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Abstract

The human hand moves in complex and high-

dimensional ways, making estimation of 3D hand pose con-

figurations from images alone a challenging task. In this

work we propose a method to learn a statistical hand model

represented by a cross-modal trained latent space via a gen-

erative deep neural network. We derive an objective func-

tion from the variational lower bound of the VAE frame-

work and jointly optimize the resulting cross-modal KL-

divergence and the posterior reconstruction objective, nat-

urally admitting a training regime that leads to a coherent

latent space across multiple modalities such as RGB im-

ages, 2D keypoint detections or 3D hand configurations.

Additionally, it grants a straightforward way of using semi-

supervision. This latent space can be directly used to esti-

mate 3D hand poses from RGB images, outperforming the

state-of-the art in different settings. Furthermore, we show

that our proposed method can be used without changes

on depth images and performs comparably to specialized

methods. Finally, the model is fully generative and can

synthesize consistent pairs of hand configurations across

modalities. We evaluate our method on both RGB and depth

datasets and analyze the latent space qualitatively.

1. Introduction

Hands are of central importance to humans in manipu-

lating the physical world and in communicating with each

other. Recovering the spatial configuration of hands from

natural images therefore has many important applications

in AR/VR, robotics, rehabilitation and HCI. Much work ex-

ists that tracks articulated hands in streams of depth images,

or that estimates hand pose [15, 16, 27, 35] from individ-

ual depth frames. However, estimating the full 3D hand

pose from monocular RGB images only is a more challeng-

ing task due to the manual dexterity, symmetries and self-

similarities of human hands as well as difficulties stemming

from occlusions, varying lighting conditions and lack of ac-

curate scale estimates. Compared to depth images the RGB

case is less well studied.

Figure 1: Cross-modal latent space. t-SNE visualization

of 500 input samples of different modalities in the latent

space. Embeddings of RGB images are shown in blue, em-

beddings of 3D joint configurations in green. Hand poses

are decoded samples drawn from the latent space. Embed-

ding does not cluster by modality, showing that there is a

unified latent space. The posterior across different modali-

ties can be estimated by sampling from this manifold.

Recent work relying solely on RGB images [38] pro-

poses a deep learning architecture that decomposes the task

into several substeps, demonstrating initial feasibility and

providing a public dataset for comparison. The proposed

architecture is specifically designed for the monocular case

and splits the task into hand and 2D keypoint detection fol-

lowed by a 2D-3D lifting step but incorporates no explicit

hand model. Our work is also concerned with the estimation

of 3D joint-angle configurations of human hands from RGB

images but learns a cross-modal, statistical hand model.

This is attained via learning of a latent representation that

embeds sample points from multiple data sources such as

2D keypoints, images and 3D hand poses. Samples from

this latent space can then be reconstructed by independent

decoders to produce consistent and physically plausible 2D

or 3D joint predictions and even RGB images.

Findings from bio-mechanics suggest that while articu-

lated hands have many degrees-of-freedom, only few are
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fully independently articulated [20]. Therefore a sub-space

of valid hand poses is supposed to exist and prior work on

depth based hand tracking [26] has successfully employed

dimensionality reduction techniques to improve accuracy.

This idea has been recently revisited in the context of

deep-learning, where Wan et al. [34] attempt to learn a man-

ifold of hand poses via a combination of variational autoen-

coders (VAEs) and generative adversarial networks (GANs)

for hand pose estimation from depth images. However, their

approach is based on two separate manifolds, one for 3D

hand joints (VAE) and one for depth-maps (GAN) and re-

quires a mapping function between the two.

In this work we propose to learn a single, unified latent

space via an extension of the VAE framework. We provide a

derivation of the variational lower bound that permits train-

ing of a single latent space using multiple modalities, where

similar input poses are embedded close to each other inde-

pendent of the input modality. Fig. 1 visualizes this learned

unified latent space for two modalities (RGB & 3D). We

focus on RGB images and hence test the architecture on

different combinations of modalities where the goal is to

produce 3D hand poses as output. At the same time, the

VAE framework naturally allows to generate samples con-

sistently in any modality.

