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Abstract

Visual question answering (VQA) requires joint compre-

hension of images and natural language questions, where

many questions can’t be directly or clearly answered from

visual content but require reasoning from structured human

knowledge with confirmation from visual content. This pa-

per proposes visual knowledge memory network (VKMN)

to address this issue, which seamlessly incorporates struc-

tured human knowledge and deep visual features into mem-

ory networks in an end-to-end learning framework. Com-

paring to existing methods for leveraging external knowl-

edge for supporting VQA, this paper stresses more on two

missing mechanisms. First is the mechanism for integrat-

ing visual contents with knowledge facts. VKMN handles

this issue by embedding knowledge triples (subject, rela-

tion, target) and deep visual features jointly into the visual

knowledge features. Second is the mechanism for handling

multiple knowledge facts expanding from question and an-

swer pairs. VKMN stores joint embedding using key-value

pair structure in the memory networks so that it is easy to

handle multiple facts. Experiments show that the proposed

method achieves promising results on both VQA v1.0 and

v2.0 benchmarks, while outperforms state-of-the-art meth-

ods on the knowledge-reasoning related questions.

1. Introduction

Visual Question Answering (VQA) is an emerging in-

terdisciplinary research field in the last few years, which

attracts broad attention from both computer vision and nat-

ural language processing (NLP) communities. VQA aims to

help computer automatically answer natural language ques-

tion about an image. The question answers can be divided

into the following types: yes/no answers, multi-choice an-

swers, numeric answers, and open-ended word/phrase an-

swers (for questions about what,where,who,...). VQA re-

∗This work was done when Zhou Su worked at Intel Labs China, and

Yinpeng Dong was intern at Intel Labs China. Jianguo Li is the corre-

sponding author.

Q: What is the color of the batter s shirt?

A: Red

(a)

Q: What is in the oven?

A: Cookies

(b)

Q: What kind of animal would love to eat these fruits?

A: Monkey

(c)

Figure 1: Examples of different question objective categories in

VQA. (a) is an example of apparent objective that the answer is

clearly visible and can be easily answered using recognition re-

sults. (b) is an example of indiscernible objective that the answer

is unclear for visual recognition, and may need constraints from

common sense. (c) is an example of of invisible objective that the

answer requires deduction/reasoning from external knowledge.

quires comprehensive image and language understanding,

which constitutes a truly AI-complete task with similar spir-

it as Turing test [15, 27, 28].

Basically, VQA is formulated as a classification problem

in most researches, in which images and questions are input,

with answers as output categories (due to a limited number

of possible answers). As the VQA task was proposed after

deep learning approaches had already gained wide popular-

ity, almost all current VQA solutions use CNN to model im-

age input and recurrent neural network (RNN) to model the

question [49]. Attention mechanism has been heavily inves-

tigated in VQA. This includes visual attention [46, 44, 35]

which focuses on handling the problem where to look, and

question attention [33, 47, 11, 26] which focuses on solving

the problem where to read. As images and questions are

two different modalities, it is straightforward to jointly em-

bed two modalities together for a unified description of the

image/question pair. Some works [14, 19, 20, 50, 48] even

consider putting the attention mechanism and multi-modal

joint embedding in one unified framework.

However, VQA is significantly more complex than other

vision and language tasks such as image captioning, since

explicit information (middle-level recognition results such

as objects, attributes, or even image captions, etc) are not

enough for accurate VQA. For instance, we investigated the
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VQA v1.0 dataset [2], which is based on the COCO dataset

[24]. As each image has 5 manual caption annotations, we

match question answers to words in image captions, which

only produces 2,907 exact matches, while the remaining n-

early 50K answers do not appear in captions. Basically, we

could divide the question objectives of VQA into three cat-

egories: (a) Apparent objective which answers in the query

image could be directly obtained from recognition results

(objects, attributes, captions, etc); (b) Indiscernible objec-

tive which answer targets are usually too small or unclear in

the query image, and thus requires supporting facts for cor-

rect answers; (c) Invisible objective which requires deduc-

tion of common sense, topic-specific or even encyclopedic

knowledge about the content of the image. Please refer to

Figure 1 for some examples of these three cases. The exter-

nal knowledge information at least could help VQA on the

latter two categories. A supporting data is that we find more

than 49,866 answers in VQA v1.0 dataset appear in knowl-

edge base from the visual genome [22]. A few pioneering

works [39, 40, 42] study the problem on how to reason with

prior knowledge information for the VQA task. They only

involve one supporting fact to help the decision, which may

introduce knowledge ambiguity/inaccuracy due to the in-

accurate knowledge extraction procedure, and further yield

wrongly question answering.

