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Abstract

We present a novel method to train machine learning al-

gorithms to estimate scene depths from a single image, by

using the information provided by a camera’s aperture as

supervision. Prior works use a depth sensor’s outputs or

images of the same scene from alternate viewpoints as su-

pervision, while our method instead uses images from the

same viewpoint taken with a varying camera aperture. To

enable learning algorithms to use aperture effects as su-

pervision, we introduce two differentiable aperture render-

ing functions that use the input image and predicted depths

to simulate the depth-of-field effects caused by real cam-

era apertures. We train a monocular depth estimation net-

work end-to-end to predict the scene depths that best ex-

plain these finite aperture images as defocus-blurred ren-

derings of the input all-in-focus image.

1. Introduction

The task of inferring a 3D scene from a single image is

a central problem in human and computer vision. In ad-

dition to being of academic interest, monocular depth es-

timation also enables many applications in fields such as

robotics and computational photography. Currently, there

are two dominant strategies for training machine learning

algorithms to perform monocular depth estimation: direct

supervision and multi-view supervision. Both approaches

require large datasets where varied scenes are imaged or

synthetically rendered. In the direct supervision strategy,

each scene in the dataset consists of a paired RGB image

and ground truth depth map (from a depth sensor or a ren-

dering engine), and an algorithm is trained to regress from

each input image to its associated ground truth depth. In the

multi-view supervision strategy, each scene in the dataset

consists of a pair (or set) of RGB images of the same scene

from different viewpoints, and an algorithm is trained to

predict the depths for one view of a scene that best ex-

plain the other view(s) subject to some geometric trans-

formation. Both strategies present significant challenges.

*Work done while interning at Google Research.

Figure 1. Given a single all-in-focus image, our algorithm esti-

mates a depth map of the scene using a monocular depth esti-

mation network. The only supervisory signal used to train this

network was images taken from a single camera with different

aperture sizes. This “aperture supervision” allows for diverse

monocular depth estimation datasets to be gathered more easily.

Depth-estimation models trained using aperture supervision esti-

mate depths that work particularly well for generating images with

synthetic shallow depth-of-field effects.

The depth sensors required for direct supervision are expen-

sive, power-hungry, low-resolution, have limited range, of-

ten produce noisy or incomplete depth maps, usually work

poorly outdoors, and are challenging to calibrate and align

with the “reference” RGB camera. Multi-view supervision

ameliorates some of these issues but requires at least two

cameras or camera motion, and has the same difficulties as

classic stereo algorithms on image regions without texture

or with repetitive textures.

In this work, we propose a novel strategy for training

machine learning algorithms to perform monocular depth

estimation: aperture supervision. We demonstrate that sets

of images taken by the same camera and from the same

viewpoint but with different aperture sizes can be used to

train a monocular depth estimation algorithm. Aperture su-

pervision can be used for general-purpose monocular depth

estimation, but works particularly well for one compelling

computational photography application: synthetic defocus.
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This is because the algorithm is trained end-to-end to pre-

dict scene depths that best render images with defocus blur;

the loss used during training is exactly consistent with the

task in question. Figure 1 shows an example input all-in-

focus image, and our algorithm’s predicted depth map and

rendered shallow depth-of-field image.

An image taken with a small camera aperture (e.g. a

pinhole) has a large depth-of-field, causing all objects in

the scene to appear sharp and in focus. If the same im-

age is instead taken with a larger camera aperture, the im-

age has a shallow depth-of-field, and objects at the focal

plane appear sharp while other objects appear more blurred

the further away they are from the focal plane. We exploit

this depth-dependent difference between images taken with

smaller and larger apertures to train a convolutional neu-

ral network (CNN) to predict the depths that minimize the

difference between the ground truth shallow depth-of-field

images and shallow depth-of-field images rendered from the

input all-in-focus image using the predicted depths.