We experimentally show that the proposed approach out-

performs the state-of-the art method [38] in direct RGB to

3D hand pose estimation, as well as in lifting from 2D de-

tections to 3D on a challenging public dataset. Meantime,

we note that given any input modality a mapping into the

embedding space can be found and likewise hand configu-

rations can be reconstructed in various modalities, thus the

approach learns a many-to-many mapping. We demonstrate

this capability via generation of novel hand pose configura-

tions via sampling from the latent space and consistent re-

construction in different modalities (i.e., 3D joint positions

and synthesized RGB images). These could be potentially

used in hybrid approaches for temporal tracking or to gen-

erate additional training data. Furthermore, we explore the

utility of the same architecture in the case of depth images

and show that we are comparable to state-of-art depth based

methods [15, 16, 34] that employ specialized architectures.

2. Related Work

Capturing the 3D motion of human hands from im-

ages is a long standing problem in computer vision and

related areas (cf. [5]). With the recent emergence of

consumer grade RGB-D sensors and increased importance

of AR and VR this problem has seen increased atten-

tion [22, 25, 26, 27, 28, 29, 30, 34, 35, 37]. Generally

speaking approaches can be categorized into tracking of ar-

ticulated hand motion over time (e.g., [18]) and per-frame

classification [25, 27, 34]. Furthermore, a number of hy-

brid methods exist that first leverage a discriminative model

to initialize a hand pose estimate which is then refined and

tracked via carefully designed energy functions to fit a hand

model into the observed depth data [19, 22, 30, 33, 36]. Es-

timating hand pose from RGB images is more challenging.

Also using depth-images, a number of approaches have

been proposed that extract manually designed features and

discriminative machine learning models to predict joint lo-

cations in depth images or 3D joint-angles directly [3, 10,

25, 28]. More recently a number of deep-learning mod-

els have been proposed that take depth images as input and

regress 2D joint locations in multiple images [24, 32] which

are then used for optimization-based hand pose estimation.

Others deploy convolutional neural networks (CNNs) in

end-to-end learning frameworks to regress 3D hand poses

from depth images, either directly estimating 3D joint con-

figurations [15, 23], or estimating joint-angles instead of

Cartesian coordinates [16]. Exploiting the depth informa-

tion more directly, it has also been proposed to convert

depth images into 3D multi-views [6] or volumetric repre-

sentations [7] before feeding them to a 3D CNN. Aiming

at more mobile usage scenarios, recent work has proposed

hybrid methods for hand-pose estimation from body-worn

cameras under heavy occlusion [13]. While the main focus

lies on RGB imagery, our work is also capable of predict-

ing hand pose configurations from depth images due to the

multi-modal latent space.

Wan et al. [34] is the most related work in spirit to ours.

Like our work, they employ deep generative models (a com-

bination of VAEs and GANs) to learn a latent space rep-

resentation that regularizes the posterior prediction. Our

method differs significantly in that we propose a theoreti-

cally grounded derivation of a cross-modal training scheme

based on the variational autoencoder [11] framework that

allows for joint training of a single cross-modal latent space,

whereas [34] requires training of two separate latent spaces,

learning of a mapping function linking them and final end-

to-end refinement. Furthermore, we experimentally show

that our approach reaches parity with the state-of-the-art in

depth based hand pose estimation and outperforms existing

methods in the RGB case, whereas [34] report only depth

based experiments. In [2], VAE is also deployed for depth

based hand pose estimation. However, their focus is min-

imising the dissimilarity coefficient between the true distri-

bution and the estimated distribution.

To the best of our knowledge there is currently only

one approach for learning-based hand pose estimation from

RGB images alone [38]. Demonstrating the feasibility of

the task, this work splits 3D hand pose estimation into an

image segmentation, 2D joint detection and 2D-3D lifting

task. Our approach allows for training of the latent space us-

ing either input modality (in this case 2D key points or RGB

images) and direct 3D hand pose estimation via decoding

the corresponding sample from the latent space. We exper-
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Figure 2: Schematic overview of our architecture. Left: a cross-modal latent space z is learned by training pairs of encoder

and decoder q, p networks across multiple modalities (e.g., RGB images to 3D hand poses). Auxilliary encoder-decoder pairs

help in regularizing the latent space. Right: The approach allows to embed input samples of one set of modalities (here:

RGB, 3D) and to produce consistent and plausible posterior estimates in several different modalities (RGB, 2D and 3D).

imentally show that our methods outperforms [38] both in

the 2D-3D lifting setting and the end-to-end hand pose esti-

mation setting, even when using fewer invariances than the

original method. Finally, we demonstrate that the same ap-

proach can be directly employed to depth images without

any modifications to the architecture.

