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Figure 1: Given one object photo, our model learns to sketch stroke by stroke, abstractly but semantically, mimicking human

visual interpretation of the object. Our synthesized sketches maintain a noticeable difference from human sketches rather

than simple rote learning (e.g., shoelace for top left shoe, leg for bottom right chair). Photos presented here have never been

seen by our model during training. Temporal strokes are rendered in different colors. Best viewed in color.

Abstract

To see is to sketch – free-hand sketching naturally builds

ties between human and machine vision. In this paper, we

present a novel approach for translating an object photo to

a sketch, mimicking the human sketching process. This is

an extremely challenging task because the photo and sketch

domains differ significantly. Furthermore, human sketches

exhibit various levels of sophistication and abstraction even

when depicting the same object instance in a reference

photo. This means that even if photo-sketch pairs are avail-

able, they only provide weak supervision signal to learn

a translation model. Compared with existing supervised

approaches that solve the problem of D(E(photo)) →
sketch), where E(·) and D(·) denote encoder and decoder

respectively, we take advantage of the inverse problem (e.g.,

D(E(sketch) → photo), and combine with the unsuper-

vised learning tasks of within-domain reconstruction, all

within a multi-task learning framework. Compared with

existing unsupervised approaches based on cycle consis-

tency (i.e., D(E(D(E(photo)))) → photo), we introduce

a shortcut consistency enforced at the encoder bottleneck

(e.g., D(E(photo)) → photo) to exploit the additional

self-supervision. Both qualitative and quantitative results

show that the proposed model is superior to a number of

state-of-the-art alternatives. We also show that the syn-

thetic sketches can be used to train a better fine-grained

sketch-based image retrieval (FG-SBIR) model, effectively

alleviating the problem of sketch data scarcity.

1. Introduction

What do we see when our eyes perceive a grid of pixels

from a real-world object? We can quickly answer this ques-

tion by sketching a few line strokes. Despite the fact that

drawings like this may not exactly match the object as cap-

tured by a photo, they do tell us how we perceive and repre-
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sent the visual world around us, that is, we as humans con-

vey our perception of objects abstractly but semantically. In

this context, it is natural to ask to what extent a machine can

see. For decades, researchers in computer vision have ded-

icated themselves to answering this question, by injecting

intelligence and supervision into the machine with the hope

of seeing better. This is mostly done by formulating several

specific constrained problems, such as classification, detec-

tion, identification, and segmentation.

In this paper, we take one step forward – teaching a ma-

chine to generate a sketch from a photo just like humans

do. This requires not only developing an abstract con-

cept of a visual object instance, but also knowing what,

where and when to sketch the next line stroke. Figure 1

shows that the developed photo-to-sketch synthesizer takes

a photo as input and mimics the human sketching process

by sequentially drawing one stroke at a time. The resulting

synthesized sketches provide an abstract and semantically

meaningful depiction of the given object, just like human

sketches do.

Photo-to-sketch synthesis can be considered as a cross-

domain image-to-image translation problem. Thanks to

the seminal work of [10, 7], we are able to construct a

generative sequence model with recurrent neural network

(RNN) acting as a neural sketcher. However, the synthe-

sized sketches are not conditional on specific object pho-

tos. To address this problem, one can encode the photo via

a convolutional neural network (CNN) and feed the code

into the neural sketcher. Such a photo-to-sketch synthe-

sizer essentially follows the traditional encoder-decoder ar-

chitecture (see Figure 3(a)), and has been taken by most

existing image-to-image translation models [13, 19]. Train-

ing such a model is done in a supervised manner requir-

ing cross-domain image pairs: in our problem, these are

photo-sketch pairs containing the same object instances.

Compared to image-to-image translation, the key challenge

for learning instance-level photo-to-sketch synthesis is that

training pairs provide highly noisy supervision: Different

sketches of the same photo have large style and abstraction

differences between them (see Figure 2). This makes our

problem highly noisy and under-constrained.

