP angle of a face candidate, i.e. θRIP , can

be obtained by accumulating the predictions from all stages

as below:

θRIP = θ1 + θ2 + θ3, (9)

We present some examples for the calculation of RIP an-

gles, shown in Figure 4. The RIP angle regression is in a

coarse-to-fine cascade regression style like [3, 22].

During the third stage’s training phase, we rotate the ini-

tial training images uniformly in the range of [−45◦, 45◦],
and filter out the hard negative samples via the trained PCN-

2. The calibration branch is a regression task trained with

smooth l1 loss.

2.5. Accurate and Fast Calibration

Our proposed PCN progressively calibrates the face can-

didates in a cascade scheme, aiming for fast and accurate

calibration: 1) the early stages only predict coarse RIP ori-

entations, which is robust to the large diversity and further

benefits the prediction of successive stages, 2) the calibra-

tion based on the coarse RIP prediction can be efficient-

ly achieved via flipping original image three times, which

brings almost no additional time cost. Specifically, rotating

the original image by −90◦, 90◦, and 180◦ to get image-

left, image-right, and image-down. And the windows with

0◦, −90◦, 90◦, and 180◦ can be cropped from original im-

age, image-left, image-right, and image-down respectively,

illustrated in Figure 5. With the accurate and fast calibra-

tion, face candidates are progressively calibrated to upright,

leading to easier detection.

3. Experiments

In the following part, we first describe the implementa-

tion details of PCN. Then, we present the evaluation result-

s on two challenging datasets of rotated faces in the wild,

i.e. Multi-Oriented FDDB and Rotation WIDER FACE, to

demonstrate the effectiveness of our PCN, and give in-depth

analysis with respect to accuracy and speed.

Figure 5. Rotate the original image by −90◦, 90◦, and 180◦ to get

image-left, image-right, and image-down. And the windows with

0◦, −90◦, 90◦, and 180◦ can be cropped from original image,

image-left, image-right, and image-down respectively, resulting in

efficient calibration.

3.1. Implementation Details

Our network architecture is shown in Figure 6. PCN con-

sists of three CNNs from small to large. We use the training

set of WIDER FACE for training, and annotated faces are

adjusted to squares. The network is optimized by stochas-

tic gradient descent (SGD) with back-propagation and the

maximum iteration is set as 105. We adopt the “step” strat-

egy in Caffe [11] to adjust learning rate. For the first 7×104

iterations the learning rate is fixed to be 10−3 and after that

it is reduced to 10−4. Weight decay is set as 5 × 10−4 and

momentum is set as 0.9. All layers are initialized by zero-

mean Gaussian distribution with standard deviation 0.01 for

stable convergence. During the training process, the ratio of

positive samples, negative samples, and suspected samples

is about 2 : 2 : 1 in every mini-batch. All the experiments

are conducted with Caffe and run on a desktop computer

with 3.4GHz CPU and GTX Titan X.
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Figure 6. The detailed CNN structures of three stages in our pro-

posed PCN method. “Conv”, “MP”, “InnerProduct”, and “ReLU”

mean convolution layer, max pooling layer, inner product layer,

and relu layer, respectively. (k×k, s) represents that the kernel

size is k and the stride is s.

3.2. Methods for Comparison

A few methods employing the three strategies mentioned

in Section 1 for rotation-invariant face detection are evalu-

ated for comparison. 1) Data Augmentation: The state-of-

the-art detection models including Faster R-CNN [17], R-

FCN [2], and SSD500 [14] are trained with data augmenta-

tion, i.e. randomly rotating training images in the full range

of [−180◦, 180◦]. The base networks used is VGG16 [19],

VGGM [1], and ResNet-50 [6]. For fairer comparison, we

also implement a Cascade CNN [13] face detector using the

same networks as our PCN, trained with data augmentation.

Besides, we insert STN [9] in the Cascade CNN for more

extensive comparison. 2) Divide-and-Conquer: we imple-

ment an upright face detector based on Cascade CNN and

run this detector four times on the images rotated by 0◦,

−90◦, 90◦, 180◦, to form a rotation-invariant face detector.

This upright face detector uses smaller networks than our

PCN. Specifically, in the first stage the input size is reduced

from 24 to 12, and in the second and the third stages the

channel numbers are reduced. 3) Rotation Router: [18] is

implemented for comparison, in which the router network

first estimates the orientation of faces in the range of up,

down, left, right and rotate it to upright respectively. Then

the same upright face detector used in Divide-and-Conquer

follows to detect the faces. The router network shares the

same structure with PCN-1. All methods including our PCN

are trained on WIDER FACE training set, and the annotated

faces are adjusted to squares.

3.3. Benchmark Datasets

Multi-Oriented FDDB FDDB [10] dataset contains

5, 171 labeled faces, which are collected from 2, 845 news

photographs. FDDB is challenging in the sense that the
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Figure 7. Histogram of angular error in the router network (in de-

grees).

faces appear with great variations in view, skin color, facial

expression, illumination, occlusion, resolution, etc. How-

ever, most faces in FDDB are upright owing to the collec-

tion from news photographs. To better evaluate rotation-

invariant face detector’s performance, the FDDB images

are rotated by −90◦, 90◦, and 180◦ respectively, forming

a multi-oriented version of FDDB. The initial FDDB is

called as FDDB-up in this work, and the others are called

as FDDB-left, FDDB-right, and FDDB-down according to

their rotated angles. Detectors are evaluated respectively on

multi-oriented FDDB, to completely measure the rotation-

invariant performance. For evaluation of the detection re-

sults, we apply the official evaluation tool to obtain the ROC

curves. To be compatible with the evaluation rules, we ig-

nore the RIP angles of detection boxes, and simply use hor-

izontal boxes for evaluation.

