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Abstract

Thanks to the advances in the technology of low-cost dig-

ital cameras and the popularity of the self-recording cul-

ture, the amount of visual data on the Internet is going to

the opposite side of the available time and patience of the

users. Thus, most of the uploaded videos are doomed to be

forgotten and unwatched in a computer folder or website.

In this work, we address the problem of creating smooth

fast-forward videos without losing the relevant content.

We present a new adaptive frame selection formulated as

a weighted minimum reconstruction problem, which com-

bined with a smoothing frame transition method acceler-

ates first-person videos emphasizing the relevant segments

and avoids visual discontinuities. The experiments show

that our method is able to fast-forward videos to retain as

much relevant information and smoothness as the state-of-

the-art techniques in less time. We also present a new 80-

hour multimodal (RGB-D, IMU, and GPS) dataset of first-

person videos with annotations for recorder profile, frame

scene, activities, interaction, and attention1.

1. Introduction

By 2019, the online video might be responsible for more

than 80% of global Internet traffic [1]. Not only are in-

ternet users watching more online video, but they are also

recording themselves and producing a growing number of

videos for sharing their day-to-day life routine. The ubiq-

uity of inexpensive shoot video devices and the lower costs

of producing and storing videos are giving unprecedented

freedom to the people to create increasingly long-running

first-person videos. On the other hand, such freedom might

lead the user to create a final long-running and boring video,

once most everyday activities do not merit recording.

A central challenge is to selective highlight the mean-

ingful parts of the videos without losing the whole message

1https://www.verlab.dcc.ufmg.br/semantic-hyperlapse/cvpr2018/
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Figure 1. The fast-forward methodology. A weighted sampling

combined with a smoothing transition step is applied to tackle the

abrupt camera movements. The activation vector indicates which

frames compose the fast-forward video. A smoothing step is ap-

plied to the transitions between the selected frames.

that the video should convey. Although video summariza-

tion techniques [4, 14] provide quick access to videos’ in-

formation, they only return segmented clips or single im-

ages of the relevant moments. By not including the very

last and the following frames of a clip, the summarization

might lose the clip context [20]. Hyperlapse techniques

yield quick access to the meaningful parts and also preserve

the whole video context by fast-forwarding the videos ap-

plying an adaptive frame selection [9, 7, 22]. Despite the

Hyperlapse techniques being able to address the shake ef-

fects of fast-forwarding first-person videos, handling every

frame equally important is a major weakness of these tech-

niques. In a lengthy stream recorded using the always-on

mode, some portions of the videos are undoubtedly more

relevant than others.

Most recently, methods on fast-forward videos empha-

sizing relevant content have emerged as promising and ef-

fective approaches to deal with the tasks of visual smooth-

ness and semantic highlighting of first-person videos. The

relevant information is emphasized by playing faster the

12383

https://www.verlab.dcc.ufmg.br/semantic-hyperlapse/cvpr2018/


non-semantic segments and applying a smaller speed-up

rate in the semantic ones [23, 27, 10, 26] or even playing

them in slow-motion [30]. To reach both objectives, visual

smoothness and semantic highlight, these techniques de-

scribe the video frames and their transitions by features, and

then formulate an optimization problem using the combina-

tion of these features. Consequently, the computation time

and memory usage are impacted by the number of features

used, once the search space grows exponentially. Therefore,

the current Hyperlapse methods are not scalable regarding

the number of features.

In this work, we present a new semantic fast-forward

method that solves the adaptive frame sampling by mod-

eling the frame selection as a Minimum Sparse Reconstruc-

tion (MSR) problem (Figure 1). The video is represented as

a dictionary, where each column describes a video frame.

The frames selection is defined by the activation vector, and

the fast-forwarding effect is reached by the sparsity nature

of the problem. In other words, we look for the smallest

set of frames that provides the reconstruction of the origi-

nal video with small error. Additionally, to attenuate abrupt

camera movements in the final video, we apply a weighted

version of the MSR problem, where frames related to cam-

era movement are more likely to be sampled.

In the proposed modeling, the scalability of features is

not a problem anymore, because using a high dimensional

descriptor leads to a balance of the dictionary dimensions,

which is recommended to solve the MSR problem, and do

not substantially affect the computational cost and memory

usage. We experimentally demonstrate that our approach

creates videos composed of more relevant information than

the state-of-the-art Semantic Fast-Forwarding method and

as smooth as the state-of-the-art Hyperlapse techniques.