In order to achieve photo-to-sketch synthesis with noisy

photo-sketch pairs as supervision, we address the limita-

tions of existing cross-domain image translation models by

proposing a novel framework based on multi-task super-

vised and unsupervised hybrid learning (see Figure 3(c)).

Taking an encoder-decoder architecture, our primary task is

D(E(photo)) → sketch) where a photo is first encoded by

E and then decoded into a sketch by D. To help learn a bet-

ter encoder and decoder, we introduce the inverse problem

(D(E(sketch)) → photo) so that the supervised model

learning can be done in both directions. Importantly, we

also introduce two unsupervised learning tasks for within-

Drawer 1Photo Drawer 2 Drawer 3 Drawer 1Photo Drawer 2 Drawer 3

Figure 2: Given a reference photo, sketches drawn by dif-

ferent people exhibit large variation in style and abstraction

levels. Some of them are poor in depicting the object in-

stances in the corresponding photos.

domain reconstruction, i.e., D(E(photo)) → photo and

D(E(sketch)) → sketch. This hybrid learning framework

differs significantly from existing approaches in that: (1) It

combines supervised and unsupervised learning in a multi-

task learning framework in order to make the best use of

the noisy supervision signal. In particular, by sharing the

encoder and decoder in various tasks, a more robust and ef-

fective encoder and decoder for the main photo-to-sketch

synthesis task can be obtained. (2) Different from the exist-

ing unsupervised models based on cycle consistency (Fig-

ure 3(b)), our unsupervised learning tasks exploit the notion

of shortcut cycle consistency: instead of passing through a

different domain to get back to the input domain for recon-

struction, our model takes a shortcut and completes a recon-

struction within each domain. This is particularly effective

given the large domain gap between photo and sketch.

Figure 1 shows that our model successfully translates

photo to sketches stroke by stroke, demonstrating that the

model has acquired an abstract and semantic understanding

of visual objects. We compare against a number of state-of-

the-art cross-domain image translation models, and show

that superior performance is obtained by our model due

to the proposed novel supervised and unsupervised hybrid

learning framework with the shortcut cycle consistency. We

also quantitatively validate the usefulness of the synthesized

sketches for training a better fine-grained sketch-based im-

age retrieval (FG-SBIR) model.

Our contribution is summarized as follows: (1) To our

best knowledge, for the first time, the photo-to-sketch syn-

thesis problem is addressed using a learned deep model,

which enables stroke-level cross-domain visual understand-

ing from a reference photo. (2) We identify the noisy su-

pervision problem caused by subjective and varied human

drawing styles, and propose a novel solution with hybrid

supervised-unsupervised multi-task learning. The unsuper-

vised learning is accomplished more effectively via a short-

cut cycle consistency constraint. (3) We exploit the synthe-

sized sketches as an alternative to expensive photo-sketch

pair annotation for training a FG-SBIR model. Promising

results are obtained by using the synthesized photo-sketch

pairs to augment manually collected pairs.
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2. Related Work

Image-to-Image Translation Recent advances on genera-

tive modeling make realistic image generation possible. Im-

age generation can be conditional on class labels [26], at-

tributes [42, 18], text [30, 48] and images [13, 19, 12]. For

image-to-image generation/translation, if paired data (input

and output image) are available, most recent approaches

adopt a conditional generative adversarial network (GAN),

from which a joint distribution is readily manifested and can

be matched to the empirical joint distribution provided by

the paired data. However for many tasks, paired data are of-

ten difficult to acquire for supervised learning; unsupervised

learning methods thus started to get popular recently. Bi-

GAN [3] and ALI [4] are models that jointly learn a genera-

tion network and inference network via adversarial learning.

Other models including DiscoGAN [15], CycleGAN [51]

and DualGAN [43] adopted two generators to model the

bidirectional mapping between domains with adversarially

trained discriminators to identify each. Cycle consistency is

further added as a way to transitively regularize structured

data, which greatly alleviates non-identifiability issues [20].

