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Abstract

Deep Learning has led to a dramatic leap in Super-

Resolution (SR) performance in the past few years. How-

ever, being supervised, these SR methods are restricted to

specific training data, where the acquisition of the low-

resolution (LR) images from their high-resolution (HR)

counterparts is predetermined (e.g., bicubic downscaling),

without any distracting artifacts (e.g., sensor noise, image

compression, non-ideal PSF, etc). Real LR images, how-

ever, rarely obey these restrictions, resulting in poor SR re-

sults by SotA (State of the Art) methods. In this paper we in-

troduce “Zero-Shot” SR, which exploits the power of Deep

Learning, but does not rely on prior training. We exploit

the internal recurrence of information inside a single im-

age, and train a small image-specific CNN at test time, on

examples extracted solely from the input image itself. As

such, it can adapt itself to different settings per image. This

allows to perform SR of real old photos, noisy images, bi-

ological data, and other images where the acquisition pro-

cess is unknown or non-ideal. On such images, our method

outperforms SotA CNN-based SR methods, as well as previ-

ous unsupervised SR methods. To the best of our knowledge,

this is the first unsupervised CNN-based SR method.

1. Introduction

Super-Resolution (SR) from a single image has recently

received a huge boost in performance using Deep-Learning

based methods [4, 10, 9, 12, 13]. The recent SotA (State of

the Art) method [13] exceeds previous non-Deep SR meth-

ods (supervised [22] or unsupervised [5, 6, 7]) by a few dBs

– a huge margin! This boost in performance was obtained

with very deep and well engineered CNNs, which were

trained exhaustively on external databases, for lengthy pe-

riods of time (days or weeks). However, while these exter-

nally supervised1 methods perform extremely well on data

satisfying the conditions they were trained on, their perfor-

mance deteriorates significantly once these conditions are

not satisfied.

1We use the term “supervised” for any method that trains on exter-

nally supplied examples (even if their generation does not require manual

labelling).

For example, SR CNNs are typically trained on high-

quality natural images, from which the low-resolution (LR)

images were generated with a specific predefined down-

scaling kernel (usually a Bicubic kernel with antialiasing

– MATLAB’s default imresize command), without any dis-

tracting artifacts (sensor noise, non-ideal PSF, image com-

pression, etc.), and for a predefined SR scaling-factor (usu-

ally ×2, ×3 or ×4; assumed equal in both dimensions).

Fig. 2 shows what happens when these conditions are not

satisfied, e.g., when the LR image is generated with a non-

ideal (non-bicubic) downscaling kernel, or contains aliasing

effects, or simply contains sensor noise or compression arti-

facts. Fig. 1 further shows that these are not contrived cases,

but rather occur often when dealing with real LR images –

images downloaded from the internet, images taken by an

iPhone, old historic images, etc. In those ‘non-ideal’ cases,

SotA SR methods often produce poor results.

In this paper we introduce “Zero-Shot” SR (ZSSR),

which exploits the power of Deep Learning, without rely-

ing on any prior image examples or prior training. We ex-

ploit the internal recurrence of information within a single

image and train a small image-specific CNN at test time,

on examples extracted solely from the LR input image itself

(i.e., internal self-supervision). As such, the CNN can be

adapted to different settings per image. This allows to per-

form SR on real images where the acquisition process is un-

known and non-ideal (see example results in Figs. 1 and 2).

On ‘non-ideal’ images, our method outperforms externally-

trained SotA SR methods by a large margin.

The recurrence of small pieces of information (e.g.,

small image patches) across scales of a single image,

was shown to be a very strong property of natural im-

ages [5, 24]. This formed the basis for many unsu-

pervised image enhancement methods, including unsuper-

vised SR [5, 6, 7], Blind-SR [15] (when the downscal-

ing kernel is unknown), Blind-Deblurring [16, 2], Blind-

Dehazing [3], and more. While such unsupervised methods

can exploit image-specific information (hence are less sub-

ject to the above-mentioned supervised restrictions), they

typically rely on simple Eucledian similarity of small im-

age patches, of predefined size (typically 5 × 5), using K-
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(a) Historic image: Check-point Charlie (end of World-War II) – SR× 2

ZSSR (ours)

EDSR [13]

(b) iPhone image – SR× 3 (c) Historic image: JFK funeral – SR× 2

EDSR [13] ZSSR (ours)