The contributions of our work are: i) a set of methods

capable of handling larger feature vectors to better describe

the frames and the video transitions, addressing the abrupt

camera motions while not increasing the computational pro-

cessing time; ii) a new labeled 80-hour multimodal (3D In-

ertial Movement Unit, GPS, and RGB-D camera) dataset of

first-person videos covering a wide range of activities such

as video actions, party, beach, tourism, and academic life.

Each frame is labeled with respect to the activity, scene,

recorder ID, interaction, and attention.

2. Related Work

Works on selective highlighting of the meaningful parts

of first-person videos have been extensively studied in the

past few years. We can broadly classify them into Video

Summarization and Hyperlapse approaches.

Video Summarization. The goal of video summarization

is to produce a compact visual summary containing the

most discriminative and informative parts of the original

video. Techniques typically use features that range from

low-level such as motion and color [32, 5] to high-level

(e.g., important objects, user preferences) [8, 30, 25]. Lee et

al. [11] exploit interaction level, gaze, and object detection

frequency as egocentric properties to create a storyboard of

keyframes with important people and objects. Lu and Grau-

man [13] present video skims as summaries instead of static

keyframes. After splitting the video into subshots, they

compute the mutual influence of objects and estimate the

subshots importance to select the optimal chain of subshots.

Recent approaches are based on highlight detection [12,

2, 30] and vision-language models [25, 20, 18]. Bettada-

pura et al. [2] propose an approach for identifying pic-

turesque highlights. They use composition, symmetry and

color vibrancy as scoring metrics and leverage GPS data to

filter frames by the popularity of the location. Plummer et

al. [20] present a semantically-aware video summarization.

They optimize a linear combination of visual, i.e., represen-

tativeness, uniformity, interestingness, and vision-language

objectives to select the best subset of video segments.

Sparse Coding has been successfully applied to many

varieties of vision tasks [29, 31, 3, 32, 17, 15, 16]. In

video summarization, Cong et al. [3] formulate the problem

of video summarization as a dictionary selection problem.

They propose a novel model to either extract keyframes or

generate video skims using sparsity consistency. Zhao et

al. [32] propose a method based on online dictionary learn-

ing that generates summaries on-the-fly. They use sparse

coding to eliminate repetitive events and create a represen-

tative short version of the original video. The main benefit

of using sparse coding for frame selection is that selecting

a different number of frames does not incur an additional

computational cost. This work differs from sparse coding

video summarization since it handles the shakiness in the

transitions via a weighted sparse frame sampling solution.

Also, it is capable of dealing with the temporal gap caused

by discontinuous skims.

Hyperlapse. A pioneering work in creating hyperlapse

from casual first-person videos was conducted by Kopf et

al. [9]. The output video comes from the use of image-

based rendering techniques such as projecting, stitching and

blending after computing the optimal trajectory of the cam-

era poses. Despite their remarkable results, the method has

a high computational cost and requires camera motion and

parallax to compute the 3D model of the scene.

Recent strategies focus on selecting frames using differ-

ent adaptive approaches to adjust the density of frame selec-

tion according to the cognitive load. Poleg et al. [22] model

the frame selection as a shortest path in a graph. The nodes

of this graph represent the frames of the original video and,

the edges weights between pairs of frames are proportional

to the cost of including the pair sequentially in the out-
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put video. An extension for creating a panoramic hyper-

lapse of a single or multiple input videos was proposed by

Halperin et al. [6]. They enlarge each of the input frames

using neighboring frames from the videos to reduce the per-

ception of instability. Joshi et al. [7] present a method based

on dynamic programming to select an optimal set of frames

regarding the desired target speed-up and the smoothness in

frame-to-frame transitions jointly.

Although these solutions have succeeded in creating

short and watchable versions of long first-person videos,

they often remove segments of high relevance to the user,

since the methods handle all frames as having the same se-

mantic relevance.

Semantic Hyperlapse. Unlike traditional hyperlapse

techniques, where the goal is to optimize the output num-

ber of frames and the visual smoothness, the semantic hy-

perlapse techniques also include the semantic relevance for

each frame. Ramos et al. [23] introduced an adaptive frame

sampling process embedding semantic information within.