Additional weight-sharing constraints are also explored in

CoGAN [24] and UNIT [23] to build a bond between do-

main marginal distributions. Note that most previous works

rely on the assumption of level of pixel-to-pixel correspon-

dence to a certain extent, which clearly does not hold for our

sketch-to-photo translation problem. In our problem, pair-

wise supervision is available but the supervision signal is

noisy and weak, challenging the existing supervised learn-

ing based methods. Nevertheless this supervision is too use-

ful to ignore by adopting an entirely unsupervised learning

approach. Therefore we propose a novel hybrid model to

have the best of both worlds.

Recurrent Vector Image Generation Most recent image

generation and understanding work generate images in a

continuous pixel space via convolutional neural networks

(CNNs) [13, 50, 48, 18]. There has been relatively few stud-

ies on vector image generation. Vector representation is per-

fectly suited for sketches because both spatial and temporal

visual cues are encoded during the sketching process. The

seminal work of Graves et al. [7] adopted recurrent neural

networks (RNNs) to generate vector handwritten digits by

using mixture density networks for continuous data points

approximation. Similar models were developed for vector-

ized Kanji characters [49, 9] and free-hand human sketches

[10], both conditionally and unconditionally by modeling

them as a sequence of pen stroke actions. Very recently, [2]

proposed to build ties between raster and vector sketch im-

ages through a CNN-RNN paradigm. In this work, sketches

are stored as vector images and a RNN decoder is employed

to generate sketches from a CNN encoder embedding, re-

sulting in clean and sharp line strokes, which has shown

better sketch generation performance compared to [10].

Vector Sketch Datasets One main factor that hampers re-

search on generating vector sketch images is the lack of

publicly available large-scale datasets. The TU-Berlin [5]

and Sketchy [32] datasets provide 20k and ∼70k vector

sketches from multiple categories respectively. They are

designed for sketch recognition and FG-SBIR respectively.

But they are not quite big enough for learning a sketch

generation model. The lack of data problem is partially

solved in [10], which contributes a dataset of 50 million

vector drawings covering hundreds of categories obtained

from the QuickDraw AI Experiment [14]. Nevertheless,

these category-level symbolic and conceptual vector draw-

ings were each sketched within 20 seconds, so they often

do not possess sufficient fine-grained detail for distinguish-

ing object instances belonging to the same category. To

our knowledge, the largest fine-grained paired sketch-photo

dataset to date is the QMUL-Shoe-Chair-V2 dataset [46],

which contains over 8000 photo-sketch pairs from two cat-

egories. In this work we focus on these two categories and

use the QuickDraw shoe and chair sketches [10] for pre-

training, and QMUL-Shoe-Chair-V2 for model fine-tuning.

Learning Discriminative Models with Synthetic Data

A number of recent studies use data synthesized using deep

generative models for training discriminative models, there-

fore circumventing the need for large-scale manual data col-

lection and annotation. These discriminative models have

been applied to various tasks including gaze estimation

[34], hand pose estimation [39, 37] and human pose estima-

tion [29]. The most related work is [44], which controls the

variations in the synthesized images using a learned deep

model rather than heuristic rendering. Most existing works

use synthesized photo images, whilst in this work we aim to

use synthesized sketches to learn a discriminative model.

Fine-grained Sketch-based Image Retrieval One such

discriminative models is a fine-grained sketch-based image

retrieval (FG-SBIR) model. FG-SBIR addresses the prob-

lem of finding a specific photo containing the same instance

as an input sketch. The relevant research field has flourished

recently [22, 45, 36, 32, 21, 28, 41, 35] due to its huge po-

tential for commercial applications. One primary challenge

is how to train a model with limited sketch-photo pairs,

because collecting free-hand sketch-photo pairs is very ex-

pensive in practice. Previous work [47] resorts to heuristic

stroke augmentation and removal techniques to enhance the

training data. In this work, for the first time, we attempt

to generate synthetic sketch drawings from a learned deep

model to boost FG-SBIR performance.

