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Abstract

This paper presents techniques for tracking non-line-of-

sight (NLOS) objects using speckle imaging. We develop

a novel speckle formation and motion model where both

the sensor and the source view objects only indirectly via

a diffuse wall. We show that this NLOS imaging scenario is

analogous to direct LOS imaging with the wall acting as a

virtual, bare (lens-less) sensor. This enables tracking of a

single, rigidly moving NLOS object using existing speckle-

based motion estimation techniques. However, when imag-

ing multiple NLOS objects, the speckle components due to

different objects are superimposed on the virtual bare sen-

sor image, and cannot be analyzed separately for recover-

ing the motion of individual objects. We develop a novel

clustering algorithm based on the statistical and geometri-

cal properties of speckle images, which enables identifying

the motion trajectories of multiple, independently moving

NLOS objects. We demonstrate, for the first time, tracking

individual trajectories of multiple objects around a corner

with extreme precision (< 10 microns) using only off-the-

shelf imaging components.

1. Introduction

The ability to track the motion of objects outside a sen-

sor’s line of sight (LOS) has far-reaching implications, with

potential applications in search-and-rescue, remote sensing

of inaccessible environments, surveillance, and medicine.

Imagine an endoscopic imaging system aiding a robot arm

to perform complex surgery inside a human body, or a first

responder robot searching for biometric signals such as a

pulse and heartbeat to locate survivors in a hazardous en-

vironment. In these applications, it is critical to precisely

detect and measure subtle motion outside the LOS. Such

capability is beyond the scope of conventional vision tech-

niques that are designed for tracking direct LOS objects.

Recently, it has been shown that it is possible to track

motion of non-line-of-sight (NLOS) objects by treating vis-

ible surfaces (e.g., walls) as diffuse reflectors that redirect

light to and from the region hidden from the camera (see

Figure 1 left). This can be achieved by using high-speed

pulsed light sources and time-resolved detectors [2, 7], as

well as off-the-shelf intensity sensors [14]. These tech-
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Figure 1. Tracking objects around a corner (left) is analogous to

direct line of sight imaging, where the objects are illuminated di-

rectly by a diffuse source and imaged with a bare sensor (right).

niques are exciting first steps. However, the motion preci-

sion achieved by these techniques remains limited. For ex-

ample, state-of-the-art tracking accuracy for time-resolved

sensors is on the order of centimeters [2]. Intensity sensors

can achieve similar accuracies [14], albeit by restricting the

problem to single object tracking.

Our goal is to develop techniques for tracking micro-

motion (e.g., < 10 µm) of multiple objects, around the cor-

ner, with only low-cost components. Given the orders of

magnitude gap between this goal and the capabilities of cur-

rent NLOS tracking approaches [2, 7, 14], we propose a

new approach based on laser speckle imaging. Speckle is a

high-frequency ‘noise-like’ intensity pattern created when

coherent (laser) light reflects off an optically-rough surface.

A key property of laser speckle is its extreme motion sen-

sitivity: even small (micron-scale) surface motion results

in large speckle movement, which can be readily measured

even with low cost sensors to estimate surface motion. Such

high motion sensitivity has been used for micro-motion

analysis in direct LOS settings [16, 17, 21]. The focus of

this paper is on tracking objects outside the LOS. To this

end, we make two contributions.

NLOS object tracking via speckle imaging: First, we de-

velop a novel NLOS speckle imaging and motion model,

where both the sensor and the source view the object only

indirectly via a diffuse wall, as illustrated in Figure 1 (left).

Specifically, a collimated source illuminates a point on the

wall, and a camera images a wall patch via a lens. We show

that this NLOS imaging scenario is analogous to direct LOS

speckle imaging with a bare sensor [17], where the illumi-

nated point acts as a virtual diffuse source, and the imaged

patch acts as a virtual bare sensor. Given this analogy, the
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principles of direct LOS speckle tracking [11] extend to the

NLOS case, thus enabling micro-motion NLOS tracking.

Tracking multiple objects: Although the virtual bare sen-

sor has high motion sensitivity, it has no spatial specificity

(it is completely defocused). Therefore, speckle compo-

nents from multiple moving objects are superimposed in

the captured images. Given the low signal-to-noise ratio

inherent in NLOS imaging scenarios, it is challenging to ex-

plicitly separate and analyze the individual speckle compo-

nents in order to track individual objects. Our second con-

tribution is to exploit the orthogonality properties of speckle

to develop a simple clustering algorithm that identifies the

motion trajectories of individual objects. This, for the first

time, enables simultaneous tracking of multiple centimeter-

size objects around the corner with micron-scale precision

(<10 µm) with only off-the-shelf imaging components.