The methodology assigns scores to frames based on the de-

tection of predefined objects that may be relevant to the

recorder. The rate of dropped frames is a function of the

relative semantic load and the visual smoothness. Later,

Silva et al. [27] extended the Ramos et al.’s method using

a better semantic temporal segmentation and an egocentric

video stabilization process in the fast-forward output. The

drawbacks of these works include abrupt changes in the ac-

celeration and shaky exhibition at every large lateral swing

in the camera.

Most recently, two new hyperlapse methods for first-

person videos were proposed: the Lai et al.’s system [10]

and the Multi-Importance Fast-Forward (MIFF) [26]

method. Lai et al.’s system converts 360◦ videos into

normal field-of-view hyperlapse videos. They extract se-

mantics through regions of interest using spatial-temporal

saliency and semantic segmentation to guide camera path

planning. Low rates of acceleration are assigned to interest-

ing regions to emphasize them in the hyperlapse output. In

the MIFF method, the authors applied a learning approach

to infer the users’ preference and determine the relevance

of a given frame. The MIFF calculates different speed-up

rates for segments of the video, which are extracted using

an iterative temporal segmentation process according to the

semantic content.

Although not focused on the creation of hyperlapses,

Yao et al. [30] present a highlight-driven summarization

approach that generates skimming and timelapse videos as

summaries from first-person videos. They assign scores to

the video segments by using late fusion of spatial and tem-

poral deep convolution neural networks (DCNNs). The seg-

ments with higher scores are selected as video highlights.

For the video timelapse, they calculate proper speedup rates

such that the summary is compressed in the non-highlight

segments and expanded in highlight segments. It is note-

worthy that timelapse videos do not handle the suavity

constraint that is a mandatory requirement for hyperlapse

videos. Differently from the aforementioned work, our ap-

proach optimizes semantic, length and smoothness to create

semantic hyperlapses. Most importantly, it keeps the path

taken by the recorder avoiding to lose the flow of the story

and thus, conveying the full message from the original video

in a shorter and smoother version.

3. Methodology

In this section, we describe a new method for creating

smooth fast-forward videos that retains most of the seman-

tic content of the original video in a reduced processing

time. Our method consists of four primary steps: i) Creation

and temporal segmentation of a semantic profile of the input

video; ii) Weighted sparse frame sampling; iii) Smoothing

Frame Transitions (SFT), and iv) Video compositing.

3.1. Temporal Semantic Profile Segmentation

The first step of a semantic fast-forward method is the

creation of a semantic profile of the input video. Once we

set a semantic (e.g., faces, type of objects of interest, scene,

etc.), a video score profile is created by extracting the rel-

evant information and assigning a semantic score for each

frame of the video (Figure 2-a). The confidence of the clas-

sifier combined with the locality and size of the regions of

interest score are used as the semantic score [23, 27].

The set of scores defines a profile curve, which is used

for segmenting the input video into semantic and non-

semantic sequences. Following, a refinement process is

executed in the semantic segments, creating levels of im-

portance regarding the defined semantic. Finally, speed-

up rates are calculated based on the length and level of

relevance of each segment. The rates are calculated such

that the semantic segments are played slower than the non-

semantic ones, and the whole video achieves the desired

speed-up. We refer the reader to [26] for a more detailed

description of the multi-importance semantic segmentation.

The output of this step is a set of segments that are used

to feed the following steps that process each one separately.

3.2. Weighted Sparse Frame Sampling

In general, hyperlapse techniques solve the adaptive

frame selection problem searching the optimal configura-

tion (e.g., shortest path in a graph or dynamic program-

ming) in a space of representation where different types

of features are combined to represent frames or transitions

between frames. A large number of features can be used

for improving the representation of a frame or transitions,

but such solution leads to a high-dimensional representation

space increasing the computation time and memory usage.
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Figure 2. Main steps of our fast-forward methodology. For each segment created in the temporal semantic profile segmentation (a), the

frames are described (b) and weighted based on the camera movement computed (c). The frames are sampled by minimizing local-

constrained and reconstruction problem (d). The smoothing step is applied to tackle the abrupt transitions of the selected frames (e).

We address this problem of representation using a sparse

frame sampling approach, Figure 2-d.