3. Methodology

3.1. Overview

We aim to learn a mapping function between the photo

domain X and sketch domain Y , where we denote the em-
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Figure 3: (a) Existing supervised image-to-image translation framework, where mapping is one-way only. (b) Existing

unsupervised image-to-image translation models enforce cycle consistency to address the highly under-constrained one-to-

one mapping problem. (c) Our supervised-unsupervised hybrid model with dual/two-way supervised translation sub-models

and two unsupervised sub-models with shortcut cycle consistency. This takes advantage of the noisy supervision signal

offered by photo-sketch pairs, as well as learning from within-domain reconstruction.

pirical data distribution as x ∼ pdata(x) and y ∼ pdata(y)
and represent each vector sketch segment as (sxi

, syi
), a

two-dimensional offset vector. Our model includes four

mapping functions, learned using four subnets namely a

photo encoder, a sketch encoder, a photo decoder, a sketch

decoder. They are denoted as Ep, Es, Dp and Ds respec-

tively.

Sub-Models As illustrated by Figure 3(c), our model con-

sists of four sub-models, each comprising an encoder sub-

net and a decoder subnet. (1) A supervised sub-model that

translates a photo to a sketch; (2) a supervised sub-model

that maps a sketch back to the photo domain; (3) an unsu-

pervised sub-model to reconstruct photo and (4) an unsuper-

vised sub-model to reconstruct sketch. This means that our

learning objective consists of two types of losses (to be de-

tailed later): supervised translation loss for matching cross-

domain and shortcut cycle consistency loss for traversing

within domain.

Variational Encoders The two encoders Ep and Es are

CNN and RNN respectively (see Figures 4(a) and (c)). In

particular, Es is a bidirectional LSTM. They take in either

a photo or sketch as input and output a latent vector. They

are variational because the latent vector is then projected

into two vectors µ and σ with one fully connected (FC)

layer. From the FC layer we construct our final embed-

ding layer (bottleneck layer in each sub-model) by fusing

it with a random vector, N (0, I), sampled from IID Gaus-

sian distribution. To enable efficient posterior sampling, the

re-parameterization trick is used as in [17]:

z = µ+ σ ⊙N (0, I) (1)

Sketch Decoder We build an LSTM-based sequence

model as in [10] to sample output sketches segment by seg-

ment conditioned on the latent vector z (see Figure 4(b)).

This is done by predicting each sketch segment offset

p(∆sxi
,∆syi

) using a Gaussian mixture model and mod-

eling pen state qi for each time step as a categorical distri-

bution. We refer the reader to [10] for more details. To train

the LSTM decoder, the reconstruction loss is formulated as:

Lrnn(S, Ŝ) = E
x∼S,y∼Ŝ

[

−
1

Nmax

(

Ns
∑

i=1

log(p(∆sxi
,∆syi

|x, y))

−
Nmax
∑

i=1

3
∑

k=1

pk,i log(qk,i|x, y)
)]

(2)

where Nmax represents the maximum number of segments

in one sketch in the training set, and Ns denotes the actual

length of segments for one particular sketch, thus Ns is usu-

ally smaller than Nmax. Index i and k indicate the time step

and one of three pen states, respectively. With the supervi-

sion of the reconstruction loss, the sketch decoder is able

to predict the next stroke segment based on the strokes of

previous time stamps.

804



tanhz

L
S
T
M

<start> S1 S2

L
S
T
M

L
S
T
M …h0

S1 S2 S3

h1 h2 h3

z z z

L
S
T
M

S3S2S1

L
S
T
M

L
S
T
M

…

L
S
T
M

SN-2SN-1SN

L
S
T
M

L
S
T
M

…

(a) (b) (c) (d)

zP z !"

Figure 4: (a) bidirectional LSTM encoder Es. (b) conditional LSTM decoder Ds. (c) generative CNN encoder Ep. (d)

conditional CNN decoder Dp.