(d) Outdoor image downloaded from the Internet – SR× 2

EDSR [13] ZSSR (ours) EDSR [13] ZSSR (ours)

Figure 1: SR of real images (unknown LR acquisition process). Real-world images rarely obey the ‘ideal conditions’

assumed by supervised SR methods. For example, old historic photos (a,c), images taken by smartphones (b), random images

on the Internet (d), etc. Since ZSSR trains at test time on examples extracted from the test image, it is better at performing SR

‘In-the-Wild’ (i.e., in unconstrained and unknown settings). Full sized images can be found on our project website.
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(a) SR under aliasing:

Ground truth EDSR+ [13] ZSSR (ours)

(PSNR /SSIM) ( 21.64 / 0.6641) (25.02 / 0.7658)

(b) SR under unknown non-ideal downscaling kernel:

Ground truth EDSR+ [13] ZSSR (ours)

(PSNR /SSIM) (24.44 / 0.7006) (27.62 / 0.8367)

Figure 2: SR of ‘non-ideal’ LR images – a controlled experiment. (a) LR image generated with aliasing (donwscaling

kernel is a delta function). (b) LR image generated with a non-ideal downscaling kernel. The unknown image-specific kernel

is estimated directly from the LR test image using [15], and fed into our image-specific CNN as the downscaling kernel (note

that externally-trained networks cannot make use of such image-specific information at test-time). Full sized images can be

found on our project website. Quantitative evaluation on hundreds of ‘non-ideal’ LR images can be found in Sec. 4.2.

nearest-neighbours search. As such, they do not generalize

well to patches that do not exist in the LR image, nor to new

implicitly learned similarity measures, nor can they adapt to

non-uniform sizes of repeating structures inside the image.

Our image-specific CNN leverages on the power of the

cross-scale internal recurrence of image-specific informa-

tion, without being restricted by the above-mentioned lim-

itations of patch-based methods. We train a CNN to infer

complex image-specific HR-LR relations from the LR im-

age and its downscaled versions (self-supervision). We then

apply those learned relations on the LR input image to pro-

duce the HR output. This outperforms unsupervised patch-

based SR by a large margin.

Since the visual entropy inside a single image is much

smaller than in a general external collection of images [24],

a small and simple CNN suffices for this image-specific

task. Hence, even though our network is trained at test time,

its train+test runtime is comparable to the test runtime of

SotA supervised CNNs. Interestingly, our image-specific

CNN produces impressive results (although not SotA) on

the ‘ideal’ benchmark datasets used by the SotA supervised

methods (even though our CNN is small and has not been

pretrained), and surpasses SotA supervised SR by a large

margin on ‘non-ideal’ images. We provide both visual and

empirical evidence of these statements.

The term “Zero-Shot” used here, is borrowed from the

domains of recognition/classification. Note however, that

unlike these approaches for Zero-Shot Learning [23] or

One-shot Learning [19], our approach does not require any

side information/attributes or any additional images. We

may only have a single test image at hand, one of a kind,

and nothing else. Nevertheless, when additional informa-

tion is available and provided (e.g., the downscaling kernel

can be estimated directly from the test image using [15]),

our image-specific CNN can make good use of this at test

time, to further improve the results.

Our contributions are therefore several-fold:

(i) To our best knowledge, this is the first unsupervised

CNN-based SR method.

(ii) It can handle non-ideal imaging conditions, and a wide

variety of images and data types (even if encountered for

the first time).

(iii) It does not require pretraining and can be run with mod-

est amounts of computational resources.

(iv) It can be applied for SR to any size and theoretically

also with any aspect-ratio.

(v) It can be adapted to known as well as unknown imaging

conditions (at test time).

(v) It provides SotA SR results on images taken with ‘non-

ideal’ conditions, and competitive results on ‘ideal’ condi-

tions for which SotA supervised methods were trained on.
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2. The Power of Internal Image Statistics

Fundamental to our approach is the fact that natural im-

ages have strong internal data repetition. For example,

small image patches (e.g., 5×5, 7×7) were shown to re-

peat many times inside a single image, both within the same

scale, as well as across different image scales. This obser-

vation was empirically verified by [5, 24] using hundreds

of natural images, and was shown to be true for almost any

small patch in almost any natural image.