Scope and limitations: The proposed techniques can re-

cover the absolute scale and direction of each object’s mo-

tion, but cannot recover the additive offset (starting loca-

tion). It may be possible to combine the proposed meth-

ods with NLOS 3D imaging approaches [20] for recover-

ing both micro-motion and absolute locations. Although

the proposed methods can achieve extremely high motion

precision, they are limited by the camera’s size and frame

rate with respect to large inter-frame motions. In the future,

we envision hybrid methods that combine the micro-motion

estimation capabilities proposed here, with the large-scale

motion tracking capabilities of other NLOS methods [2, 7].

2. Related Work

Speckle-based motion estimation: Speckle imaging based

motion estimation techniques are largely limited to tracking

single, rigid-body motion, such as 6 DOF motion of a cam-

era relative to its surroundings [12, 22]. Recently, a speckle-

based technique for measuring motion of multiple objects

has been proposed [17]. This technique uses a bare sensor

to achieve high motion sensitivity, but cannot track individ-

ual objects. Instead, it computes a motion histogram of the

scene, which does not assign motions to individual objects.

The motion histogram representation is ambiguous: differ-

ent scene motions can result in the same histogram. An

example is shown in Figure 2, where two objects moving

along different pairs of trajectories result in the same mo-

tion histogram. In general, this ambiguity prevents tracking

more than one object. In contrast, our goal is to track mul-

tiple, independently moving objects around the corner.

NLOS object tracking: NLOS object tracking with time-

resolved sensors has received considerable attention re-

cently [2, 7]. While such systems are successful, their com-

ponents are expensive and the accuracy is on the order of

centimeters. Klein et al. [14] demonstrated the ability to

track objects with regular 2D intensity images and a laser

pointer. This significantly reduces equipment cost, though
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Figure 2. Ambiguity in motion histograms. Previous speckle

based techniques for multi-object motion estimation compute a

motion histogram where each object’s motion is represented as a

peak [17]. Since the peaks are not assigned to individual objects,

motion histogram is an ambiguous representation. Different scene

motions can result in the same motion histogram. Left: Two ob-

jects moving along straight lines. Middle: Two objects moving

along staircase trajectories. Right: Both pairs of trajectories have

one horizontal and one vertical motion at every time step, resulting

in the same motion histogram. This ambiguity prevents tracking

more than one object. In contrast, we show that it is possible to

track multiple objects by developing a clustering algorithm based

on the statistical properties of speckle, that assigns each peak in

the motion histograms to a unique object over time.

this approach is unable to resolve motion of multiple ob-

jects. Bouman et al. [1] showed similar capabilities by ex-

ploiting passive light transport.

Laser speckle has also been used to image around cor-

ners [13]. While this approach requires specific conditions,

e.g., illuminating the hidden object directly, we consider a

less restrictive scenario where neither the light source or the

camera have a direct LOS to the object.

3. Background: Speckle Motion Model

In this section, we provide a brief overview of the

speckle motion model, and the standard speckle-based tech-

nique for tracking a single object in direct line-of-sight.

When coherent light is incident on an object with an op-

tically rough surface, each point on the object acts as a vir-

tual light source that emits a spherical wavefront. The su-

perposition of these spherical wavefronts produces a ran-

dom intensity pattern in the images captured by a camera

observing the object due to constructive and destructive in-

terference. This high-frequency, noise-like pattern is called

speckle. An example speckle pattern captured by a bare

(lensless) sensor is shown in Figure 1. Since the sensor is

bare, the scene texture is completely defocused (blurred),

and only the speckle pattern is discernible.

Effect of object motion on image speckle: Consider a

camera imaging a moving object that is illuminated by a

coherent source. Let the speckle patterns observed by the

camera before and after motion be S(x, y) and S′(x, y),
respectively, where (x, y) are image coordinates. A well

known result in optics states that small object motions re-

sult only in local displacements (∆x,∆y) in the observed

speckle pattern [11], i.e., S(x, y) = S′(x + ∆x, y + ∆y).
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Figure 3. Qualitative illustration of the relationship between

object motion and speckle motion (adapted from [17]). When

an object moves laterally, the recorded speckle pattern shifts (left);

when an object moves axially, the speckle pattern expands and

contracts (center); and when an object rotates about the camera

viewing axis, the speckle pattern rotates (right). This relationship

is linear, as given in Eq. 1.