Photo Decoder We use a CNN-based deconvolutional-

upsampling block, as is commonly adopted by various gen-

erative tasks, where an l2 loss

L→p(P, P̂ ) = E
x∼P,y∼P̂

[||x− y||2] (3)

is used to measure the difference, which often leads to a

blurry effect, known as the regression to mean problem

[25]. An obvious solution is to add adversarial loss [6] for

obtaining shaper photo visual effect. This was however not

adopted because: (a) We did not observe improved photo-

to-sketch synthesis, and even slightly worse due to the mode

collapse issue, commonly observed with generative adver-

sarial training [31]. (b) Synthesizing photos is not the main

goal of the model; it is used as an auxiliary task to help the

main photo-to-sketch synthesis task.

3.2. Shortcut Cycle Consistency

We might expect that learning a one-way mapping from

photo to sketch should suffice, as paired examples exist

for providing a supervision signal. However, as discussed,

photo-sketch pairs provide a weak and noisy supervision

signal, so such a one-way mapping function cannot be

learned effectively. Our solution is to introduce two-way

mapping using supervised learning and unsupervised re-

construction tasks. Since the four encoder and decoders

are shared by these supervised and unsupervised tasks, they

benefit from multi-task learning.

For the under-constrained mapping in the unsupervised

self-reconstruction tasks, cycle consistency [11, 51] is de-

veloped to alleviate the non-identifiable [20] problem by

reducing the space of possible mappings. This is achieved

from the intuition that for each source image, the translation

should be cycle consistent as to bring back to itself from the

translated target domain. Taking photo to sketch transla-

tion for example, we have x → Ep(x) → Ds(Ep(x)) →
Es(Ds(Ep(x)) → Dp(Es(Ds(Ep(x))). However, since

we do have noisy but paired data to provide weak super-

vision, the approximate posterior can actually be learned

within each domain from the encoder’s embedding. This is

achieved by enforcing a variational bound and this is exactly

where the shortcut can happen in the new cycle consistency

proposed in this work.

Specifically, to form a photo to photo cycle now re-

quires only traverse within domain, i.e., x → Ep(x) →
Dp(Ep(x)), which we term as shortcut cycle consistency.

We find that apart from resulting in faster convergence in

our supervised-unsupervised hybrid framework, our unsu-

pervised sub-models with the shortcut cycle consistency can

produce much better photo-to-sketch synthesis compared

with the model learned with conventional cycle consistency.

We postulate that given the large domain gap between photo

and sketch, doing a long walk across domains potentially

makes it harder to establish cross-domain correspondence.

Formally, to enforce the shortcut cycle consistency, we min-

imize the following loss:

Lshortcut(X,Y ) = L→s(Y,Ds(Es(Y )))

+ L→p(X,Dp(Ep(X)))
(4)

Note that although our shortcut consistency loss is for-

mulated as a VAE type reconstruction loss, it serves a

very different purpose here: to enforce consistency of the

shared encoder and decoder for the cross-domain and cross-

modality synthesis tasks.

3.3. Full Learning Objective

The four sub-models are learned jointly. Therefore, in

additional to the unsupervised loss above, there are thus two

supervised translation losses:

Lsupervised(X,Y ) = L→s(Y,Ds(Ep(X)))

+ L→p(X,Dp(Es(Y )))
(5)

Furthermore, to enable efficient posterior sampling, we

add KL losses for the bottleneck layer embedding space dis-

tributions to force the four sub-models to use a similar dis-

tribution to feed to their decoders. For simplicity, we com-

bine them into one term:

LKL =E
x∼X,y∼Y,x̂∼X̂,ŷ∼Ŷ

[−
1

2
(1 + σ2 − exp(σ))|x, y, x̂, ŷ]

(6)
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Our full objective thus becomes:

Lfull(X,Y ) = Lsupervised(X,Y )

+ λshortcutLshortcut(X,Y ) + λKLLKL

(7)

where λshortcut, λKL controls the relative importance of

each loss. With the full loss, we aim to optimize:

argmin
Ep,Es,Dp,Ds

Lfull(X,Y ) (8)

4. Experiments

4.1. Datasets and Settings

Dataset Splits and Preprocessing We use the publicly

available QMUL-Shoe-Chair-V2 [46] dataset, the largest

stroke-level paired sketch-photo dataset to date, to train and

evaluate our deep photo-to-sketch synthesis model. There

are 6,648 sketches and 2,000 photos for the shoe category,

where we use 5,982 and 1,800 of which respectively for

training and the rest for testing. For chairs, we split the

dataset as following strategy: 300/100 photos, 1275/725

sketches for training/testing respectively. It is guaranteed

that each photo is paired with at least one human sketch.