Our work builds on literature in deep generative model-

ing. Generative Adversarial Nets (GAN) [8] learn an un-

derlying distribution of the data via an adversarial learning

process. The Variational Autoencoder (VAE) [11] learns

it via optimizing the log-likelihood of the data under a la-

tent space manifold. However unlike GANs, they provide a

framework to embed data into this manifold which has been

shown to be useful for diverse applications such as multi-

modal hashing [4]. Aytar et al. [1] use several CNNs to

co-embed data from different data modalities for scene clas-

sification and Ngiam et al. [14] reconstruct audio and video

across modalities via a shared latent space. Our work also

aims to create a cross-modal latent space and we provide

a derivation of the cross-modal training objective function

that naturally admits learning with different data sources all

representing physically plausible hand pose configurations.

3. Method

The complex and dexterous articulation of the human

hand is difficult to model directly with geometric or physi-

cal constraints [18, 30, 33]. However, there is broad agree-

ment in the literature that a large amount of the degrees-of-

freedom are not independently controllable and that hand

motion, in natural movement, lives in a low-dimensional

subspace [20, 31]. Furthermore, it has been shown that di-

mensionality reduction techniques can provide data-driven

priors in RGB-D based hand pose estimation [21, 26]. How-

ever, in order to utilize such a low-dimensional sub-space

directly for posterior estimation in 3D hand-pose estima-

tion it needs to be i) smooth, ii) continuous and iii) con-

sistent. Due to the inherent difficulties of capturing hand

poses, most data sets do not cover the full motion space

and hence the desired manifold is not directly attainable via

simple dimensionality reduction techniques such as PCA.

We deploy the VAE framework that admits cross-modal

training of such a hand pose latent space by using various

sources of data representation, even if stemming from dif-

ferent data sets both in terms of input and output. Our cross-

modal training scheme, illustrated in Fig. 2, learns to embed

hand pose data from different modalities and to reconstruct

them either in the same or in a different modality.

More precisely, a set of encoders q take data samples

x in the form of either 2D keypoints, RGB or depth images

and project them into a low-dimensional latent space z, rep-

resenting physically plausible poses. A set of decoders p

reconstruct the hand configuration in either modality. The

focus of our work is on 3D hand pose estimation and there-

fore on estimating the 3D joint posterior. The proposed ap-

proach is fully generative and experimentally we show that

it is capable of generating consistent hand configurations

across modalities. During training, each input modality al-

ternatively contributes to the construction of the shared la-
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tent space. The manifold is continuous and smooth which

we show by generating cross-modal samples such as novel

pairs of 3D poses and images of natural hands1.

3.1. Variational Autoencoder

Our cross-modal training objective can be derived from

the VAE framework [11], a popular class of generative mod-

els, typically used to synthesize data. A latent represen-

tation is attained via optimizing the so-called variational

lower bound on the log-likelihood of the data:

log p(x) ≥ Ez∼q(z|x)[log p(x|z)]−DKL(q(z|x)||p(z))
(1)

Here DKL(·) is the Kullback-Leibler divergence, and the

conditional probability distributions q(z|x), p(x|z) are the

encoder and decoders, parametrized by neural networks.

The distribution p(z) is the prior on the latent space, mod-

eled asN (z|0, I). The encoder returns the mean µ and vari-

ance σ2 of a normal distribution, such that z ∼ N (µ, σ2).
In this original form VAEs only take a single data distri-

bution into account. To admit cross-modal training, at least

two data modalities need to be considered.

3.2. Crossmodal Hand Pose Latent Space

Our goal is to guide the cross-modal VAE into learn-

ing a lower-dimensional latent space of hand poses with

the above mentioned desired properties and the ability to

project any modality into z and to generate posterior es-

timates in any modality. For this purpose we re-derive a

new objective function for training which leverages multi-

ple modalities. We then detail our training algorithm based

on this objective function.

For brevity we use a concrete example in which a data

sample xi (e.g., an RGB image) is embedded into the la-

tent space to obtain the embedding vector z, from which

a corresponding data sample xt is reconstructed (e.g., a

3D joint configuration). To achieve this, we maximize the

log-probability of our desired output modality xt under our

model log pθ(xt), where θ are the model parameters. We

will omit the model parameters to reduce clutter.