Furthermore, the local speckle displacement (∆x,∆y) is

related to object motion via a simple, linear equation:

[
∆x
∆y

]

= Mtrans





∆X
∆Y
∆Z



+Mrot





ΘX

ΘY

ΘZ



 , (1)

where the translation vector [∆X,∆Y,∆Z]
T

and rotation

vector [ΘX ,ΘY ,ΘZ ]
T

represent the motion of the object.

The 2× 3 matrices Mtrans and Mrot relate the 6 DOF object

motion to local shifts in the speckle pattern, and depend on

a variety of radiometric and geometric factors (pixel pitch,

wavelength, and object, camera, and source positions) [11].

Note that Eq. 1 holds for a bare sensor as well.

Figure 3 illustrates the effect of various object motions

on speckle. Lateral object motion (along the X-Y plane)

results in a global translation (shift) of the speckle image.

Axial object motion (along the Z-axis) results in expansion

or contraction of the speckle image. Rotating the object

about the Z-axis results in a rotation of the speckle image.

In the remainder of the paper, we only consider lateral ob-

ject motion.1 In this case, the speckle images S and S′,

before and after the motion, are related by a shift operation:

Definition 1 [Image Shift Vector] The image shift oper-

ation, given by a shift vector v = [vx, vy], is defined as

translating an image horizontally by vx, and vertically by

vy . If S is the original image, the shifted image S′ =

S(x− vx, y − vy) is denoted as S′ =
−−→
S[v].

Estimating object motion from speckle images: A stan-

dard approach [18] for estimating the object motion is by

computing the normalized cross-correlation between S and

S′, which, as discussed above, are shifted copies of each

other. Due to statistical randomness of speckle [8], the

cross-correlation between a speckle pattern and its shifted

copy is given by a shifted delta function:

Scorr(x, y) = (S ∗ S′)(x, y) = δ(x− vx, y − vy) , (2)

1This is only for ease of exposition; the proposed methods can handle

general object motions, as demonstrated in Figures 4 and 8.
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Figure 4. Direct LOS single object tracking using bare sensor

speckle imaging. The object (a piece of white chalk) was placed

50 cm away from a bare sensor, and moved along a complex 3D

trajectory (a second-order 3D Hilbert curve [10]) in 0.5-mm incre-

ments by a high-precision (±1 µm accuracy) 3D translation stage.

Using a bare sensor enabled achieving micron-precision motion

tracking; mean absolute error along X-, Y -, and Z-dimensions

was measured to be 3.1 µm, 6.3 µm, and 37.3 µm, respectively.

where δ is the 2D Dirac delta function. The shift vector

v = [vx, vy] between the two speckle patterns is given by

the 2D location of the cross-correlation peak. Then, the ob-

ject motion can be computed by using the speckle motion

equation (Eq. 1). For details, refer to the supplementary

technical report. The matrices Mtrans and Mrot can be com-

puted as a calibration step, and are assumed to be known.

This technique can be generalized to capture full motion

trajectories by comparing a sequence of speckle images.

Bare sensor and motion sensitivity: Motion sensitivity of

this approach is proportional to the amount of sensor defo-

cus. For a bare sensor (maximum defocus), it is possible

to achieve extremely high motion resolution of <10 µm.

An example 3D trajectory of a direct LOS object recovered

with bare sensor speckle imaging is shown in Figure 4.

4. Tracking an Object Around-the-Corner

In this section, we derive the speckle formation and mo-

tion model for NLOS imaging. We show that, under certain

assumptions, the problem of NLOS object tracking can be

expressed as direct LOS tracking, with a diffuse wall acting

as both a virtual diffuse source and a virtual bare sensor.

4.1. Image Intensity Incident on the Wall

Consider the imaging geometry shown in Figure 5. A

collimated coherent source L illuminates a point s on a dif-

fuse wall, and indirectly illuminates an object O. Light re-

flected by O reaches the wall Wp, which is imaged by a

camera C with a lens. Both L and C are around the corner

(i.e., neither L nor C have a direct line of sight to O).

Point s reflects light uniformly across the entire hemi-

sphere of directions, and hence can be considered a virtual

diffuse light source. Let U(s) be the electric field emitted

by the virtual source s. Then, the total electric field received

at a point w on the wall, due to light emitted from s and re-

flected from the object O, is given as:

6260



Object �
Occluder

Diffuse wallCoherent source �
Camera �

Pixel � �
�

} ��

Figure 5. Imaging geometry for NLOS object tracking. A col-

limated coherent source illuminates a point s on a diffuse wall.