We scale and center the photos to 224 × 224 pixels and

pre-process original sketches via stroke removal and spa-

tial sampling to reduce to number of segments to the level

suitable for LSTM-based modeling.

Pretraining on QuickDraw Dataset Due to the limited

number of sketch-photo pairs in QMUL-Shoe-Chair-V2, we

pretrain our model with 70,000 shoe and 70,000 chair train-

ing sketches from the QuickDraw dataset [10]. Despite the

fact that only abstract iconic vector sketches exist with no

associated photos, we form our pretrained photos by trans-

forming sketches to raster pixel images. In this way, 70,000

vector-raster sketch pairs can be formed for model pretrain-

ing.

Implementation Details Our CNN-based encoder and

decoder, Ep and Dp consist of five stride-2 convolutions,

two fully connected layers and five fractionally-strided con-

volutions with stride 1/2, similar to [13] but without skip

connections. We use instance normalization instead of

batch normalization as in [40]. We adopt bidirectional and

unidirectional LSTM for our RNN encoder Es and decoder

Ds respectively, while keeping other learning strategies the

same as [10]. We implement our model end-to-end on Ten-

sorflow [1] with a single Titan X GPU. We set the impor-

tance weights λshortcut = 1 and λKL = 0.01 during train-

ing and find this simple strategy works well. Both pretrain-

ing and fine-tuning stages are trained for a fixed 200,000

iterations with a batch size of 100. The model is trained end

to end using the Adam optimizer [16] with the parameters

β1 = 0.5, β2 = 0.9, ǫ = 10−8. A fixed learning rate of

0.0001 is adopted for experiments.

4.2. Evaluation Metric

Evaluating the quality of synthesized images is still an

open problem. Traditional maximum likelihood approaches

(e.g., kernel density estimation) fail to offer a true reflec-

tion of the synthesis quality, as validated in [38]. Con-

sequently, most recent studies either run human percep-

tual studies by crowd-sourcing or explore computational

metrics attempting to predict human perceptual similarity

judgments [27]. Our measures fall into the latter by dis-

criminatively answering two questions: (i) How recogniz-

able can the synthesized sketch be when evaluated with a

recognition model trained on human sketch data? (ii) How

realistic and diverse are the synthesized sketches, so that

they can be used as queries to retrieve photos using a FG-

SBIR model trained on photo-human sketch pairs? A good

score under these metrics requires synthesized sketches to

be both realistic and instance-level identifiable. The met-

ric thus shares the same intuition behind the “inception

score” [31]. More specifically, the two metrics are: (1)

Recognition-Accuracy: We feed the synthesized sketches

into the sketch-a-net [47] model, which is trained to rec-

ognize 250 real-world sketch categories with super-human

performance. The assumption is that if a synthesized sketch

can be recognized correctly as the same category as the cor-

responding photo, we can conclude with some confidence

that it is category-level realistic. (2) FG-SBIR Retrieval-

Accuracy: Since our data are from the same category (ei-

ther shoe or chair), the recognition-score could still be high

if the model learns to one specific object instance regard-

less of the input photo instances (i.e., the typical symptom

of mode collapsing [31]), or if the synthesized sketches are

diverse but hardly resemble the object instances in the corre-

sponding photos. To overcome this problem, the FG-SBIR

accuracy is introduced as a harder metric. We retrain the

model of [45] on the QMUL-Shoe-Chair-V2 training split

[46] and used the synthesized sketches to retrieve photos on

the test split.