Similar to the original derivation [11], we start with the

quantity log p(xt) that we want to maximize:

log p(xt) =

∫
z

q(z|xi) log p(xt)dz, (2)

exploiting the fact that
∫
z
q(z|xi)dz = 1 and expanding

p(xt) gives:

∫
z

q(z|xi) log
p(xt)p(z|xt)q(z|xi)

p(z|xt)q(z|xi)
dz. (3)

1Generated images are legible but blurry. Creating high quality natural

images is a research topic in itself.

Remembering that DKL(p(x)||q(x)) =
∫
x
p(x) log p(x)

q(x)

and splitting the integral of Eq (3) we arrive at:

∫
z

q(z|xi) log
q(z|xi)

p(z|xt)
dz +

∫
z

q(z|xi) log
p(xt)p(z|xt)

q(z|xi)
dz

= DKL(q(z|xi)||p(z|xt)) +

∫
z

q(z|xi) log(
p(xt|z)p(z)

q(z|xi)
)dz.

(4)

Here p(z|xt) corresponds to the desired but inaccessible

posterior, which we approximate with q(z|xi).
Since p(xt)p(z|xt) = p(xt|z)p(z) and because

DKL(p(x)||q(x)) ≥ 0 for any distribution p, q, we attain

the final lower bound:

DKL(q(z|xi)||p(z|xt)) +

∫
z

q(z|xi) log(
p(xt|z)p(z)

q(z|xi)
)dz

≥

∫
z

q(z|xi) log p(xt|z)dz −

∫
z

q(z|xi) log
q(z|xi)

p(z)
dz

= Ez∼q(z|xi)[log p(xt|z)]−DKL(q(z|xi)||p(z)).

(5)

Note that we changed signs via the identity − log(x) =
log( 1

x
). Here q(z|xi) is our encoder, embedding xi into the

latent space and p(xt|z) is the decoder, which transforms

the latent sample z into the desired representation xt.

The derivation shows that input samples xi and target

samples xt can be decoupled via a joint embedding space z

where i and t can represent any modality. For example, to

maximize log p(x3D) when given xRGB, we can train with

q(z|xRGB) as our encoder and p(x3D|z) as the decoder.

Importantly the above derivation also allows

to train additional encoder-decoder pairs such as

(q(z|xRGB), p(xRGB|z)), at the same time, for the same z.

This cross-modal training regime results in a single latent

space that allows us to embed and reconstruct multiple data

modalities, or even train in a unsupervised fashion.

In the context of hand pose estimation, p(z) represents

a hand pose manifold which can be better defined with ad-

ditional input modalities such as xRGB, x2D, x3D, and even

xDepth used in combination.

3.3. Network Architecture

In practice, the encoder qk for data modality k returns the

mean µ and variance σ2 of a normal distribution for a given

sample, from which the embedding z is sampled, i.e z ∼
N (µ, σ2). However, the decoder pl directly reconstructs

the latent sample z to the desired data modality l.

Fig. 2, illustrates our proposed architecture for the case

of RGB based handpose estimation. In this setting we use

two encoders for RGB images and 3D keypoints respec-

tively. Furthermore, the architecture contains two decoders

for RGB images and 3D joint configurations.
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3.4. Training Procedure

Our cross-modal objective function (Eq 3) follows the

training procedure given as pseudo-code in Alg.1. The pro-

cedure takes a set of modalities PV AE with correspond-

ing encoders and decoders qi, pj , where i, j signify the re-

spective modality, and trains all such pairs iteratively for

E epochs. Note that the embedding space z is always the

same and hence we attain a joint cross-modal latent space

from this procedure (cf. Fig. 1).

Algorithm 1 Cross-modal Variational Autoencoders

PV AE ← {(qk1
, pl1), (qk2

, pl2), ...} Encoder/Decoder

pairs, where qk1
encodes data from modality k1 and pl1

reconstructs latent samples to data of modality l1.