Fig. 3 shows an example of a simple single-image SR

based on internal patch recurrence (courtesy of [5]). Note

that it is able to recover the tiny handrails in the tiny bal-

conies, since evidence to their existence is found elsewhere

inside this image, in one of the larger balconies. In fact,

the only evidence to the existence of these tiny handrails

exists internally, inside this image, at a different location

and different scale. It cannot be found in any external

database of examples, no matter how large this dataset is!

As can be seen, SotA SR methods fail to recover this image-

specific information when relying on externally trained im-

ages. While the strong internal predictive-power is exempli-

fied here using a ‘fractal-like’ image, the internal predictive-

power was analyzed and shown to be strong for almost any

natural image [5].

In fact, it was empirically shown by [24] that the in-

ternal entropy of patches inside a single image is much

smaller than the external entropy of patches in a general

collection of natural images. This further gave rise to

the observation that internal image statistics often provides

stronger predictive-power than external statistics obtained

from a general image collection. This preference was fur-

ther shown to be particularly strong under growing uncer-

tainty and image degradations (see [24, 17] for details).

3. Image-Specific CNN

Our image-specific CNN combines the predictive power

and low entropy of internal image-specific information,

with the generalization capabilities of Deep-Learning.

Given a test image I , with no external examples available

to train on, we construct an Image-Specific CNN tailored

to solve the SR task for this specific image. We train our

CNN on examples extracted from the test image itself. Such

examples are obtained by downscaling the LR image I , to

generate a lower-resolution version of itself, I ↓ s (where

s is the desired SR scale factor). We use a relatively light

CNN, and train it to reconstruct the test image I from its

lower-resolution version I ↓ s (top part of Fig. 4(b)). We

then apply the resulting trained CNN to the test image I ,

now using I as the LR input to the network, in order to con-

struct the desired HR output I ↑ s (bottom of Fig. 4(b)).

Note that the trained CNN is fully convolutional, hence can

be applied to images of different sizes.

Figure 3: Internal predictive power of image-specific in-

formation. Simple unsupervised internal-SR [5] is able to

reconstruct the tiny handrail in the tiny balconies, whereas

externally-trained SotA SR methods fail to do so. Evidence

to the existence of those tiny handrails exists only internally,

inside this image, at a different location and scale (in one

of the larger balconies). Such evidence is not found in any

external database of images (no matter how large it is).

Since our “training set” consists of one instance only (the

test image), we employ data augmentation on I to extract

more LR-HR example-pairs to train on. The augmentation

is done by downscaling the test image I to many smaller

versions of itself (I = I0, I1, I2, ..., In). These play the role

of the HR supervision and are called “HR fathers”. Each

of the HR fathers is then downscaled by the desired SR

scale-factor s to obtain the “LR sons”, which form the in-

put training instances. The resulting training set consists of

many image-specific LR-HR example pairs. The network

can then stochastically train over these pairs.

We further enrich the training set by transforming each

LR-HR pair using 4 rotations (0◦, 90◦, 180◦, 270◦) and their

mirror reflections in the vertical and horizontal directions.

This adds ×8 more image-specific training examples.

For the sake of robustness, as well as to allow large SR

scale factors s even from very small LR images, the SR is

performed gradually [5, 21]. Our algorithm is applied for

several intermediate scale-factors (s1, s2, ..., sm = s). At

each intemediate scale si, we add the generated SR image

HRi and its downscaled/rotated versions to our gradually

growing training-set, as new HR fathers. We downscale

those (as well as the previous smaller ‘HR examples’) by

the next gradual scale factor si+1, to generate the new LR-

HR training example pairs. This is repeated until reaching

the full desired resolution increase s.

3.1. Architecture & Optimization

Supervised CNNs, which train on a large and diverse ex-

ternal collection of LR-HR image examples, must capture

in their learned weights the large diversity of all possible

LR-HR relations. As such, these networks tend to be ex-
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Figure 4: Image-Specific CNN – “Zero-Shot” SR. (a) Externally-supervised CNNs are pre-trained on large external

databases of images. The resulting very deep network is then applied to the test image I . (b) Our proposed method (ZSSR):

a small image-specific CNN is trained on examples extracted internally, from the test image itself. It learns how to recover

the test image I from its coarser resolutions. The resulting self-supervised CNN is then applied to the LR image I to produce

its HR output.

tremely deep and very complex. In contrast, the diversity of

the LR-HR relations within a single image is significantly

smaller, hence can be encoded by a much smaller and sim-

pler image-specific network.