To train an end-to-end machine learning pipeline using

aperture supervision, we need a differentiable function to

render a shallow depth-of-field image from an all-in-focus

image and a predicted depth map. In this work we pro-

pose two differentiable aperture rendering functions (Sec-

tion 3). Our first approach, which we will call the “light

field” model, is based on prior insights regarding how shear-

ing a light field induces focus effects in images integrated

from that light field. Our light field model uses a CNN to

predict a depth map that is then used to warp the input 2D

all-in-focus image into an estimate of the 4D light field in-

side the camera, which is then focused and integrated to

render a shallow depth-of-field image of the scene. Our

second approach, which we will call the “compositional”

model, eschews the formal geometry of image formation

with regards to light fields, and instead approximates the

shallow depth-of-field image as a depth-dependent compo-

sition of blurred versions of the all-in-focus image. Our

compositional model uses a CNN to predict a probabilis-

tic depth map (a probability distribution over a fixed set

of depths for each pixel) and renders a shallow depth-of-

field image as a composition of the input all-in-focus image

blurred with a representative kernel for each discrete depth,

blended using the probabilistic depth map as weights. Both

of these approaches allow us to express arbitrary aperture

sizes, shapes, and distances from the camera to the focal

plane, but each approach comes with different strengths and

weaknesses, as we will show.

2. Related Work

Inferring Geometry from a Single Image Early works

in computer vision such as shape-from-shading [16, 32] and

shape-from-texture [23, 29] exploit specific cues and ex-

plicit knowledge of imaging conditions to estimate object

geometry from a single image. The work of Barron and

Malik [4] tackles a general inverse rendering problem and

recovers object shape, reflectance, and illumination from a

single image by solving an optimization problem with pri-

ors on each of these unknowns. Other works pose monoc-

ular 3D recovery as a supervised machine learning prob-

lem, and train models to regress from an image to ground

truth geometry obtained from 3D scanners, depth sensors,

or human annotations [8, 15, 25], or datasets of synthetic

3D models [6, 9].

These ground truth datasets are typically low-resolution

and are difficult to gather, especially for natural scenes, so

recent works have focused on training geometry estimation

algorithms without any ground-truth geometry. One popu-

lar strategy for this is multi-view supervision: the geometry

estimation networks are trained by minimizing the expected

loss of using the predicted geometry to render ground truth

views from alternate viewpoints. Many successful monoc-

ular depth estimation algorithms have been trained in this

fashion using calibrated stereo pairs [11, 12, 30]. The work

of Tulsiani et al. [28] proposed a differentiable formula-

tion of consistency between 2D projections of 3D voxel ge-

ometry to predict a 3D voxel representation from a single

image using calibrated multi-view images as supervision.

Zhou et al. [33] relaxed the requirement of calibrated in-

put viewpoints to train a monocular depth estimation net-

work with unstructured video sequences by estimating both

scene depths and camera pose. Srinivasan et al. [27] used

plenoptic camera light fields as dense multi-view supervi-

sion for monocular depth estimation, and demonstrated that

the reconstructed light fields can be used for applications

such as synthetic defocus and image refocusing. In con-

trast to these methods, our monocular depth estimation al-

gorithm can be trained with sets of images taken from a

single viewpoint with different aperture settings on a con-

ventional camera, and does not require a moving camera,

a stereo rig, or a plenoptic camera. Furthermore, our algo-

rithm is trained end-to-end to estimate depths that are partic-

ularly suited for the application of synthetic defocus, much

like how multi-view supervision approaches are well-suited

to view-synthesis tasks.