E Number of epochs

e← 0
for e < E do

for (qk, pl) ∈ PV AE do

xk, xl ← Xk, Xl Sample data pair of modality k, l

µ, σ ← qk(xk)
z ∼ N (µ, σ)
x̂l ← pl(z)
LMSE ← ||xl − x̂l||2
LKL ← −0.5 ∗ (1 + log(σ2)− µ2 − σ2)
θqk ← θqk −∇θqk

(LMSE + LKL)
θpl
← θpl

−∇θpl
(LMSE + LKL)

end for

e← e+ 1
end for

4. Experiments

To evaluate the performance of the cross-modal VAE we

systematically evaluate the utility of the proposed training

algorithm and the resulting cross-modal latent space. This

is done via estimation of 3D hand joint positions from three

entirely different input modalities: 1) 2D joint locations;

2) RGB image; 3) depth images. In our experiments we

explored combinations of different modalities during train-

ing. We always predict at least the 3D hand configura-

tion but add further modalities. More specifically we run

experiments with the following four variants: a) Var. 1:

(xi → xt) b) Var. 2: (xi → xt, xt → xt) c) Var. 3: (xi →
xt, xi → xi) d) Var. 4: (xi → xt, xi → xi, xt → xt),
where xi always signifies the input modality and i takes one

of the following values: [RGB, 2D, Depth] and t equals the

output modality. In our experiments this is always t = 3D

but can in general be any target modality. Including the

xt → xi direction neither directly affects the RGB encoder,

nor the 3D joint decoder and hence was dropped from our

analysis.

4.1. Implementation details

We employ Resnet-18 [9] for the encoding of RGB and

depth images. Note that the model size of this encoder is

much smaller compared to prior work that directly regresses

3D joint coordinates [15]. The decoders for RGB and depth

consist of a series of (TransposedConv, BatchNorm2D and

ReLU)-layers. For the case of 2D keypoint and 3D joint en-

coders and decoders, we use several (Linear, ReLU)-layers.

In our experiments we did not observe much increase in ac-

curacy from more complex decoder architectures. We train

our architecture with the ADAM optimizer using a learning

rate of 10−4. Exact architecture details and hyperparame-

ters can be found in the supplementary materials.

4.2. Datasets

We evaluate our method in the above settings based on

several publicly available datasets. For the input modal-

ity of 2D keypoints and RGB images only few annotated

datasets are available. We test on the datasets of the Stereo

Hand Pose Tracking Benchmark [37] (STB) and the Ren-

dered Hand Pose Dataset (RHD) [38]. STB contains 18k

images with resolution of 640 × 480, which are split into a

training set with 15k samples and test set with 3k samples.

These images are annotated with 3D keypoint locations and

the 2D keypoints are recovered via projecting them with

the camera intrinsic matrix. The depicted hand poses con-

tain little self-occlusion and variation in global orientation,

lighting etc. and are relatively easy to recover.

RHD is a synthetic dataset with rendered hand images,

which is composed of 42k training images and 2.7k evalua-

tion images of size 320×320. Similar to STB, both 2D and

3D keypoint locations are annotated. The dataset contains

a much richer variety of viewpoints and poses. The 3D hu-

man model is set in front of randomly sampled images from

Flickr to generate arbitrary backgrounds. This dataset is

considerably more challenging due to variable viewpoints

and difficult hand poses at different scales. Furthermore,

despite being a synthetic dataset the images contain signifi-

cant amount of noise and blur and are relatively low-res.

For the depth data, we evaluate on the ICVL [27], NYU

[32], and MSRA [25] datasets. For NYU, we train and test

on viewpoint 1 and all 36 available joints, and evaluate on

14 joints as done in [15, 17, 34] while for MSRA, we per-

form a leave-one-out cross-validation and evaluate the er-

rors for the 9 models trained as done in [15, 25, 34].

4.3. Evaluation metrics

We provide three different metrics to evaluate the perfor-

mance of our proposed model under various settings: i) The

most common metric used in the 3D hand pose estima-

tion literature is the mean 3D joint error which measures

the average euclidean distance between predicted joints and
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2D→3D

RHD

RGB→3D

RHD

RGB→3D

STB

Var. 1 17.23 19.73 8.75

Var. 2 17.82 19.99 8.61

Var. 3 17.14 20.04 8.56

Var. 4 17.63 20.35 9.57

Table 1: Variant comparison. Mean EPE given in mm. For

explanation of variants, see Sec. 4.

ground truth joints. ii) We also report Percentage of Cor-

rect Keypoints (PCK) which returns the mean percentage

of predicted joints below an euclidean distance of d from

the correct joint location. iii) The hardest metric, which re-

ports the Percentage of Correct Frames (PCF) where all

the predicted joints are within an euclidean distance of d to

its respective GT location. We report this only for depth

since it is commonly reported in the literature.