We use a simple, fully convolutional network, with 8

hidden layers, each has 64 channels. We use ReLU acti-

vations on each layer. The network input is interpolated to

the output size. As done in previous CNN-based SR meth-

ods [10, 9, 4], we only learn the residual between the inter-

polated LR and its HR parent. We use L1 loss with ADAM

optimizer [11]. We start with a learning rate of 0.001. We

periodically take a linear fit of the reconstruction error and

if the standard deviation is greater by a factor than the slope

of the linear fit we divide the learning rate by 10. We stop

when we get to a learning rate of 10−6.

Note that despite its limited receptive field, ZSSR is able

to capture non-local recurrence of information inside the

test image. E.g., when ZSSR is applied to the LR image of

Fig. 3, it trains a CNN to recover the handrail in the LR test

image from its lower-res versions, even if no other handrail

appears in its receptive field. When this CNN is then ap-

plied to the test image itself, it can recover new handrails

elsewhere, due to using the same image-specific filters.

To accelerate the training stage and make the runtime in-

dependent of the size of the test image I , at each iteration we

take a random crop of fixed size from a randomly-selected

father-son example pair. The crop is typically 128×128 (un-

less the sampled image-pair is smaller). The probability of

sampling a LR-HR example pair at each training iteration is

set to be non-uniform and proportional to the size of the HR-

father. The closer the size-ratio (between the HR-father and

the test image I) is to 1, the higher its probability to be sam-

pled. This reflects the higher reliability of non-synthesized

HR examples over synthesize ones.

Lastly, we use a method similar to the geometric

self-ensemble proposed in [13] (which generates 8 different

outputs for the 8 rotations+flips of the test image I , and

then combines them). We take the median of these 8

outputs rather than their mean. We further combine it

with the back-projection technique of [8, 5], so that each

of the 8 output images undergoes several iterations of

back-projection and finally the median image is corrected

by back-projection as well.

Runtime: Although training is done at test time, the aver-

age runtime for SRx2 is only 9 sec on Tesla V100 GPU or

54 sec on K-80 (average taken on BSD100 dataset). This

runtime is almost independent of the image size or the rel-

ative SR scale-factor s (this is a result of the equally sized

random crops used in training; the final test runtime is neg-

ligible with respect to training iterations).

For the ideal case we use a gradual increase in resolu-

tion. For example, a gradual increase using 6 intermedi-

ate scale-factors typically improves the PSNR by ∼0.2dB,

but increases the runtime to ∼1 min per image (on V100).

There is therefore a tradeoff between runtime and the output

quality, which is up to the user to choose.

For compariosn, the test-time of leading EDSR+ [13]

grows quadratically with the image size. While it is fast

on small images, for a 800×800 image it performs 5 times
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Supervised Unsupervised

Dataset Scale SRCNN [4] VDSR [9] EDSR+ [13] SRGAN [12] SelfExSR [7] ZSSR (ours)

Set5

×2 36.66 / 0.9542 37.53 / 0.9587 38.20 / 0.9606 - 36.49 / 0.9537 37.37 / 0.9570

×3 32.75 / 0.9090 33.66 / 0.9213 34.76 / 0.9290 - 32.58 / 0.9093 33.42 / 0.9188

×4 30.48 / 0.8628 31.35 / 0.8838 32.62 / 0.8984 29.40 / 0.8472 30.31 / 0.8619 31.13 / 0.8796

Set14

×2 32.42 / 0.9063 33.03 / 0.9124 34.02 / 0.9204 - 32.22 / 0.9034 33.00 / 0.9108

×3 29.28 / 0.8209 29.77 / 0.8314 30.66 / 0.8481 - 29.16 / 0.8196 29.80 / 0.8304

×4 27.49 / 0.7503 28.01 / 0.7674 28.94 / 0.7901 26.02 / 0.7397 27.40 / 0.7518 28.01 / 0.7651

BSD100

×2 31.36 / 0.8879 31.90 / 0.8960 32.37 / 0.9018 - 31.18 / 0.8855 31.65 / 0.8920

×3 28.41 / 0.7863 28.82 / 0.7976 29.32 / 0.8104 - 28.29 / 0.7840 28.67 / 0.7945

×4 26.90 / 0.7101 27.29 / 0.7251 27.79 / 0.7437 25.16 / 0.6688 26.84 / 0.7106 27.12 / 0.7211

Table 1: Comparison of SR results for the ’ideal’ case (bicubic downscaling).

slower than our train+test time (or comperable to gradual

increase with 6 intermediate scale-factors).