Light gets reflected from s, and illuminates an object O. Light re-

flected from O again reaches the wall, which is imaged by a cam-

era with lens. The goal is to track the motion of O by analyzing

images captured by the camera.

U(w) =

∫

o∈O

U(s)α(o,w) e−j 2π
Γ(s,o)+Γ(o,w)

λ do , (3)

where o is a point on object O, and Γ(s,o) and Γ(o,w)
are the distances of o from s and w, respectively. α(o,w)
encodes the attenuation of light intensity due to reflection at

o towards w, and the intensity fall-off due to propagation.

Virtual bare sensor: The above expression gives the elec-

tric field that would be observed by a bare sensor placed at

the wall Wp [17]. The speckle pattern observed by such a

bare sensor is Iprim(w) = |U(w)|
2
. We call this the pri-

mary speckle (also referred to as objective speckle [5]).

4.2. Image Intensity Observed by the Camera

The electric field U(w) incident on the wall is reflected

again, and captured by the camera. The camera is focused

on the wall via a lens, so that a camera pixel p collects light

from a wall patch Wp. The rough micro-facet structure

of the wall combined with the objective lens of the cam-

era produce a secondary speckle pattern (also referred to as

subjective speckle [5]).

Intuitively, the light incident on the wall (with spatial

intensity distribution given by the primary speckle image

Iprim) is modulated by the wall texture R, and then sub-

jected to random interference, resulting in a secondary

speckle pattern. It can be shown that the total image cap-

tured by the camera, I(p), is given as:

I(p) = Iprim(p)
︸ ︷︷ ︸

primary speckle

R(p)
︸ ︷︷ ︸

wall reflectance image

Isecon(p)
︸ ︷︷ ︸

secondary speckle

.

(4)

See the supplementary technical report for a detailed deriva-

tion. This is an important equation: it is the image for-

mation model for NLOS speckle imaging, where both the

source and the sensor are not directly visible to the object.

Comparison of primary and secondary speckle: An im-

portant property of speckle patterns is the mean size of

ratio image = captured image ÷ mean image

Figure 6. The primary speckle image Iprim encodes the object mo-

tion, and can be isolated by taking the ratio of the raw captured

image and the mean image (computed by averaging all the raw

captured images as the object moves). In the illustration above,

the intensity of the ratio image is normalized.

the individual speckle grain. The primary and secondary

grain sizes have several important differences. The pri-

mary speckle grain size is independent of the camera’s

imaging parameters, and is given as χprim ≈ 1.22λΓOw

Ω
,

where λ is the wavelength of light, Ω is the diameter of

the object O, and ΓOw is the mean distance of O from the

wall [3, 6, 9]. In our experiments, λ = 532 nm, ΓOw = 50
cm, and Ω = 25 mm. Therefore, χprim ≈ 13 µm.

In contrast, the size of the secondary speckle grains de-

pends on the camera’s imaging parameters, and is given by

χsecon ≈ 1.22 (1 +M)λ(f/#) where M is the magnifi-

cation of the lens [19]. The secondary speckle grain size is

proportional to the f -number of the lens. Provided a suffi-

ciently large aperture (small f -number), the speckle grains

become smaller than the sensor’s pixel pitch and are elimi-

nated (averaged) through spatial integration.

4.3. Effect of Object Motion on Image Intensities

At first glance, analyzing the effect of object motion on

the observed image I(p) may seem challenging, since the

camera does not directly observe the object. Fortunately,

as stated in Eq. 4, I(p) can be factorized into three compo-

nents: primary speckle image, wall reflectance image, and

secondary speckle image. When the object moves, the pri-

mary speckle Iprim shifts according to the standard direct

LOS speckle motion model (Eq. 1). This is because Iprim

is the speckle pattern that would be observed by a bare sen-

sor (placed on the wall) which can directly view the object.

The key observation is that the wall reflectance image R

depends only on the characteristics of the wall and, as dis-

cussed above, the secondary speckle Isecon averages out for

a sufficiently large camera aperture. Therefore, the prod-

uct of R and Isecon remains approximately constant as the

object moves, and can be factored out as follows.