Light Fields The 4D light field [21] is the total spatio-

angular distribution of light rays passing through a region

of free space. Previous work has shown that pinhole images

from different viewpoints are equivalent to 2D slices of the

4D light field [21], and that a photograph with some desired

focus distance and aperture size can be rendered by integrat-

ing a sheared 4D light field [17, 21, 24]. Our work makes

use of these fundamental observations about light fields and

embeds them into a machine learning pipeline to differen-

tiably render shallow depth-of-field images, thus enabling

the use of aperture effects as a supervisory signal for train-

ing a monocular depth estimation model.
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Figure 2. An illustration of our “light field” and “compositional” aperture rendering functions on a toy 1-D scene, consisting of 2 diffuse

points (red and green circles) at different depths. In the input all-in-focus image, imaged through a small aperture (blue ellipse), both scene

points are imaged to delta functions on the image plane (black line). The “light field” rendering function (top) takes this image and a depth

map of the scene as inputs, predicts the light field within a virtual camera with a finite sized aperture, and integrates the rays across this

entire aperture to render a shallow depth-of-field image. The “compositional” rendering function (bottom) takes the all-in-focus image and

a probability mass function over a discrete set of depths for each pixel, and renders the shallow depth-of-field image by blending the input

image blurred with a disk kernel corresponding to each discrete depth, weighted by the probability of each depth.

Synthetic Defocus Rendering depth-of-field effects is im-

portant for generating realistic imagery, and synthetic de-

focus has been of great interest to the computer graphics

community [7, 13, 31]. These techniques assume the scene

geometry, reflectance properties, and lighting are known,

so other works have addressed the rendering of depth-of-

field effects from the relatively limited information present

in captured images. These include techniques such as mag-

nifying the amount of defocus blur already present in a pho-

tograph [2], using stereo to predict disparities for render-

ing synthetic defocus [3], using multiple input images taken

with varying focus distances [18] or aperture sizes [14], and

relying on semantic segmentation to estimate and defocus

the background of monocular images [22]. In contrast to

these methods, we focus on using depth-of-field effects as

a supervisory signal to train machine learning algorithms to

estimate depth from a single image, and our method does

not require multiple input images, external semantic super-

vision, or any measurable defocus blur in the input image.

3. Differentiable Aperture Rendering

To utilize the depth-dependent differences between an

all-in-focus image and large-aperture image as a supervi-

sory signal to train a machine learning model, we need a dif-

ferentiable function for rendering a shallow depth-of-field

image from an all-in-focus image and scene depths (we use

“depth” and “disparity” interchangeably to refer to disparity

across a camera’s aperture).

The depth-of-field effect is due to the fact that the light

rays emanating from points in a scene are distributed over

the entirety of a camera’s aperture. Rays that originate from

points on the focal plane are focused into points on the im-

age sensor, while rays from points at other distances con-

verge in front of or behind the sensor, resulting in a blur

on the image plane. In this section, we present two mod-

els of this effect: a “light field” aperture rendering function

that models the light field within a camera, and a “composi-

tional” model that treats defocus blur as a blended compo-

sition of the input image convolved with differently-sized

blur kernels. These operations both take as input an all-in-

focus image and some representation of scene depth, and

produce as output a rendered shallow depth-of-field im-

age (Figure 2). In Section 4, we will describe how these

functions can be integrated into learning pipelines to enable

aperture supervision — the end-to-end training of a monoc-

ular depth estimation network using only shallow depth-of-

field images as a supervisory signal.

3.1. Light Field Aperture Rendering

Our light field aperture rendering function takes as input

an all-in-focus image and a depth map of the scene, and ren-

ders the corresponding shallow depth-of-field image. This

rendering function is differentiable with respect to the all-

in-focus image and depth map used as input. The rendering

works by using the depth map to warp the input image into

all the viewpoints in the camera light field that we wish to

render. Forward warping, or “splatting”, the input image

into the desired viewpoints based on the input depth map

would produce holes in the resulting light field and conse-

quently produce artifacts in the output rendering. Therefore,

we use a CNN g(·) with parameters θe that takes the single

input depth map Z(x; I) and expands it into a depth map
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D(x,u) for each view in the light field:

D(x,u) = gθe
(Z(x; I)) (1)

where x are spatial coordinates of the light field on the im-

age plane and u are angular coordinates of the light field

on the aperture plane (equivalent to the coordinates of the

center of projection of each view in the light field). Note

that we consider the input depth map and all-in-focus im-

age I(x) as corresponding to the central view (u = 0) of

the light field.