3.2. Adapting to the Test Image

When the acquisition parameters of the LR images from

their HR ones are fixed for all images (e.g., same downscal-

ing kernel, high-quality imaging conditions), current super-

vised SR methods achieve an incredible performance [20].

In practice, however, the acquisition process tends to change

from image to image, since cameras/sensors differ (e.g., dif-

ferent lens types and PSFs), as well as the individual imag-

ing conditions (e.g., subtle involuntary camera shake when

taking the photo, poor visibility conditions, etc). This re-

sults in different downscaling kernels, different noise char-

acteristics, various compression artifacts, etc. One could

not practically train for all possible image acquisition con-

figurations/settings. Moreover, a single supervised CNN is

unlikely to perform well for all possible types of degrada-

tions/settings. To obtain good performance, one would need

many different specialized SR networks, each trained (for

days or weeks) on different types of degradations/settings.

This is where the advantage of an image-specific network

comes in. Our network can be adapted to the specific degra-

dations/settings of the test image at hand, at test time. Our

network can receive from the user, at test time, any of the

following parameters:

(i) The desired downscaling kernel (when no kernel is pro-

vided, the bicubic kernel serves as a default).

(ii) The desired SR scale-factor s.

(iii) The desired number of gradual scale increases (a trade-

off between speed and quality – the default is 6).

(iv) Whether to enforce Backprojection between the LR and

HR image (the default is ‘Yes’).

(v) Whether to add ‘noise’ to the LR sons in each LR-HR

example pair extracted from the test image (default is ‘No’).

The last 2 parameters (cancelling the Backprojection and

adding noise) allow to handle SR of poor-quality LR images

(whether due to sensor noise in the image, JPEG compres-

sion artifacts, etc.) We found that adding a small amount

of Gaussian noise (with zero mean and a small standard-

deviation of ∼5 grayscales), improves the performance for a

wide variety of degradations (Gaussian noise, speckle noise,

JPEG artifacts, and more). We attribute this phenomenon

to the fact that image-specific information tends to repeat

across scales, whereas noise artifacts do not [25]. Adding

a bit of synthetic noise to the LR sons (but not to their HR

fathers) teaches the network to ignore uncorrelated cross-

scale information (the noise), while learning to increase the

resolution of correlated information (the signal details).

Indeed, our experiments show that for low-quality LR

images, and for a wide variety of degradation types, the

image-specific CNN obtains significantly better SR results

than SotA EDSR+ [13] (see Sec. 4). Similarly, in the case

of non-ideal downscaling kernels, the image-specific CNN

obtains a significant improvement over SotA (even in the

absence of any noise). When the downscaling kernel is

known (e.g., a sensor with a known PSF), it can be provided

to our network. When the downscaling kernel is unknown

(which is usually the case), a rough estimate of the kernel

can be computed directly from the test image itself (e.g.,

using the method of [15]). Such rough kernel estimations

suffice to obtain +1dB improvement over EDSR+ on non-

ideal kernels (see examples in Figs. 1 and 2, and empirical

evaluations in Sec. 4).

Note that providing the estimated downscaling kernel to

externally-supervised SotA SR methods at test time, would

be of no use. They would need to exhaustively re-train a

new network on a new collection of LR-HR pairs, generated

with this specific (non-parametric) downscaling kernel.

4. Experiments & Results

Our method (ZSSR - ‘Zero-Shot SR’) is primarily aimed

at real LR images obtained with realistic (unknown and

varying) acquisition settings. Real LR images have no HR

ground truth, hence are evaluated visually (as in Fig. 1).

In order to quantitatively evaluate ZSSR’s performance, we

ran several controlled experiments on a variety of settings.