Recovering object motion: Let [I1(p), . . . , IK(p)] be the

sequence of K images captured by the camera as the object

moves along a trajectory. Since object motion is encoded

in primary speckle Iprim, motion can be recovered by iso-

lating I
prim
k from Ik. This can be achieved by computing

the pixel-wise mean image Imean(p) of the image sequence

[I1(p), . . . , IK(p)]. Assuming sufficiently large motion,
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the primary speckle components I
prim
k get averaged out in

the mean image Imean. The reflectance image and the sec-

ondary speckle remain approximately constant across cap-

tured images, as discussed above, so that the mean image

Imean(p) ≈ R(p) Isecon(p). Hence, as illustrated in Fig-

ure 6, the primary speckle component can be isolated by

computing the ratio images:

Iratiok (p) =
Ik(p)

Imean(p)
≈ I

prim
k (p) .

To summarize, we have shown that under appropriate

imaging conditions, the ratio image is the same as the pri-

mary speckle image, whose shifts can be computed to track

the motion of an object around-the-corner via direct line-of-

sight speckle motion equations (Eqs. 1-2).

5. Multi-Object Tracking Around the Corner

In this section, we develop a speckle formation and

motion model for multiple, independently moving objects

around the corner. As described in the previous section,

NLOS speckle imaging can be expressed as direct LOS

imaging with a virtual bare sensor (Figure 1). Consider a

bare sensor observing N independently moving objects.2

The total image captured by the sensor can be expressed as

the superposition of N speckle patterns:

I(p) = S1(p) + S2(p) + . . .+ SN (p) , (5)

where Sn(p), 1 ≤ n ≤ N is the speckle component due

to light reflected from the nth object.3 Let the total im-

age before and after the motion be I =
∑N

n=1 Sn and

I′ =
∑N

n=1 S
′
n, respectively, where Sn and S′

n are the

speckle patterns for the nth object before and after motion.

Then, as described in Section 3, Sn and S′
n are related by a

shift operation: S′
n =

−−−−→
Sn[vn], where vn is the shift vector

corresponding to the motion of the nth object.

Definition 2 [shift vector set] Given a pair of images, the

set of shift vectors V = (v1,v2, . . . ,vN ) corresponding to

all moving objects, is called the shift vector set.

Estimating the shift vector set: The set V describes the

motion of all N objects between I and I′, and can be com-

puted via the cross-correlation between I and I′ [17]:

Icorr = I ∗ I′ =

(
N∑

n=1

Sn

)

∗

(
N∑

n=1

S′
n

)

=

N∑

n=1

Scorr
n ,

2A priori knowledge of the number of objects is not required. The

cross-correlation peak heights (Step 1 in Figure 7) can be used to filter out

weak or phantom objects by thresholding; remaining peaks indicate the

number of objects.
3Strictly speaking, the total image also contains cross speckle terms due

to interference between light reflected from different objects. However, if

the light source has low spatial coherence (but high temporal coherence),

the cross terms are negligible, and can be ignored [17].

where Scorr
n = Sn ∗ S′

n is the correlation image due to the

nth object. Since each correlation image Scorr
n is a shifted

delta function (Eq. 2), the total correlation image Icorr is a

sum of N shifted delta functions. The locations of the peaks

(shift amounts) can be used to compute the shift vectors in

the set V = (v1,v2, . . . ,vN ), as discussed after Eq. 2.

Can the shift vector set be used to track individual ob-

jects? While a shift vector set can be used to estimate ag-

gregate motion statistics (e.g., a motion histogram [17]) of

the scene, it cannot be used to track individual objects. This

is because the shift vectors in a set are not necessarily in or-

der, i.e., the vector vn (nth peak in the motion histogram)

does not necessarily correspond to the motion of the nth

object. Figure 2 shows an example of two pairs of motion

trajectories for two moving objects. Each pair of trajecto-

ries results in the same shift vector set over time. Due to this

inherent ambiguity, in general, individual objects cannot be

tracked using the shift vector sets.

5.1. Object Tracking by Labeling of Shift Vectors

Our main observation is that the problem of multi-object

tracking can be expressed as a labeling problem. Specif-

ically, given a sequence of images [I1, . . . , IK ] and their

shift vector sets [V1, . . . ,VK ] with respect to a reference

image, the multi-object motion tracking problem can be

solved by assigning an object label l (1 ≤ l ≤ N) to ev-

ery vector in all the shift vector sets. Once each vector is

assigned a label, we collect all the vectors across all sets

Vk (1 ≤ k ≤ K) that have the same label, i.e., that cor-

respond to the same object. Vectors with the same label

can then be used to find the motion of individual objects in

every image with respect to the reference image.4 In the fol-

lowing, we analyze the geometry of the space of the shifted

speckle images. Based on this analysis, we develop cluster-

ing based techniques for solving the labeling problem.