Let D = [d1,d2,d3, · · · ,dn] ∈ R
f×n be a segment of

the original video with n frames represented in our feature

space. Each entry di ∈ R
f stands for the feature vector

of the i-th frame. Let the video story v ∈ R
f be defined

as the sum of the frame features of the whole segment,

i.e., v =
∑n

i=1
di. The goal is to find an optimal subset

S = [ds1 ,ds2 ,ds3 , · · · ,dsm ] ∈ R
f×m, where m ≪ n and

{s1, s2, s3, · · · , sm} belongs to the set of frames in the seg-

ment.

Let the vector α ∈ R
n be an activation vector indicating

whether di is in the set S or not. The problem of finding the

values for α that lead to a small reconstruction error of v,

can be formulated as a Locality-constrained Linear Coding

(LLC) [28] problem as follow:

arg min
α ∈ Rn

‖v −D α‖
2
+ λα ‖g ⊙α‖

2
, (1)

where g is the Euclidean distance of each dictionary entry

di to the segment representation v, and ⊙ is an element-

wise multiplication operator. The λα is the regularization

term of the locality of the vector α.

The benefit of using LLC formulation instead of the tra-

ditional Sparse Coding (SC) model is twofold. The LLC

provides local smooth sparsity and can be solved by an

analytical solution, which results in a smoother final fast-

forward video in a lower computational cost.

Weighted Sampling. Abrupt camera motions are chal-

lenging issues for fast-forwarding video techniques. They

might lead to the creation of shaky and nauseating

videos. To tackle this issue, we used a weighted Locality-

constrained Linear Coding formulation, where each dictio-

nary entry has a weight assigned to it:

α
⋆ = arg min

α ∈ Rn

‖v −D α‖
2
+ λα ‖W g ⊙ α‖

2
, (2)

where W is a diagonal matrix built from the weight vector

w ∈ R
n, i.e., W , diag(w).

This weighting formulation provides a flexible solution,

where we create different weights for frames based on the

camera movement and thus, we can change the contri-

bution for the reconstruction without increasing the spar-

sity/locality term significantly.

Let C ∈ R
c×n be the Cumulative Displacement

Curves [21], i.e., the cumulative sum of the Optical Flow

magnitudes, computed over the horizontal displacements

in 5× 5 grid windows of the video frames (Figure 2-c).

Let C ′ ∈ R
c×n be the derivative of each curve C w.r.t.

time. We assume frame i to be within an interval of

abrupt camera motion if all curves C ′ present the same

sign (positive/negative) at the point i, which represents a

head-turning movement [21]. We assign a lower weight for

these motion intervals to enforce them to be composed of a

larger number of frames. We empirically set the weights to

wi = 0.1 and wi = 1.0 for the frame features inside and

outside the interval, respectively.

Speed-up Selection. All frames related to the activated

positions of the vector α⋆ will be selected to compose the

final video. Since λα controls the sparsity, it also manages

the speed-up rate of the created video. The zero-value λα

enables the activation of all frames leading to a complete re-

construction. To achieve the desired speed-up, we perform

an iterative search starting from zero, as depicted in Algo-

rithm 1. The function NumberOfFrames(λ) (Line 4)

solves Equation 2 using λ as the value of λα and returns

the number of activations in α
⋆.
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Algorithm 1 Lambda value adjustment

Require: Desired length of the final video V ideoLength.

Ensure: The λα value to reach the desired number of frames.

1: function LAMBDA ADJUSTMENT(V ideoLength)

2: λα ← 0 , step← 0.1 , nFrames← 0
3: while nFrames 6= V ideoLength do

4: nFrames← NumberOfFrames(λα + step)
5: if nFrames ≥ V ideoLength then

6: λα ← λα + step
7: else

8: step← step/10

Frame Description. The feature vector of the i-th frame

di ∈ R
446 (Figure 2-b) is composed of the concatenation

the following terms. The hofm ∈ R
50 and hofo ∈ R

72

are histogram of optical flow magnitudes and orientations

of the i-th frame, respectively. The appearance descriptor,

a ∈ R
144, is composed of the mean, standard deviation, and

skewness values of HSV color channels of the windows in

a 4× 4 grid of the frame i. To define the content descriptor,

c ∈ R
80, we first use the YOLO [24] to detect the objects in

the frame i; then, we create a histogram with these objects

over the 80 classes of the YOLO architecture. Finally, the

sequence descriptor, s ∈ R
100, is an one hot vector, with the

mod(i, 100)-th feature activated.