Interestingly, ZSSR produces competitive results (although
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VDSR [9] EDSR+ [13] Blind-SR [15] ZSSR [estimated kernel] (ours) ZSSR [true kernel] (ours)

27.7212 / 0.7635 27.7826 / 0.7660 28.420 / 0.7834 28.8118 / 0.8306 29.6814 / 0.8414

Table 2: SR in the presence of unknown downscaling kernels. LR images were generated from the BSD100 dataset using random

downscaling kernels (of reasonable size). SR×2 was then applied to those images. Please see text for more details.

Ground Truth VDSR [9] EDSR+ [13] ZSSR (ours)

(PSNR, SSIM) (20.11, 0.9136) (25.29 / 0.9627) (25.68 / 0.9546)

Figure 5: In images with strong internal repetitive structures, ZSSR tends to surpass VDSR, and sometimes also EDSR+,

even though the LR image was generated using the ‘ideal’ supervised setting (i.e., bicubic downscaling).

Bicubic interpolation EDSR+ [13] ZSSR (ours)

27.9216 / 0.7504 27.5600 / 0.7135 28.6148 / 0.7809

Table 3: SR in the presence of unknown image degrada-

tion. Each LR image from the BSD100 dataset was randomly de-

graded using one of 3 types of degradations: (i) Gaussian noise,

(ii) Speckle noise, (iii) JPEG compression. SR×2 was then ap-

plied to those images, without knowing the type of degradation.

ZSSR shows robustness to unknown degradations, whereas SotA

SR methods are not. In fact, under such conditions, bicubic inter-

polation outperforms current SotA SR methods.

not SotA) on the ‘ideal’ benchmark datasets for which the

SotA supervised methods train and specialize (even though

our CNN is small, and has not been pretrained). However,

on ‘non-ideal’ datasets, ZSSR surpasses SotA SR by a large

margin. All reported numerical results were produced using

the evaluation script of [9, 10].

4.1. The ‘Ideal’ Case

While this is not the aim of ZSSR, we tested it also

on the standard SR benchmarks of ‘ideal’ LR images. In

these benchmarks, the LR images are ideally downscaled

from their HR versions using MATLAB’s imresize com-

mand (a bicubic kernel downsampling with antialiasing).

Table 1 shows that our image-specific ZSSR achieves com-

petitive results against externally-supervised methods that

were exhaustively trained for these conditions. In fact,

ZSSR is significantly better than the older SRCNN [4], and

in some cases achieves comparable or better results than

VDSR [9] (which was the SotA until a year ago). Within

the unsupervised-SR regime, ZSSR outperforms the lead-

ing method SelfExSR [7] by a large margin.

Moreover, in images with very strong internal repetitive

structures, ZSSR tends to surpass VDSR, and sometimes

also EDSR+, even though these LR images were gener-

ated using the ‘ideal’ supervised setting. One such exam-

ple is shown in Fig. 5. Although this image is not a typ-

ical natural image, further analysis shows that the prefer-

ence for internal learning (via ZSSR) exhibited in Fig. 5

exists not only in ‘fractal-like’ images, but is also found in

general natural images. Several such examples are shown

in Fig. 6. As can be seen, some of the pixels in the image

(those marked in green) benefit more from exploiting inter-

nally learned data recurrence (ZSSR) over deeply learned

external information, whereas other pixels (those marked in

red) benefit more from externally learned data (EDSR+).

As expected, the internal approach (ZSSR) is mostly ad-

vantageous in image area with high recurrence of informa-

tion, especially in areas where these patterns are extremely

small (of extremely low resolution), like the small windows

in the top of the building. Such tiny patters find larger (high-

res) examples of themselves elsewhere inside the same im-

age (at a different location/scale). This indicates that there

may be potential for further SR improvement (even in the

‘ideal’ bicubic case), by combining the power of Internal-

Learning with External-Learning in a single computational

framework. This remains part of our future work.

4.2. The ‘Non­ideal’ Case

Real LR images do not tend to be ideally generated. We

have experimented with non-ideal cases that result from

either: (i) non-ideal downscaling kernels (that deviate from

the bicubic kernel), and (ii) low-quality LR images (e.g.,

due to noise, compression artifacts, etc.) In such non-ideal

cases, the image-specific ZSSR provides significantly

better results than SotA SR methods (by 1 − 2dB). These

quantities experiments are described next. Fig. 2 shows a

few such visual results. Additional visual results and full

images can be found in our project website.