We use these depth maps to warp the input all-in-focus

image to every view of the light field in the camera by:

L(x,u) = I(x+ uD(x,u)) (2)

where L(x,u) is the simulated camera light field.

After rendering the camera light field, we shear the light

field to focus at the desired depth in the scene, and add

the rays that arrive at each sensor pixel from across the

entire aperture to render a shallow depth-of-field image

Ŝℓ(x; I, d̂) focused at a particular depth d̂:

Ŝℓ(x; I, d̂) =
∑

u

A(u)L(x+ ud̂,u) (3)

where A(u) is an indicator function for the disk-shaped

camera aperture that takes the value 1 for views within the

camera’s aperture and 0 otherwise. Figure 4 illustrates how

the rendered light field is multiplied by A(u) and integrated

to render a shallow depth-of-field image.

3.2. Compositional Aperture Rendering

While the light field aperture rendering function cor-

rectly models the light field within a camera to render a shal-

low depth-of-field image, it suffers from the drawback that

its computational cost scales quadratically with the width of

the defocus blur that it can render.

To alleviate this issue, we propose another differentiable

aperture rendering function whose computational complex-

ity scales linearly with the width of the defocus blur that it

can render. Instead of simulating the camera’s light field

to render the shallow depth-of-field image, this function

models the rendering process as a depth-dependent blended

composition of copies of the input all-in-focus image, each

blurred with a differently sized disk-shaped kernel.

This compositional rendering function takes as input an

all-in-focus image and a probabilistic depth map similar

to those used in [10, 30]. This probabilistic depth map

P (x, d; I) can be thought of as a per-pixel probability mass

function defined over discrete disparities d. We associate

each of these discrete disparities with a disk blur kernel

corresponding to the defocus blur for a scene point at that

disparity. The disparity associated with a blur kernel that

is a delta function represents the focal plane, and the blur

Figure 3. Our compositional aperture rendering function may not

correctly render foreground occluders. On the left, we visualize an

example scene layout where the green-red plane is in focus, and is

occluded by the orange-blue plane. In the light field of this scene,

each point on the green-red plane lies along a vertical line and each

point on the orange-blue plane lies along a line with a positive

slope. A single pixel in the rendered shallow depth-of-field image

(white circle on the bottom right) is computed by integrating the

light field along the u dimension (vertical purple arrow). That

pixel is the sum of green, orange, and blue non-adjacent pixels

(white x’s) in the input all-in-focus image (denoted by the black

box), and this can be difficult to model by blending disk-blurred

versions of the input all-in-focus image.

kernel diameter increases linearly with the absolute differ-

ence in disparity from that plane. We render the shallow

depth-of-field image Ŝc(x; I, d̂) focused at depth d̂ by first

shifting the probabilities so that the plane of d = d̂ is asso-

ciated with a delta function blur kernel, blurring the input

all-in-focus image I with each of the disk kernels, and then

taking a weighted average of these blurred images using the

values in the probabilistic depth map as weights:

Ŝc(x; I, d̂) =
∑

d

P (x, d− d̂; I) (I (x) ∗ k (x, d)) (4)

where ∗ is convolution and k(x, d) is the disk blur kernel

associated with depth plane d:

k (x, d) =
[

‖x‖
2

2
≤ d2

]

(5)

where Iverson brackets represent an indicator function.

Our compositional aperture rendering function only

needs to store as many intermediate images as there are dis-

crete depth planes, so its computational cost scales linearly

with the diameter of the width of the defocus blur it can

render. However, this increase in efficiency comes with a

loss in modelling capability. More specifically, this compo-

sitional model may not correctly render the appearance of

occluders closer than the focus distance. Figure 3 illustrates

that the correct shallow depth-of-field image in a scene with

a foreground occluder contains pixels that are actually the

sum of non-adjacent pixels in the input all-in-focus image,

so the compositional model, which is restricted to blending

disk-blurred versions of the input image, may not be able to

synthesize this effect in all scenes.
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Figure 4. An overview of the full monocular depth estimation pipeline for both aperture rendering functions. When using the light field

model, CNN fθℓ
(·) is trained to predict a depth map from the input all-in-focus image, CNN gθe