4.4. Comparison of variants

We begin with comparing our variants with each other

to determine which performs best and experiment on RHD

and STB. On both datasets, we test the performance of our

model on the task of regressing the 3D joints from RGB di-

rectly. Additionally, we predict the 3D joint locations from

given 2D joint locations (dimensionality lifting) on RHD.

Table 1 shows our results on the corresponding task and

dataset. The errors are given in mean end-point-error

(EPE) (median EPE is in the supplementary). Var. 3 out-

performs the other variants on two tasks; lifting 2D joint

locations to 3D on RHD and regressing 3D joint location

directly from RGB on STB. On the other hand, Var. 1 is su-

perior in the task of RGB→3D on RHD. However we note

that in general, the individual performance differences are

minor. This is to be expected, as we conduct all our ex-

periments within individual datasets. Hence even if multi-

ple modalities are present, they capture the same poses and

the same inherent information. This indicates that having a

shared latent space for generative purposes does not harm

the performance and in certain cases can even enhance it.

This may be due to the regularizing effect of introducing

multiple modalities.

4.5. Comparison to related work

In this section we perform a qualitative analysis of our

performance in relation to prior work for both RGB and

depth cases. For this, we pick the best variant of the re-

spective task, as determined in the previous section. For the

RGB datasets (RHD and STB), we compare against [38].

To the best of our knowledge, it is the only prior work that

addresses the same task as we do. In order to compare fairly,

we conduct the same data preprocessing. Importantly, in

[38] additional information such as handedness (H) and

scale of the hand (S) are provided at test time. Further-

more, the cropped hands are normalized to a roughly uni-

form size. Finally, they change the task from predicting the

global 3D joint coordinates to estimating a palm-relative,

translation invariant (T) set of joint coordinates by pro-

viding ground truth information of the palm center. In our

case, the handedness is provided via a boolean flag directly

into the model.

However, in order to assess the influence of our learned

hand model we incrementally reduce the reliance on in-

variances which require access to ground-truth information.

These results are shown alongside our main algorithm.

2D to 3D. As a baseline experiment we compare our

method to that of [38] in the task of lifting 2D keypoints

into a 3D hand pose configuration on the RHD dataset. Re-

cently [12] report that given a good 2D keypoint detector,

lifting to 3D can yield surprisingly good results, even with

simple methods in the case of 3D human pose estimation.

Hand pose estimation is considerably more challenging task

due to the more complex motion and flexibility of the hu-

man hand. Furthermore, [38] provide a separate evaluation

of their lifting component which serves as our baseline.

The first column of Table 2 summarizes the mean

squared end-point errors (EPE) for the RHD dataset. In gen-

eral, our proposed model outperforms [38] by a relatively

large margin. The bottom rows of Table 2 show results of

ours without the handedness invariance (H) and the scale

invariance (S), we still surpass the accuracy of [38]. This

suggests that our model indeed encodes physically plausi-

ble hand poses and that reconstructing the posterior from

the embedding aids the hand pose estimation task.

RGB to 3D. Here, we evaluate our method on the task of

directly predicting 3D hand pose from RGB images, with-

out intermediate 2D keypoint extraction. We run our model

and [38] on cropped RGB images for fair comparison.

Zimmermann et al. [38], in which 2D keypoints are first

predicted and then lifted into 3D serves as our baseline. We

evaluate the proposed model on the STB [37] and RHD [38]

datasets. Fig. 7a and 7b show several samples of our predic-

tion on STB and RHD respectively. Even though some im-

ages in RHD contain heavily occluded fingers, our method

retrieves biomechanically plausible predictions.

The middle column of Table 2 summarizes the results for

the harder RHD dataset. Our approachs accuracy exceeds

that of [38] by a large margin. Removing available invari-

ances again slightly decreases performance but our models

still remains superior to [38]. Looking at the PCK curve

comparison in Fig. 4a, we see that our model outperforms

[38] for all thresholds.