3.3. Smoothing Frame Transitions

A solution α
⋆ does not ensure a final smooth fast-

forward video. Occasionally, the solution might provide a

low reconstruction error of small and highly detailed seg-

ments of the video. Thus, by creating a better reconstruc-

tion with a limited number of frames, α⋆ might ignore sta-

tionary moments or visually likely views and create videos

similar to results of summarization methods.

We address this issue by dividing the frame sampling

into two steps. First, we run the weighted sparse sampling

to reconstruct the video using a speed-up multiplied by a

factor SpF . The resulting video contains 1/SpF of the de-

sired number frames. Then, we iteratively insert frames into

the shakier transitions (Figure 2-e) until the video achieves

the exact number of frames.

Let I(Fx, Fy) be the instability function defined by

I(Fx, Fy) = AC(Fx, Fy) ∗ (dy − dx − speedup). The

function AC(Fx, Fy) calculates the Earth Mover’s Dis-

tance [19] between the color histograms of the frames Fx

and Fy . The second term of the instability function is the

speed-up deviation term. This term calculates how far the

distance between frames Fx and Fy , i.e., dy − dx, are from

the desired speedup. We identify a shakier transition using

the Equation 3:

i⋆ = arg max
i ∈ Rm

I(Fsi , Fsi+1
). (3)

IMU

RGB

IR

• Scene:
• Action:
• Attention:
• Interaction:
• Recorder:
• IMU:
• GPS:
• Depth:

Nature
Standing
Yes
Yes
ID#03
Yes
Yes
Yes

Labels

Figure 3. Left: setup used to record videos with RGB-D camera

and IMU. Center: frame samples from DoMSEV. Right: an exam-

ple of the available labels for the image highlighted in green.

The set of frames from Fsi⋆ to Fsi⋆+1
, i.e., solution of Equa-

tion 3, has visually dissimilar frames with a distance be-

tween them higher than the required speed-up.

After identifying the shakier transition, from the subset

with frames ranging from Fsi⋆ to Fsi⋆+1
, we choose the

frame Fj⋆ that minimizes the instability of the frame transi-

tion as follows:

j⋆ = arg min
j ∈ Rn

I(Fsi⋆ , Fj)
2 + I(Fj , Fsi⋆+1

)2. (4)

Equations 3 and 4 can be solved by exhaustive search, since

the interval is small. In this work, we use SpF = 2 in the

experiments. Higher values enlarge the search interval, in-

creasing the time for solving Equation 4.

3.4. Video compositing

All selected frames of each segment are concatenated to

compose the final video (Figure 2-f). In this last step, we

also run the egocentric video stabilization proposed in the

work of Silva et al. [27], which is properly designed to fast-

forwarded egocentric videos. The stabilizer creates smooth

transitions by applying weighted homographies. Images

corrupted during the smoothing step are reconstructed us-

ing the non-selected frames of the original video.

4. Experiments

In this section, we describe the experimental results on

the Semantic Dataset [27] and a new multimodal semantic

egocentric dataset. After detailing the datasets, we present

the results followed by the ablation study on the compo-

nents and efficiency analysis.

4.1. Datasets and Evaluation criterion

Semantic Dataset. We first test our method using the Se-

mantic Dataset, proposed by Silva et al. [27]. This dataset

is composed of 11 annotated videos. Each video is classi-

fied having 0%, 25%, 50%, or 75% of semantic content in

the semantic portions (a set of frames with high semantic

score) on average. For instance, in the Walking 25p video,

the recorder is walking and there are an average of 25% of

frames with faces and/or pedestrians. It is worth noting that

even when video belongs to the class 0p, it still contains se-

mantics on its frames. The reason of being classified as 0p
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Figure 4. Evaluation of the proposed Sparse Sampling methodology against the literature fast-forward methods. Dashed and doted lines in

(b) are related to the mean instability indexes of the original video and the uniform sampling, respectively. Desirable values are: (a) higher,

(b) lower, and (c) closer to zero.

is mainly because it does not have a minimum number of

frames with high semantic score.

Because this dataset has the annotation of the semantic

load, we can use it for finding the best semantic fast-forward

method, i.e., the fast-forward approach that retains the high-

est semantic load of the original video.