(·) expands this depth map into a depth

map for each view, the camera light field is rendered by warping the input image into each view using the expanded depth maps, and

finally all views in the light field are integrated to render a shallow depth-of-field image. When using the compositional model, the input

all-in-focus image is convolved with a discrete set of disk blur kernels, and CNN fθc
(·) predicts a probabilistic depth map that is used to

blend these blurred images into a rendered shallow depth-of-field image.

4. Monocular Depth Estimation

We integrate our differentiable aperture rendering func-

tions into CNN pipelines to train functions for monocular

depth estimation using aperture effects as supervision. The

input to the full network is a single RGB all-in-focus im-

age, and we train a CNN to predict the scene depths that

minimize the difference between the ground-truth shallow

depth-of-field images and those rendered by our differen-

tiable aperture rendering functions. Figure 4 visualizes the

full machine learning pipeline for each of our rendering

functions. Please refer to our supplementary materials for

detailed descriptions of the CNN architectures.

4.1. Using Light Field Aperture Rendering

To incorporate our light field aperture rendering func-

tion into a pipeline for learning monocular depth estima-

tion, we use a CNN f(·) with parameters θℓ and the bilat-

eral solver [5] to predict a depth map Z(x; I) from the input

all-in-focus image I(x):

Z(x; I) = BilateralSolver(fθℓ
(I(x))). (6)

This results in a depth map that is smooth within

similarly-colored regions and whose edges are tightly

aligned with edges in the input all-in-focus image. We use

the input all-in-focus image as the bilateral space guide,

and its spatial gradient magnitudes as the smoothing con-

fidences. The output of the bilateral solver is differentiable

with respect to the input depth map and the backward pass is

fast, so we are able to integrate it into our learning pipeline

and backpropagate through the solver when training. Fi-

nally, we pass this smoothed depth map and the input all-in-

focus image to our light field aperture rendering functions

to render a shallow depth-of-field image.

We would like to treat Z(x; I) as the output depth map

of our monocular depth estimation system. Therefore, we

restrict the depth expansion network gθe
(·) to the tasks of

warping this depth map to other views and predicting the

depths of occluded pixels. We accomplish this by regular-

izing the views in the depth maps predicted by gθe
(·) to be

close to warped versions of Z(x; I):

Ld (D (x,u)) = ‖D (x,u)− Z (x+ uZ (x; I) ; I)‖
1

(7)

where Ld is the ray depth regularization loss.

The parameters θℓ and θe for the CNNs that predict the

depth map and expand it to a depth map for each view

are learned end-to-end by minimizing the sum of the errors

for rendering the shallow depth-of-field image and the ray

depth regularization loss for all training tuples:

min
{d̂i},θℓ,θe

∑

i

(
∥

∥

∥
Ŝℓ

(

x; Ii, d̂i

)

− Si (x)
∥

∥

∥

1

+ λdLd (Di (x,u))
)

(8)

where Ii, Si is the i-th training tuple, consisting of an all-

in-focus image I(x) and a ground truth shallow depth-of-

field image S(x), and λd is the ray depth regularization loss

weight. We also minimize over the focal plane distances

d̂i for each training example, so our algorithm does not re-

quire the in-focus disparity to be given. This also sidesteps

the difficult problem of recording d̂i for each image during
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dataset collection, which would require control over image

metadata and knowledge of the camera and lens parameters.

4.2. Using Compositional Aperture Rendering

To use our compositional aperture rendering function in

a pipeline for learning monocular depth estimation, we have

the depth estimation CNN fθc
(·) output values over n dis-

crete depth planes instead of just a single depth map:

P (x, d; I) = fθc
(I(x)). (9)

The predicted values for each pixel are then normalized by

a softmax , so we can consider P (x, d; I) to be a proba-

bilistic depth map composed of a probability mass function

(PMF) that sums to 1 for each pixel. We pass P (x, d; I) and

the input image I to our compositional aperture rendering

function to render a shallow depth-of-field image.