The rightmost column of Table 2 shows the performance

on the STB dataset. The margin of improvement of our

approach is considerably smaller. We argue that the perfor-
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2D→3D

RHD

RGB→3D

RHD

RGB→3D

STB

[38] (T+S+H) 22.43 30.42 8.68

Ours (T+S+H) 17.14 19.73 8.56

Ours (T+S) 18.90 20.20 10.16

Ours (T+H) 19.69 22.34 9.59

Ours (T) 21.15 22.53 9.49

Table 2: Related work comparison. Mean EPE given in

mm. For explanation of legends, see Sec. 4.5

mance on the dataset is saturated as it is much easier (see

discussion in Sec. 4.2). Fig. 4b shows the PCK curves on

STB, with the other baselines that operate on noisy stereo

depth maps and not RGB (directly taken from [38]).

Depth to 3D. Given the ready availability of RGB-D

cameras, the task of 3D joint position estimation from depth

has been explored in great detail and specialized architec-

tures have been proposed. We evaluate our architecture, de-

signed originally for the RGB case, on the ICVL [27], NYU

[32] and MSRA [25] datasets. Despite the lower model ca-

pacity, our method performs comparably (see Fig. 5) to re-

cent works [15, 17, 34, 35] with just a modification to take

1-channel images as input compared to our RGB case.

4.6. Semisupervised learning

Due to the nature of cross-training, we can exploit com-

plementary information from additional data. For example,

if additional unlabeled images are available, our model can

make use of these via cross-training. This is a common sce-

nario, as unlabeled data is plentiful. If not available, acquir-

ing this is by far simpler than recording training data.

To explore this semi-supervised setting, we perform an

additional experiment on STB. We simulate a situation

where we have labeled and unlabeled data by discarding

different percentages of 3D joint data from our dataset. Fig.

3, compares the median EPE of Var. 1 (which can only be

trained supervised) with Var. 3 (trained semi-supervised).

We see that as more unlabeled data becomes available,

Var. 3 can make use of this additional information and im-

prove prediction accuracy up to 22%.

4.7. Generative capabilities

Our model is guided to learn a manifold of hand poses.

In this section, we demonstrate the smoothness and con-

sistency of it. To this end, we perform a walk on one di-

mension of the latent space by embedding two RGB images

of separate hand poses into the latent space and obtain two

corresponding samples z1 and z2. We then decode the la-

tent space samples that reside on the interpolation line be-

tween them using our models for RGB and 3D joint decod-

ing. Fig. 6 shows the resulting reconstructions, demonstrat-

ing consistency between both decoders. The fingers move
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Figure 3: Median EPE of our model trained supervised and

semi-supervised as a function of percentage of labeled data.
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Figure 4: PCK curve of our best model on RHD and STB

for RGB to 3D.
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Figure 5: PCF curves for 3D joint estimation from depth

input. Our model performs comparably to recent works.

in synchrony and the generated synthetic samples are both

physically plausible and consistent across modalities. This

demonstrates that the learned latent space is indeed smooth

and represents a valid statistical model of hand poses.

The smoothness property of the unified latent space is

attractive in several regards. Foremost because this poten-

tially enables generation of labeled data which in turn may

be used to improve current models. Fully exploring this as-

pect is subject to further research.
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Figure 6: Latent space walk. Example of reconstructing samples of the latent space into multiple modalities. The left-most

and right-most figures are reconstruction from latent space samples of two real RGB images. The figures in-between are

multi-modal reconstruction from interpolated latent space samples, hence are completely synthetic.

(a) STB (from RGB)

(b) RHD (from RGB)

(c) ICVL (from Depth)

Figure 7: 3D joint predictions. For each triplet, the left most column corresponds to the input image, the middle column is

the ground truth 3D joint skeleton and the right column is our corresponding prediction.

5. Conclusion

We have proposed a new approach to estimate 3D hand

pose configurations from RGB and depth images. Our ap-

proach is based on a re-derivation of the variational lower

bound that admits training of several independent pairs of

encoders and decoders, shaping a joint cross-modal latent

space representation. We have experimentally shown that

the proposed approach outperforms the state-of-the art on

publicly available RGB datasets and is at least compara-

ble to highly specialized state-of-the-art methods on depth

data. Finally, we have shown the generative nature of the

approach which suggests that we indeed learn a usable and

physically plausible statistical hand model, enabling direct

estimation of the 3D joint posterior.
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