5.2. Geometry of MultiObject Speckle Images

Consider a bare sensor observing N moving objects. Let

I1 and I2 be images captured by the sensor at two time in-

stants. Each image can be expressed as a sum of N dif-

ferent speckle components (Eq. 5). Let the shift vector

sets for I1 and I2 (with respect to a reference image) be

V1 = (v11, . . . ,v1N ) and V2 = (v21, . . . ,v2N ), respec-

tively. Consider two vectors v1α and v2β (1 ≤ α, β ≤ N ),

one each from the sets V1 and V2. There are two cases:

Case 1 [iso-object shift vectors]: v1α and v2β correspond

to the motion of the same object. Suppose we shift I1
and I2 by the negative vectors −v1α and −v2β , respec-

tively. The shifted images
−−−−−−→
I1[−v1α] and

−−−−−→
I2[−v2β ] can

be represented as points in a high-dimensional space. Let

Γiso =
∥
∥
∥
−−−−−−→
I1[−v1α]−

−−−−−→
I2[−v2β ]

∥
∥
∥
2

be the Euclidean distance

4This method does not recover the absolute locations of the objects; it

recovers their trajectories relative to locations in the reference image.
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Figure 7. Illustration of the clustering algorithm for labeling shift

vectors. Step 1: The 2D cross-correlation is computed between

each image Ik and a reference image; the peaks indicate the shift

vector set Vk for each image. Step 2: Create shifted copies of

the input images, one per shift vector. Step 3: Cluster the shifted

images; images with the same aligned speckle component belong

to the same cluster. Step 4: Use the clusters to label the shift

vectors, and compute individual object trajectories.

between the two points. It can be shown that:

Γ2
iso = 2

N∑

n=1, n 6=γ

Ln , (6)

where Ln is the L2 norm (root-mean-square brightness) of

speckle pattern Sn
5, and γ ( 1 ≤ γ ≤ N) is the label of the

object whose motion is given by vectors v1α and v2β .

Case 2 [non iso-object scale-and-shift vectors]: v1α and

v1β correspond to the motion of different objects. In this

case, it can be shown that the squared distance is given as:

Γ2
dif = 2

N∑

n=1

Ln . (7)

See the supplementary report for a detailed derivation.

Main difference between Γiso and Γdif : Intuitively, in the

first case, since the shift vectors v1α and v2β denote the

motion of the same object, the speckle component due to

that object gets aligned in the shifted images. When com-

puting the distance between the two shifted images, this

5Ln is a function of the n
th object’s characteristics (size, reflectivity,

distance from the wall, orientation, etc.) and can be assumed to be the same

for a speckle pattern S and its shifted version for small shifts

speckle components gets subtracted out. Therefore, the dis-

tance term Γ2
iso is the sum of squared L2 norms of all but

one speckle components. In the second case, the shift vec-

tors denote the motion of different objects. Thus, assuming

each object has a different motion in an image, no speckle

component gets aligned and subtracted out. Therefore, the

distance term Γ2
dif is the sum of norms of all the speckle

components. The main result is that Γiso < Γdif . We use

this result to design a clustering based labeling algorithm.

5.3. Clusteringbased Labeling of Shift Vectors

Let [I1, I2, . . . , IK ] be the sequence of K images cap-

tured by the camera as N objects move along their trajecto-

ries. Let Vk = (vk1,vk2, . . . ,vkN ) be the shift vector set

of the kth image (1 ≤ k ≤ K), computed with respect to a

fixed reference image. In order to label the shift vectors, we

first compute N shifted versions of each input image Ik, one

for each vector in the set Vk. Let the set of all KN shifted

images be [(I11, I12, . . . , I1N ) , . . . , (IK1, IK2, . . . , IKN )],

such that Ikn =
−−−−−−→
Ik[−vkn].

The key idea is that the set of KN shifted images form

N clusters in the image space, one cluster for each object.

Intuitively, the shifted images that are computed with shift

vectors corresponding to the same object have one (out of

N ) of the speckle components aligned. As stated above, the

distance Γiso between such images is smaller than the dis-

tance Γdif between images for which no speckle component

is aligned. Thus, shifted images corresponding to the mo-

tion of the same object form a cluster. The clusters can be

estimated via standard algorithms, such as k-means [15] or

mean-shift [4]. Let (v1α,v2β , . . . ,vKγ) be the shift vectors

(one from every shift vector set) associated with images in a

given cluster. These shift vectors are assigned the same la-

bel, since they correspond to the motion of the same object.