Rotation WIDER FACE WIDER FACE [21] contain-

s faces with a high degree of variability in scale, pose and

occlusion. We manually select some images that contain

rotated faces from the WIDER FACE test set, obtain a ro-

tation subset with 370 images and 987 rotated faces in the

wild, as shown in Figure 10. Since the ground-truth faces

of the WIDER FACE test set are not provided, we manu-

ally annotate the faces in this subset following the WIDER

FACE annotation rules, and use the same evaluation tool of

FDDB to obtain the ROC curves.

3.4. Evaluation Results

3.4.1 Results of Rotation Calibration

For our PCN, the orientation classification accuracy in the

first stage and the second stage is 95% and 96%. The mean

error of calibration in the third stage is 8◦. The orienta-

tion classification accuracy of the router network [18] is

90%, which shows that our progressive calibration mech-

anism can achieve better orientation classification accuracy.

We also implement the router network in continuous angle

regression manner. However, the mean error is quite large,

due to the fine regression task is too challenging, as shown

in Figure 7.
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Figure 8. ROC curves of rotation-invariant face detectors on multi-oriented FDDB. The horizontal axis on the ROC is “false positives over

the whole dataset”. Usually, 20 ∼ 200 FP is a sensible operating range in the existing works [16] and in practice, i.e. 1 FP about every

15 ∼ 150 images (2, 845 images in FDDB in total).
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Figure 9. ROC curves on rotation WIDER FACE.

3.4.2 Results on Multi-Oriented FDDB

We evaluate the rotation-invariant face detectors mentioned

above in terms of ROC curves on multi-oriented FDDB,

shown in Figure 8. As can be seen, our PCN achieves

comparable performance with the giant Faster R-CNN (VG-

G16) and SSD500 (VGG16), and beats all the other meth-

ods. Besides, our PCN performs much better than the base-

line Cascade CNN with almost no extra time cost benefited

from the efficient calibration process. Compared with “Ro-

tation Router”, “Divide-and-Conquer”, and Cascade CNN

+ STN, PCN is still better attributed to the robust and accu-

rate coarse-to-fine calibration.

3.4.3 Results on Rotation WIDER FACE

Moreover, our proposed PCN is compared with the ex-

isting methods on the more challenging rotation WIDER

FACE, as shown in Figure 9. As can be seen, our PC-

N achieves quite promising performance, and even surpass

Faster R-CNN (VGG16) when with low false positives,

which demonstrates the effectiveness of progressive cali-

bration mechanism. Some detection results can be viewed

in Figure 10.

3.4.4 Speed and Accuracy Comparison

Our PCN aims at accurate rotation-invariant face detection

with low time cost as mentioned above. In this section we

compare PCN’s speed with other rotation-invariant face de-

tector’s on standard 640 × 480 VGA images with 40 × 40
minimum face size. The speed results together with the re-

call rate at 100 false positives on multi-oriented FDDB are

shown in Table 1. As can be seen, our PCN can run with

almost the same speed as Cascade CNN, benefited from the

fast calibration operation of image flipping. Favorably, PC-

N runs much faster than Faster R-CNN (VGG16), SSD500

(VGG16), and R-FCN (ResNet-50) with better detection ac-

curacy, demonstrating the superiority of our PCN in both

accuracy and speed.
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Method
Recall rate at 100 FP on FDDB Speed

Model Size
Up Down Left Right Ave CPU GPU

Divide-and-Conquer 85.5 85.2 85.5 85.6 85.5 15FPS 20FPS 2.2M

Rotation Router [18] 85.4 84.7 84.6 84.5 84.8 12FPS 15FPS 2.5M

Cascade CNN [13] 85.0 84.2 84.7 85.8 84.9 31FPS 67FPS 4.2M

Cascade CNN [13] + STN [9] 85.8 85.0 84.9 86.2 85.5 16FPS 30FPS 4.7M

SSD500 [14] (VGG16) 86.3 86.5 85.5 86.1 86.1 1FPS 20FPS 95M

Faster R-CNN [17] (VGGM) 84.2 82.5 81.9 82.1 82.7 1FPS 20FPS 350M

Faster R-CNN [17] (VGG16) 87.0 86.5 85.2 86.1 86.2 0.5FPS 10FPS 547M

R-FCN [2] (ResNet-50) 87.1 86.6 85.9 86.0 86.4 0.8FPS 15FPS 123M

PCN (ours) 87.8 87.5 87.1 87.3 87.4 29FPS 63FPS 4.2M
Table 1. Speed and accuracy comparison between different methods. The FDDB recall rate (%) is at 100 false positives.

Figure 10. Our PCN’s detection results on rotation WIDER FACE.

4. Conclusion

In this paper, we propose a novel rotation-invariant face

detector, i.e. progressive calibration networks (PCN). Our

PCN progressively calibrates the RIP orientation of each

face candidate to upright for better distinguishing faces

from non-faces. PCN divides the calibration process into

several progressive steps and implements calibration as

flipping original image, resulting in accurate calibration

but with quite low time cost. By performing binary clas-

sification of face vs. non-face with gradually decreasing

RIP ranges, the proposed PCN can accurately detect faces

with arbitrary RIP angles. Compared with the similarly

structured upright face detector, the time cost of PCN

almost remains the same, naturally resulting in a real-time

rotation-invariant face detector. As evaluated on two

challenging datasets of rotated faces, our PCN achieves

quite promising performance.
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