4.3. Competitors

For fair comparison, we implement all the competitors

under the same architecture and training strategies as our

model. Pix2pix [13]: We compare with replacing vector

sketch images with raster sketch images, where translation

happens within the pixel space. We tried different state-of-

the-art cross-domain translation models [13, 8, 33], but did

not find much difference between them. We thus only re-

port the results of the model in [13] as a representative one.

Pix2seq [2]: This corresponds to the ablated version of our

full model: a one-way photo-to-sketch supervised transla-

tion mode with vector sketch as output. This is similar to

[2], which was originally designed for better sketch recon-

struction, now re-designed and re-purposed for the photo-

to-sketch translation task. CycleGAN [51]: This is pro-
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Photo Pix2pix Pix2seq CycleGAN CycleGAN-S Ours Ground Truth

Figure 5: Photo-to-sketch synthesis on the QMUL-Shoe-Chair-V2 test splits. From left to right: input photo, Pix2pix [13],

Pix2seq [2], CycleGAN [51], CycleGAN with supervised translation loss, ours and ground truth human sketch. Temporal

strokes are rendered in different colors. Best viewed in color.

posed to specifically target image-to-image translation with

the absence of paired training examples. Cycle consistency

is enforced to alleviate the highly under-constrained setting

of the problem. CycleGAN-Supervised (CycleGAN-S):

Additional supervised learning modules (two discrimina-

tors for adversarial training) are added on top of CycleGAN

to give a level playing field. This can be considered as an

alternative supervised-unsupervised hybrid model.

4.4. Qualitative Results

As illustrated in Figure 5, all four competitors fail to gen-

erate high quality sketches that match with the correspond-

ing photo. Our model, in contrast, is able to sketch object

abstractly but semantically. Interestingly, our model pro-

duces some sketches with certain level of fine-grained de-

tails, which is extremely challenging given the highly noisy

supervision signals as shown in Figure 2. In some cases,

e.g., the third row shoe example, the shape and the details

of the synthesized sketch are more consistent to the refer-

ence photo, than those of human sketch.

The competitors suffer from various problems. We ob-

serve complete model collapse when using CycleGAN un-

der unsupervised setting, which suggests that CycleGAN

may only works with unpaired training examples under

a strong cross-domain pixel-level alignment assumption.

After injecting supervision into CycleGAN (CycleGAN-

S), the synthesized results get better but still suffers from

regular noisy stroke generation, i.e., it seems that a ran-

dom meaningless stroke is always sketched on a shoe. In

contrast, our model with shortcut cycle consistency does

not suffer from such issue. This is because our model

takes a shortcut from the bottleneck, which eases the bur-

den on optimization and enhances the representation power

of the encoder. We also witness some success using the

Pix2seq model – the sketch looks adequate on its own, but

when compared with the corresponding photo, it does not

bear much resemblance, often containing some wrong fine-

grained details, e.g., ankle strap of the first-row shoe. This

supports our hypothesis that one-way image-to-image trans-

lation is not enough to deal with the highly-noisy paired

training data. Finally, the worst results are obtained by the

Pix2pix model which is the only model that treats sketch as

a raster pixel image. The synthesized sketches are blurry

and lack sharp and clean edges. This is likely caused by the

fact that the model pays too much attention to handling the

empty background which is also part of data to model with

the raster image format.
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Recognition Retrieval

ShoeV2 acc.@1 acc.@10 acc.@1 acc.@10

Human sketch [46] 36.50% 70.00% 30.33% 76.28%

Pix2pix [13] 0.00% 0.00% 0.50% 7.50%

Pix2seq [2] 51.50% 86.00% 4.50% 26.00%

CycleGAN [51] 0.00% 0.00% 0.50% 4.00%

CycleGAN-S 18.00% 51.50% 2.00% 18.00%

Our full model 53.50% 90.00% 6.00% 28.50%

ChairV2 acc.@1 acc.@10 acc.@1 acc.@10

Human sketch [46] 10.00% 35.00% 47.68% 89.47%

Pix2pix [13] 0.00% 0.00% 2.00% 16.00%

Pix2seq [2] 5.00% 51.00% 3.00% 31.00%

CycleGAN [51] 0.00% 8.00% 1.00% 7.00%

CycleGAN-S 12.00% 55.00% 6.00% 33.00%

Our full model 13.00% 55.00% 8.00% 36.00%

Table 1: Recognition and retrieval results obtained using the

synthesized sketches. Numbers in red and blue indicate the

best and second-best performance among compared mod-

els. The results are in top-1 and top-10 accuracy.