This is illustrated in Figure 7.

5.4. Analysis of the Clustering Algorithm

One metric to predict the performance of a clustering al-

gorithm is the clustering coefficient χ, defined as the ratio

of the average intra-cluster distance Γiso (distance between

points within a cluster) to the average inter-cluster distance

Γdif (distance between points across clusters). A large clus-

tering coefficient denotes tight and well-separated clusters,

which may result in robust clustering even in the presence

of noise. For the clustering problem described above, Γdif

is the distances between shifted images corresponding to

different objects, and Γiso is the distance between shifted

images corresponding to the same object. The clustering

coefficient for an object label γ is then:

χγ =
Γdif

Γiso

=

√

1 +
Lγ

∑N
n=1, n 6=γ Ln

︸ ︷︷ ︸

Clustering Coefficient

. (8)
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Figure 8. Simultaneous direct LOS tracking of wristwatch

hands with a bare sensor. For experimental purposes, the face

was painted black, and the hands were painted white (right).

Speckle images were recorded at one-second intervals. The dy-

namic range of motion between frames is large: the second hand

turns 6 degrees, and the hour hand turns 1/120-th of a degree. The

mean absolute differences between ideal and measured for the sec-

ond, minute, and hour hands was 1.497, 0.141, and 0.013 degrees,

respectively. Interestingly, the dip in the hour hand angle measure-

ment is due to brief occlusion from the second hand.

The clustering coefficient asymptotes to one as the number

of objects increases or as the brightness of the speckle pat-

tern corresponding to object γ decreases.

Effect of image noise on clustering coefficient: The anal-

ysis so far does not account for image noise. In the presence

of noise, the total image can be expressed as:

I =
∑N

n=1 Sn +Υ ,

where Υ is the noise component. It can be shown that the

distance between every pair of shifted images is increased

by 2Lnoise, where Lnoise is the L2 norm of the noise im-

age Υ (proportional to the standard deviation of the noise).

Then, the distances between shifted images are given as

Γ2
iso = 2Lnoise + 2

∑N
n=1, n 6=γ Ln (shifts corresponding to

the same object), and Γ2
dif = 2Lnoise + 2

∑N
n=1 Ln (shifts

corresponding to different objects). The noise limited clus-

tering coefficient is then:

χγ =

√

1 +
Lγ

Lnoise +
∑N

n=1, n 6=γ Ln

︸ ︷︷ ︸

Noise Limited Clustering Coefficient

. (9)

See the supplementary report for a detailed derivation. As

Lnoise increases, the clustering coefficient, and the ability

to cluster robustly, decreases. This loss in performance can

prevent reliable tracking of objects around the corner due to

extremely high noise (low SNR) in the speckle images.

Improved clustering with principle component analysis

(PCA): We propose a simple method to improve the clus-

tering performance by applying PCA on the set of shifted

speckle images, prior to clustering. The set of KN shifted

images represent high-dimensional points in the space of

speckle image. These points form N clusters. Therefore,

the first N − 1 principal components of the set of images

correspond to direction vectors between different cluster

centers (directions of maximum variance); the remaining

components correspond to noise and intra-cluster variation.

Thus, retaining only the first N − 1 principal components

retains only the variance between cluster centers, but col-

lapses the direction vectors within each cluster. This results

in tighter and well-separated clusters, which is critical given

the low SNR of NLOS imaging.

6. Experimental Setup and Results

Our experimental setup closely resembles the left side

of Figure 1. We note that the proposed approach does

not require a specific geometry, as long as the objects are

‘visible’ to the virtual sensor and virtual source. We po-

sitioned the camera sensor (Point Grey Grasshopper3 with

Sony IMX174 sensor) 50 cm from the wall. The sensor

was placed perpendicular to the wall to simplify the anal-

ysis, but this is not a requirement. A macro lens (Canon

EF 100 mm f/2.8L) was used to image a close-up patch on

the wall. The source (CivilLaser 532 nm, 350 mW DPSS

laser) was placed 10 cm to the right of the lens, and aimed

at a spot on the wall in front of the objects. We separated

the laser spot s from the imaged wall patch Wp to reduce

the amount of stray light illuminating Wp directly, and in-

crease the contrast of the primary speckle pattern. The ob-

jects (25 mm diameter chalk disks) were placed 20 cm from

the white wall on the oppose side of the occluding wall. To

minimize high-order light reflections, we covered the back-

ground walls with blackout material (Acktar Metal Velvet).