Unlike the light field aperture rendering function, this

pipeline does not contain a depth expansion network, so

we train the parameters of the depth prediction network by

minimizing the sum of the errors for rendering the shallow

depth-of-field image as well as a total variation regulariza-

tion of the probabilistic depth maps, for all training tuples:

min
{d̂i},θc

∑

i

(

∥

∥

∥
Ŝc(x; Ii, d̂i)− Si(x)

∥

∥

∥

1

+
∑

d

λtv ‖∇P (x, d; Ii)‖1

)

(10)

where ∇ indicates the partial derivatives (finite differences

[-1,1] and [-1;1]) in x and y of each channel of P (·).

4.3. Depth Ambiguities

Training a monocular depth estimation algorithm by di-

rect regression from an image to a depth map is straightfor-

ward and unambiguous, but ambiguities arise when relying

on indirect sources of depth information. E.g., if we use im-

ages from an alternate viewpoint as supervision [11, 12, 30]

there is an ambiguity for image regions whose appearance is

constant or repetitive along epipolar line segments — many

predicted depths would result in a perfect match in the alter-

nate image. This can be remedied by training with pairs that

have different relative camera positions, so that the baseline

and orientation of the epipolar lines varies across the train-

ing examples [33].

Aperture supervision suffers from two main ambiguities.

First, there is a sign ambiguity for the depths that correctly

render a given shallow depth-of-field image: any out-of-

focus scene point, in the absence of occlusions, could be

located in front of or behind the focal plane. Second, the

depth is ambiguous within constant image regions, which

look identical with any amount of defocus blur. We address

the first ambiguity by ensuring a diversity of focus in our

datasets: objects appear at a variety of distances relative to

the focal plane. We address the second ambiguity by apply-

ing a bilateral solver to our predicted depth maps, using the

gradient magnitude of the input image as the confidence.

This doesn’t remove the ambiguity in the data, but it effec-

tively encodes a prior that depth predictions at image edges

are more trustworthy than those in smooth regions.

5. Results

We evaluate the performance of aperture supervision

with our two differentiable aperture rendering functions for

training monocular depth estimation models. Evaluating

performance on this task is challenging, as we are not aware

of any prior work that addresses this task. We therefore

compare our results to state-of-the-art methods that use dif-

ferent forms of supervision. Since ground truth depth is not

available in our training datasets, we qualitatively compare

the predicted scene depths in Figures 5 and 7, and quantita-

tively compare the shallow depth-of-field images rendered

with our algorithm to those rendered using scene depths pre-

dicted by the baseline techniques in Tables 1 and 2. We vi-

sualize the probabilistic depths from our compositional ren-

dering model by taking the pixel-wise mode of each PMF

and smoothing this projection with the bilateral solver.

5.1. Baseline Methods

We use Laina et al. [20] as a representative state-of-the-

art technique for training a network to predict scene depths

using ground truth depths as supervision. We use their

model trained on the NYU Depth v2 dataset [26], which

consists of aligned pairs of RGB and depth images taken

with the Microsoft Kinect V1. This model predicts met-

ric depths as opposed to disparities, so naively treating the

output of this model as disparity would be unfair to this

work. To be maximally generous to this baseline, we fit

a piecewise linear spline to transform their predicted depths

to minimize the squared error with respect to our light field

model’s disparities. The “warped individually” baseline

was computed by fitting a 5-knot linear spline for each im-

age being evaluated. The “warped together” baseline was

computed by fitting a single 17-knot linear spline to the set

of all pairs of depth maps.