4.5. Quantitative Results

We compare the performance of different models evalu-

ated using the two metrics (Sec. 4.2) in Table 1. The fol-

lowing observations can be made: (i) Under the recognition

metric, our model beats all the competitors. Interestingly it

also beats human, showing our superior category-level gen-

erative realism. (ii) Under the retrieval metric, our model

still outperforms all competitors on both datasets. However,

this time, the gap to the human sketches’ performance is

big. This suggests that when humans draw a sketch of a spe-

cific object given a reference photo, attention is paid mainly

to fine-grained details for distinguishing different instances,

rather than the category-level realism. Nevertheless, com-

pared to the chance level (0.5% acc.@1 for ShoeV2 and 1%

for ChairV2), our model’s performance suggests the synthe-

sized sketches do capture some instance-identifiable details.

(iii) The strongest competitor on ShoeV2 is Pix2seq [2].

However, its place is taken by CycleGAN-S on ChairV2.

This is expected: the ChairV2 dataset is much smaller than

ShoeV2, posing difficulties for a pure supervised-learning

based approach. The unsupervised CycleGAN yields poor

performance all the time due to model collapse, but its su-

pervised learning boosted version CycleGAN-S fares quite

well on the small ChairV2 dataset. This further validates

our claims that a hybrid model is required and our shortcut

consistency is more effective than the full cycle consistency.

4.6. Sampling the Latent Space

With the help of the KL loss, we are able to exploit

the embedding space from CNN encoder Ep by effectively

sampling from the latent vector z. It is thus intuitive that

given one photo, our model can generate multiple sketches,

as illustrated in Figure 6. We further observe that by re-

sampling of the latent space, different synthesized sketches

Photo Sampling from latent space Ground Truth

Figure 6: Examples of different sketches synthesized for the

same photo input by sampling the latent space with our full

model.

Dataset acc.@1 acc.@10

Without pretraining on synthetic data 30.33% 76.28%

With pretraining on synthetic data 32.43% 77.48%

Table 2: Evaluation of the contribution of synthetic sketch

pretraining on FG-SBIR.

corresponding to the same reference photo can still keep

instance-identifiable visual characteristics globally, but with

differences at various local strokes/parts.

4.7. Data Augmentation for FG­SBIR

In this experiment, we evaluate whether the synthesized

sketches using our model can be used to form some addi-

tional photo-sketch pairs to train a better FG-SBIR model.

More concretely, we collect 1800 photos from a different

shopping website (Selfridge’s), called ShoeSF, which have

no overlap with the ShoeV2 photos. We then apply our

model trained on ShoeV2 to generate sketches for ShoeSF

to form some additional photo-sketch pairs. They are then

used to pretrain the FG-SBIR model in [45] before fine-

tuning on the ShoeV2 provided photo-sketch pairs. Table 2

shows that using the synthesized data can boost the perfor-

mance by 2.10% acc.@1.

5. Conclusion

We proposed the first deep stroke-level photo-to-sketch

synthesis model that enables abstract stroke-level visual un-

derstanding of an object in a photo. To cope with the noisy

supervision of photo-human sketch pairs, we proposed a

novel supervised-unsupervised hybrid model with shortcut

cycle consistency. We show that our model achieves supe-

rior performance both qualitatively and quantitatively over

a number of state-of-the-art alternatives. We also applied

our synthetic sketches as a mean of data augmentation for

the FG-SBIR task, obtaining promising results.
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