For NLOS experiments, we used 3.2 second exposures, and

for direct LOS experiments we used 10 ms exposures.

Tracking single objects around the corner: We used

high-precision (<1 µm error) 2D motorized translation

stages (Micronix VT-21L) to move the target objects along

small, intricate trajectories. Several examples are shown in

Figure 9 (top row). The faded line indicates ground truth,

and the dots indicate the estimated location of the object

at each observation in the sequence. In each example, the

initial location of the object is indicated by a gray axis.

Multi-object micro-motion tracking: We first show track-

ing results for multiple objects in direct line of sight to eval-

uate the capabilities of our multi-object tracking approach

without the added complexities of NLOS tracking. We used

a bare sensor to achieve high motion sensitivity, and yet

track the individual trajectories of multiple objects using the

techniques described in Section 5. An interesting test case is

tracking the hands of a wristwatch (Figure 8). Despite large

dynamic range in motion (6 degrees of rotation per second

for the second hand, and 1/120-th of a degree per second

for the hour hand), our approach can recover the individ-

ual trajectory of each wristwatch hand simultaneously with

high precision. In fact, at high frame rates, our approach

is capable of measuring the microscopic jitter of each hand

due to mechanical imperfections in the watch.
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Figure 9. Micron precision tracking results around the corner. Single object trajectories are shown in the top row, and multiple object

trajectories are shown in the bottom row. The experimental setup used to generate these results closely matches Figure 1 (left). Despite the

macroscopic (cm) scale of the setup, we show that it is possible to recover complex, micron-scale trajectories of multiple objects moving

simultaneously outside the line of sight. Please see our supplementary video for tracking results.

Finally, we show results for tracking multiple objects

around the corner. Several examples are shown in Figure

9 (bottom row). For these experiments, we placed identical

25 mm diameter chalk disks several centimeters apart, and

moved them along small trajectories. All object trajectories

are shown to be starting from the same location (origin) only

for visualization purposes, as our method cannot estimate

absolute starting location. In our experiments, Step 2 of our

algorithm considered short trajectories. Longer trajectories

are recovered by applying the algorithm in sliding temporal

windows of 31 frames. For the three-object case, the third

trajectory was generated using a less precise linear actuator

(OpenBuilds C-Beam); this is reflected in the noisier trajec-

tory shown in green. Despite the macroscopic, NLOS path

between the camera and the objects, our experimental sys-

tem is capable, for the first time, of accurately recovering

the micron-scale trajectories of two or more objects.

7. Discussion

Our experimental system has several limitations, which

afford opportunities for future work. If the virtual source

and virtual sensor are co-located, the object motion is in-

variant to object location [11], with axial motion being

quasi-invariant. In this case, the absolute scale and direc-

tion of each object’s motion is recoverable without calibra-

tion; only the additive offset (starting location) is unknown.

Due to practical considerations, the source and sensor are

not co-located in our setup. This results in a weak depen-

dence of the object motion on the location, thus requiring

a calibration step to recover the absolute motion (up to an

additive offset). However, motion recovery is not highly

sensitive to a precise calibration. For example, with our

setup, if the object moves horizontally by 100 mm, the re-

covered estimates have an error of approx. 20%. A next

step is to recover the additive offset, potentially by captur-

ing measurements with multiple virtual source and sensor

configurations. Intuitively, each sensor-source configura-

tion provides constraints on the absolute object locations

via Mtrans. Two or more configurations may be sufficient to

recover absolute locations. A full solution is future work.

The proposed method can recover trajectories of multi-

ple objects provided their motions are not exactly the same

over the entire trajectory. The overall length of the trajec-

tory depends on the range over which the primary speckle

pattern remains correlated (the memory effect FOV).

To improve SNR, our NLOS experiments were per-

formed with long exposures, and the surrounding walls

were black. Despite these steps, our NLOS experimental

system could not reliably track more than three moving ob-

jects. A more sensitive sensor and better processing would

likely improve performance. Finally, the range of allowable

frame-to-frame motion was limited to 5-100 µm. On the

low end, cross-correlation peaks become obscured by the

residual background peak due to imperfections in isolating

the primary speckle image. On the high end, the speckle

pattern becomes decorrelated. Despite these limitations, we

have shown for the first time that it is possible to track the

micron-scale trajectories of multiple simultaneously mov-

ing objects outside the line of sight at macroscopic distances

using only off-the-shelf imaging components.
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