Our “Multi-View Supervision” baseline is intended to

evaluate the differences between using aperture effects and

view synthesis as supervision. We train a monocular depth

prediction network that is identical to that used in our light

field rendering pipeline, including the bilateral solver. As

is typical in multi-view supervision, our loss function is the

L1 error between the input image and an image from an

alternate viewpoint warped into the viewpoint of the input

image according to the predicted depth map. To perform a

fair comparison where every model component is held con-

stant besides the type of supervision, we use an image taken

from a viewpoint at the edge of the light field camera’s aper-

ture as the alternate view, so the disparity between the two

images used for multi-view supervision is equal to the ra-
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dius of the defocus blur used for our aperture supervision

algorithms. We consider these results as representative of

state-of-the-art monocular depth estimation algorithms that

use multi-view supervision for training [11, 12, 30, 33].

Our “Image Regression” baseline is a network that is

trained to directly regress to a shallow depth-of-field image,

given the input all-in-focus image and the desired aperture

size and focus distance. We append the aperture size and fo-

cus distance to the input image as additional channels, and

use the same architecture as our depth estimation network.

5.2. Light Field Dataset Experiments

We use a recently-introduced dataset [27] of light fields

of flowers and plants, taken with the Lytro Illum camera

using a focal length of 30 mm, to evaluate our aperture su-

pervision methods and compare them to the baselines of im-

age regression, direct depth supervision, and multi-view su-

pervision. The all-in-focus and shallow depth-of-fields that

we synthesize from these light fields are equivalent to im-

ages taken with aperture sizes f/28 and f/2.3. We randomly

partition this dataset into a training set of 3143 light fields,

and a test set of 300 light fields. Table 1 shows that our

model quantitatively outperforms all baseline techniques.

Figure 5 visualizes example monocular depth estimation re-

sults. Aperture supervision with our two differentiable ren-

dering functions produces high-quality depths, while depth

maps estimated by multi-view supervision networks con-

tain artifacts at occlusion edges. As demonstrated in Fig-

ure 6, these artifacts in the depth maps cause false edges

and distracting textures in the rendered shallow depth-of-

field images, while our rendered images contain natural and

convincing synthetic defocus blur.

5.3. DSLR Dataset Experiments

To further validate aperture supervision, we gathered a

dataset with a Canon 5D Mark III camera, consisting of

images of 758 scenes taken with a focal length of 24mm.

For each scene, we captured images from the same view-

point, focused at 0.5m and 1m, each taken with f/14 and
f/3.5 apertures. This dataset was collected such that it con-

tains the same sorts of indoor scenes as the NYU Depth v2

dataset [26], in an effort to be as generous as possible to-

wards our direct depth supervision baseline. We randomly

partition this dataset into a training set of 708 tuples, each

containing a single f/14 image and the corresponding two
f/3.5 images, and a test set of 50 tuples. Since this dataset

does not contain images taken from alternate viewpoints,

we only compare the depth estimation results of our meth-

ods to those using direct depth supervision. Table 2 shows

that our model quantitatively outperforms the direct depth

supervision and image regression baselines, and Figure 7

demonstrates that our trained algorithm is able to estimate

much sharper and higher-quality depths than direct depth

Algorithm PSNR d1 SSIM d1 PSNR d2 SSIM d2

Image Regression 24.60 ±1.39 0.895 ±0.045 24.49 ±1.31 0.888 ±0.047

[20] Warped Individually 31.95 ±2.17 0.909 ±0.034 31.50 ±2.19 0.903 ±0.040

[20] Warped Together 31.59 ±2.79 0.895 ±0.051 31.39 ±2.28 0.904 ±0.041

Multi-View Supervision 34.49 ±1.87 0.960 ±0.017 34.36 ±1.72 0.956 ±0.017

Our Model, Light Field 36.68 ±2.03 0.967 ±0.016 35.58 ±1.86 0.961 ±0.015

Our Model, Compositional 36.90 ±2.11 0.966 ±0.016 35.76 ±1.97 0.963 ±0.016

Table 1. A quantitative comparison on the 300-image test set from

our light field experiments. We report the mean and standard devi-

ation PSNR and SSIM of synthesized f/2.3 images for two target

focus distances, d1 (focused on the subject flower) and d2 (focused

to the light field’s maximum refocusable depth).