(A) Non-ideal downscaling kernels: The purpose of

this experiment is to test more realistic blur kernels with

the ability to numerically evaluate the results. For this

3124

http://www.wisdom.weizmann.ac.il/~vision/zssr/


Figure 6: Internal vs. External preference. Green: pix-

els that favor Internal-SR (i.e., pixels where ZSSR obtains

lower error with respect to the ground-truth HR image);

Red: pixels that favour External-SR (EDSR+).

purpose we created a new dataset from BSD100 [14] by

downscaling the HR images using random (but reasonably

sized) Gaussian kernels. For each image, the covariance

matrix Σ of its downscaling kernel was chosen to have a

random angle θ and random lengths λ1, λ2 in each axis:

λ1, λ2 ∽ U [0, s2], θ ∽ U [0, π], Λ = diag(λ1, λ2)

U =

[

cos(θ)− sin(θ)
sin(θ) cos(θ)

]

, Σ = UΛUt where s is the

HR-LR downscaling factor. Thus, each LR image was

subsampled by a different random kernel. Table 2

compares our performance against the leading externally-

supervised SR methods [13, 9]. We also compared our per-

formance to the unsupervised Blind-SR method of [15]. We

considered two cases for applying ZSSR: (i) The more re-

alistic scenario of unknown downscaling kernel. For this

mode we used [15] to evaluate the kernel directly from the

test image and fed it to ZSSR. The unknown SR kernel is

estimated in [15] by seeking a non-parametric downscal-

ing kernel which maximizes the similarity of patches across

scales in the LR test image. (ii) We applied ZSSR with the

true downscaling kernel used to create the LR image. Such

a scenario is potentially useful for images obtained by sen-

sors with known specs.

Note that externally-supervised methods are unable to

benefit from knowing the blur kernel of the test image (es-

timated or real), since they were trained and optimized ex-

haustively for a specific kernel. Table 2 shows that ZSSR

outperforms SotA methods by a large margin: +1db for un-

known (estimated) kernels; +2db when provided the true

kernels. Visually, the images generated by SotA SR meth-

ods are very blurry (see Fig. 2, and project website). Inter-

estingly, the unsupervised Blind-SR method of [15], which

does not use deep learning, also outperforms SotA SR meth-

ods. This supports the analysis and observations of [18],

that (i) an accurate downscaling model is more important

than sophisticated image priors, and (ii) using the wrong

donwscaling kernel leads to oversmoothed SR results.

Figure 7: Visual comparison of ZSSR to SRGAN [12]

(using the code of [1]). SRGAN obtains poor visual quality

on ‘non-ideal’ LR images – Please zoom-in on screen.

A special case of a non-ideal kernel is the δ kernel,

which results in aliasing. This case too, is not handled well

by SotA methods (see example in Fig. 2).

(B) Poor-quality LR images: In this experiment, we

tested images with different types of quality degradation.

To test the robustness of ZSSR in coping with unknown

damage, we chose for each image from BSD100 [14] a ran-

dom type of degradation out of 3 degradations: (i) Gaussian

noise [σ = 0.05], (ii) Speckle noise [σ = 0.05], (iii) JPEG

compression [quality = 45 (By MATLAB standard)].

Table 3 shows that ZSSR is robust to unknown degradation

types, while these typically damage SR supervised methods

to the point where bicubic interpolation outperforms

current SotA SR methods!

Comparison to SRGAN [12]: SRGAN is also trained

for the ideal case. In those cases, SRGAN methods tend to

hallucinate visually pleasing information, hence score nu-

merically worse than ZSSR (see Table 1). In the non-ideal

case they further obtain very poor visual quality (see Fig. 7).

5. Conclusion

We introduce the concept of “Zero-Shot” SR, which ex-

ploits the power of Deep Learning, without relying on any

external examples or prior training. This is obtained via a

small image-specific CNN, which is trained at test time on

internal examples extracted solely from the LR test image.

This yields SR of real-world images, whose acquisition pro-

cess is non-ideal, unknown, and changes from image to im-

age (i.e., image-specific settings). In such real-world ‘non-

ideal’ settings, our method substantially outperforms SotA

SR methods, both qualitatively and quantitatively. To our

best knowledge, this is the first unsupervised CNN-based

SR method.
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