Multimodal Semantic Egocentric Videos. Aside from

the Semantic Dataset, we also evaluated our approach on

a new 80-hour dataset. Because of the absence of unre-

stricted and available multimodal data to work with ego-

centric tasks, we propose an 80-hour Dataset of Multimodal

Semantic Egocentric Videos (DoMSEV). The videos cover

a wide range of activities such as shopping, recreation, daily

life, attractions, party, beach, tourism, sports, entertain-

ment, and academic life.

The multimodal data was recorded using either a Go-

Pro Hero
TM

camera or a built setup composed of a 3D

Inertial Measurement Unit (IMU) attached to the Intel

Realsense
TM

R200 RGB-D camera. Figure 3 shows the setup

used and a few of examples of frames from the videos. Dif-

ferent people recorded the videos in varied illumination and

weather conditions.

The recorders labeled the videos informing the scene

where some segment were taken (e.g., indoor, urban,

crowded environment, etc.), the activity performed (walk-

ing, standing, browsing, driving, biking, eating, cooking,

observing, in conversation, etc.), if something caught their

attention and when they interacted with some object. Ex-

ample of labels are depicted in Figure 3. Also, we create a

profile for each recorder representing their preferences over

the 80 classes of the YOLO classifier [24] and the 48 visual

sentiment concepts defined by Sharghi et al. [25]. To cre-

ate the recorders’ profile, we asked them to indicate their

interest in each class and concepts in a scale from 0 to 10.

Table 1 summarizes in the “Info” and “Videos”

columns the diversity of sensors and activities that can

be found in the dataset. Due to the lack of space,

we chose the videos which best represent the diverse

of activities, camera models, mounting, and the pres-

ence/absence of sensors info. The dataset, source code

and the 3D model for printing the built setup are pub-

licly available in https://www.verlab.dcc.ufmg.br/semantic-

hyperlapse/cvpr2018.

Evaluation criterion. The quantitative analysis presented

in this work is based on three aspects: instability, speed-up,

and amount of semantic information retained in the fast-

forward video. The Instability index is measured by using

the cumulative sum over the standard deviation of pixels in

a sliding window over the video [26]. The Speed-up met-

ric is given by de difference of the achieved speed-up rate

from the required value. The speed-up rate is the ratio be-

tween the number of frames in the original video and in

its fast-forward version. In this work, we used 10 as re-

quired speed-up. For the Semantic evaluation, we consider

the labels defined in the Semantic Dataset, which charac-

terize the relevant information as pedestrian in the “Biking”

and “Driving” sequences, and face in the “Walking”. The

semantic index is given by the ratio between the sum of the

semantic content in each frame of the final video and the

maximum possible semantic value (MPSV). The MPSV is

the sum of the semantic scores of the n top-ranked frames of

the output video, where n is the expected number of frames

in the output video, given the required speed-up.

4.2. Comparison with state­of­the­art methods

In this section, we present the quantitative results of the

experimental evaluation of the proposed method. We com-

pare it with the methods: EgoSampling (ES) [22], Stabi-

lized Semantic Fast-Forward (SSFF) [27], Microsoft Hy-

perlapse (MSH) [7] the state-of-the-art method in terms

of visual smoothness, and Multi-Importance Fast-Forward

(MIFF) [26] the state-of-the-art method in terms of the

amount of semantics retained in the final video.
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Table 1. Results and videos details of a sample of the proposed multimodal dataset. Duration is the length of the video before the acceler-

ation. RS in the Camera column stands for RealSenseTM by Intel R© and Hero is a GoPro R© line product.

Semantic1(%) Speed-up2 Instability3 Time3(s) Info

Videos Ours MIFF Ours MIFF Ours MIFF Ours MIFF
Duration

(hh:mm:ss)
Mount Camera

IM
U

D
ep

th

G
P

S

Academic Life 09 21.80 24.74 0.01 0.00 47.56 59.38 145.6 3,298.5 01:02:53 helmet RS R200 X X

Academic Life 10 24.99 25.12 -0.02 1.53 47.47 51.62 282.2 7,654.7 02:04:33 head Hero5 X X

Academic Life 11 21.03 20.14 -0.00 0.20 30.19 42.64 96.6 3,176.9 01:02:04 hand Hero4