Algorithm PSNR d1 SSIM d1 PSNR d2 SSIM d2

Image Regression 22.26 ±4.89 0.958 ±0.022 20.93 ±3.09 0.851 ±0.046

[20] Warped Individually 28.31 ±4.36 0.928 ±0.040 32.52 ±3.34 0.953 ±0.030

[20] Warped Together 28.54 ±4.42 0.933 ±0.034 32.52 ±3.33 0.953 ±0.030

Our Model, Light Field 35.39 ±3.80 0.976 ±0.011 33.01 ±3.59 0.955 ±0.028

Our Model, Compositional 33.87 ±5.09 0.983 ±0.010 33.28 ±3.25 0.962 ±0.025

Table 2. A quantitative comparison on the 50-image test set from

our DSLR experiments. We report the mean and standard devia-

tion PSNR and SSIM of synthesized f/3.5 images for two target

focus distances, d1 = 0.5m and d2 = 1m.

supervision. The dearth of applicable baseline techniques

for this task highlights the value of our technique. There

are no techniques that we are aware of which can take ad-

vantage of our training data, and there are few ways to oth-

erwise train a monocular depth-estimation algorithm.

5.4. Training Details

We synthesize light fields with 12×12 views in our light

field rendering function for the light field dataset experi-

ments, and 4 × 4 views for the DSLR dataset experiments.

When using our compositional aperture rendering function,

we use n = 31 depth planes, with d ∈ [−15, 15]. Our regu-

larization hyperparameters are λd = 0.1 and λtv = 10−10.

We use the Adam optimizer [19] with a learning rate of

10−4 and a batch size of 1, and train for 240K iterations.

All of our models were implemented in Tensorflow [1].

6. Conclusions

We have presented a new way to train machine learn-

ing algorithms to predict scene depths from a single im-

age, using camera aperture effects as supervision. By in-

cluding a differentiable aperture rendering function within

our network, we can train a network to regress from a sin-

gle all-in-focus image to the depth map that best explains

a paired shallow depth-of-field image. This approach pro-

duces more accurate synthetic defocus renderings than other

approaches due to the supervisory signal being consistent

with the desired task, and also relies on training data from

a single conventional camera that is easier to collect than

depth-sensor- or stereo-based approaches. Our model has

two variants, each with its own differentiable aperture ren-

dering function. Our “light field” model uses a continuous-

valued depth map and an explicit simulation of light rays
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Figure 5. A qualitative comparison of monocular depth estimation results on images from the test set of our light field experiments. Our

aperture supervision models are able to estimate high-quality detailed depths. The depths estimated by a network trained with multi-view

supervision are reasonable, but typically have artifacts around occlusion edges.

Figure 6. A quantitative and qualitative comparison of crops from rendered shallow depth-of-field images from the test set of our light

field experiments. The images rendered using depths predicted by our models trained with aperture supervision closely match the ground

truth. Images rendered using depths trained by multi-view supervision contain false edges and artifacts near occlusion edges, and images

rendered using depths trained by direct depth supervision do not contain any reasonable depth-of-field effects.

Figure 7. A qualitative comparison of monocular depth estimation

results from the test set of our DSLR dataset experiments. Our

aperture supervision model is able to estimate more detailed depth

maps than the direct depth supervision baseline.

within a camera to produce more geometrically-accurate re-

sults, but with a computational cost that scales quadratically

with respect to the maximum synthetic blur size. Our “com-

positional” model uses a discrete per-pixel PMF over depths

and a filter-based rendering approach to achieve a linear

complexity with respect to blur size, but uses a probabilistic

depth estimate that may not be trivial to adapt to different

tasks. Aperture supervision represents a novel and effective

form of supervision that is complementary to and compati-

ble with existing forms of supervision (such as multi-view

supervision or direct depth supervision) and may enable the

explicit geometric modelling of image formation in other

machine learning pipelines.
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