Attraction 02 65.04 59.22 0.10 0.00 24.68 25.65 95.0 5,284.6 01:31:10 chest Hero5 X X

Attraction 08 80.29 77.52 0.35 1.72 34.78 37.78 8.7 1,762.0 00:32:41 chest Hero5 X X

Attraction 09 43.83 44.35 -0.18 0.29 51.30 52.42 27.7 3,265.1 00:52:43 helmet RS R200 X X

Attraction 11 27.28 31.55 -0.05 -0.02 31.93 35.79 185.6 4,779.3 01:17:20 helmet RS R200 X X X

Daily Life 01 18.76 20.01 0.04 2.56 47.06 49.05 126.3 5,222.0 01:16:45 head Hero5 X X

Daily Life 02 25.68 25.51 -0.10 3.48 38.16 46.80 46.4 5,741.3 01:33:39 head Hero5 X X

Entertainment 05 24.63 23.93 0.04 0.01 33.79 39.12 20.8 3,786.1 00:55:25 helmet RS R200 X X

Recreation 03 76.52 72.70 -0.04 0.45 41.69 43.64 37.8 3,518.7 00:57:39 helmet Hero4

Recreation 08 24.20 26.33 -0.05 3.74 34.98 38.44 59.2 5,957.0 01:44:15 shoulder Hero5 X X

Recreation 11 67.94 65.25 0.20 0.02 12.49 12.15 17.9 2,802.9 00:46:04 chest Hero5 X X

Sport 02 13.62 14.85 -0.13 6.25 44.96 52.59 20.0 2,387.6 00:43:20 head Hero5 X X

Tourism 01 64.00 62.90 -0.01 2.15 28.93 31.57 33.6 3,283.4 00:55:35 chest Hero4

Tourism 02 48.24 47.22 -0.23 3.22 52.38 54.27 118.2 9,331.0 02:22:52 head Hero5 X X

Tourism 04 27.20 29.24 0.00 0.10 53.14 56.41 229.4 8,302.5 01:46:38 helmet RS R200 X X

Tourism 07 42.93 42.72 0.09 4.47 39.44 37.08 27.1 3,906.1 01:05:03 head Hero5 X X

Mean 39.89 39.63 0.00 1.72 38.38 42.08 87.7 4,636.6
1Higher is better. 2Better closer to 0. 3Lower is better.

Figure 4-a shows the results of the Semantic evaluation

performed using the sequences in the Semantic Dataset. We

use the area under the curves as a measure of the retained

semantic content. Our approach outperformed the other

methodologies. The area under the curve of the proposed

method was 100.74% of the area under the MIFF curve,

which is the state-of-the-art in semantic hyperlapse. The

second Semantic Hyperlapse technique evaluated, SSFF,

had 52.01% of the area under curve of MIFF. Non-semantic

hyperlapse techniques such as MSH and ES achieved at best

19.63% of the MIFF area.

The results for Instability are presented as the mean

of the instability indexes calculated over all sequences in

the Semantic Dataset (Figure 4-b, lower values are better).

The black dotted and the green dashed lines stand for the

mean instability index when using an uniform sampling and

for the original video, respectively. Ideally, it is better to

yield an instability index as closer as possible to the orig-

inal video. The reader is referred to the Supplementary

Material for the individual values. The chart shows that

our method created videos as smooth as the state-of-the-art

method MSH and smoother than the MIFF.

Figure 4-c shows the speed-up achieved by each method.

The bar represent the average difference between the re-

quired speed-up and the rate achieved by a respective

method for each class of video in the Semantic Dataset.

Values closer to zero are desirable. The chart shows that

our method provided the best acceleration for “Driving”

and “Walking” experiments. In “Biking” experiments MSH

held the best speed-up.

As far as the semantic metric is concerned (Figure 4-a),

our approach leads followed by MIFF. We ran a more de-

tailed performance assessment comparing our method to

MIFF in the multimodal dataset. The results are shown in

Table 1. As can be seen, our method outperforms MIFF

in all metrics. The column “Time” shows the time for the

frame sampling step of each method (MIFF runs a param-

eter setup and the shortest path, and our method runs mini-

mum reconstruction followed by the smoothing step). Our

method was 53× faster than MIFF. It is noteworthy that,

unlike MIFF that requires 14 parameters to be adjusted,

our method is parameter-free. Therefore, the average pro-

cessing time spent per frame was 0.5 ms, while the auto-

matic parameter setup process and the sampling processing

of MIFF spent 30 ms per frame. The descriptor extraction

for each frame ran in 320 ms facing 1,170 ms of MIFF. The

experiments were conducted in a machine with i7-6700K

CPU @ 4.00GHz and 16 GB of memory.

4.3. Ablation analysis

In this Section, we discuss the gain of applying the steps

Weighted Sparse Frame Sampling and Smoothing Frame

Transitions to the final fast-forward video. All analysis were

conducted in the Semantic Dataset.
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Figure 5. The effect of applying the Weighted Sparse Sampling

in an abrupt camera movement segment. Black arrows are the

frames of the original video, red arrows are the frames selected by

non-weighted sparse sampling, and the green arrows represent the

frames sampled by the weighted sparse sampling. Each image is

related with the respective numerated arrow.

Weighted Sparse Sampling. As stated, we introduce a

new model based on weighted sparse sampling to address

the problem of abrupt camera motions. In this model, small

weights are applied to frames containing abrupt camera mo-

tions to increase the probability of these frames being se-

lected and, consequently, to create a smooth sequence.

Considering all sequences of abrupt camera motions

present in all videos of the Semantic Dataset, the weighted

version manages to sample, in average, three times more

frames than the non-weighted version. Figure 5 illustrates

the effect of solving the sparse sampling by weighting the

activation vector. It can be seen that the weighting strategy

helps by using a denser sampling in curves (on the right)

than when applying the non-weighted sparse sampling ver-

sion (on the left). In this particular segment, our approach

sampled twice the number of frames, leading to less shaky

lateral motions.

Smoothing Frame Transitions. By computing the coeffi-

cient of variation (CV), we measured the relative variability

of the points representing the appearance cost of the frames

(blue and red points in Figure 6). The appearance cost is

computed as the Earth Mover’s Distance [19] between the

color histogram of frames in a transition.

After applying the proposed smoothing approach we

achieved CV = 0.97, while the simple sampling provided

CV = 2.39. The smaller value for our method indicates a

smaller dispersion and consequently fewer visual disconti-

nuities. Figure 6 shows the result when using SFT and non-

smoothed sparse sampling. The horizontal axis contains the

index of selected frames and the vertical axis represents the

appearance cost between the i-th frame and its following

in the final video. The points in the red line represent the

oversampling pattern of non-smoothed sparse sampling, in

which many frames are sampled in segments hard to recon-

struct followed by a big jump.

The abrupt scene changing is depicted by high values

of appearance cost. The red-bordered frames in the figure

show an example of two images that compose the transi-
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Figure 6. Frame sampling and appearance cost of the transitions

in the final video before and after applying the Smoothing Frame

Transitions (SFT) to the video “Walking 25p”. Images with blue

border show the frames composing the transition with the highest

appearance cost using SFT. Images with red borders are related to

the non-smoothed sparse sampling.

tion with the highest appearance cost for a fast-forwarded

version of the video “Walking 25p” using non-smoothed

sparse sampling. After applying the SFT approach, we have

a more spread sampling covering all segments, and with less

video discontinuities. The blue-bordered images present the

frames composing the transition with the highest appear-

ance cost using the sparse sampling with the SFT step. By

comparing the red and blue curves, one can clearly see that

after using SFT, we achieve smoother transitions, i.e., lower

values for the appearance cost.

5. Conclusion

In this work, we presented a new semantic fast-forward

parameter-free method for first-person videos. It is based

on a weighted sparse coding modeling to address the adap-

tive frame sampling problem and smoothing frame transi-

tions to tackle abrupt camera movements by using a denser

sampling along the segments with high movement. Con-

trasting with previous fast-forward techniques that are not

scalable in the number of features used to describe the

frame/transition, our method is not limited by the size of

feature vectors.

The experiments showed that our method was superior to

state-of-the-art semantic fast-forward methods in terms of

semantic, speed-up, stability, and processing time. We also

performed an ablation analysis that showed the improve-

ments provided by the weighted modeling and the smooth-

ing step. An additional contribution of this work is a new la-

beled 80-hour multimodal dataset with several annotations

related to the recorder preferences, activity, interaction, at-

tention, and the scene where the video was taken.
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