Before the VQA task appears, NLP community has ex-

tensively studied the text only question-answering (QA)

problem [38, 21]. Classical methods read documents di-

rectly and use information retrieval methods to find answer-

s [21]. Thereafter, knowledge base (KB) such as Freebase

[7] organizes information into structured triples: <s, r, t >,

where s is the subject, t is the target, and r is the relation

between s and t. Then, question answering is converted into

a database query problem [6, 12]. Most recently, memory

networks have been proposed to combine document reading

and knowledge base retrieval [41, 29, 36] for accurate QA.

Inspired by the development of memory networks based

text QA methods, this paper proposes visual knowledge

memory network (VKMN) for accurate reasoning with a

pre-built visual knowledge base. Figure 2 illustrates how

the proposed VKMN model works on visual question an-

swering. VKMN extracts multiple related knowledge facts

from the question, jointly embeds knowledge facts with vi-

sual attentive features into visual knowledge attentive fea-

tures, and stores them in a key-value pair for easy and effi-

cient reading from memory. The memory reading will make

the visual-question addend to the highly relevant/correlated

knowledge facts, and thus gives much more accurate ques-

tion answering. The major contributions of this paper are:

(1) We propose VKMN, a simple yet efficient end-to-end

trainable framework, which inherits the merits from

attention based methods and joint-embedding based

methods, while avoids the knowledge inaccuracy limi-

tation of current knowledge-based solutions.

(2) We build a visual-question specific knowledge base,

which does not contain irrelevant knowledge entries as

generic knowledge base like Freebase [7].

(3) We conduct extensive experiments on the VQA v1.0

and v2.0 benchmark datasets, and show that the pro-

posed method achieves competitive accuracy, while

outperforms state-of-the-art methods on knowledge-

reasoning related questions.

2. Related Work

Attention mechanisms in VQA. Attention Mechanisms in

Neural Networks are loosely based on the visual attention

mechanism found in human brains. It was first proposed

and successfully applied in tasks like machine translation

[5], image captioning [45], while then became popular in

VQA. The main idea is that specific parts of the input (im-

age and/or question) are more informative/effective than

others for answering a given question. Numerous VQA

methods [44, 35, 26, 46, 3] have incorporated spatial atten-

tion to learn specific CNN features according to the input

question, rather than using holistic global features from the

entire image. Some have also incorporated attention into the

text representation. For instance, recent works [26] focus on

the co-attention models that jointly exploit visual attention

and question attention advantages through a unified hierar-

chical architecture. Furthermore, there are some research-

es combining attention mechanism with multi-modal repre-

sentation through joint embedding visual attention features

and text question features. This includes some state-of-the-

art VQA methods: Multimodal Compact Bilinear pooling

(MCB) [14], Multimodal Low-rank Bilinear pooling (ML-

B) [20], Multi-modal Factorized Bilinear pooling (MFB)

[48], and Structured Visual Attention (SVA) [50].

This paper does not study the spatial attention mecha-

nisms, while directly leverage existing multi-modal atten-

tion method as one component in our method.

Knowledge base and VQA. Knowledge base (KB) is a

technology used to store structured fact entries in the triple

form <s, r, t >, where s is the subject, t is the target, and

r is the relation between s and t. There is an increasing

interest in the NLP community using KBs for question an-

swering [6, 12]. However, there are still limited works on

leveraging KBs for VQA. As is known, VQA is an inter-

discipline task in vision and language just like image/video

captioning [45, 13, 34], but moves beyond for even deeper

image understanding, since it often requires information not

contained in the image itself, which can range from “com-

mon sense” knowledge to some topic-specific knowledge.

For instance, understanding the image content is not enough

to answer the question in Figure 1(c). The VQA system

must first recognize that the “fruit” entity is “banana”, and

7737



What is in the oven?
Generate

attention

features
Answer

Decoder
“Cookies”

Joint embedding

(meat, contain, bread)

(bread, inside, oven)

(hotdog, come from, oven)

(meat, toasting, oven)

Extract related

knowledges

VKMN

Key

Encoder

Value

Encoder

<S, R> T

R

S

<S, T>

<R, T>

Figure 2: Illustration of VKMN for the VQA task. Note that three replicated memory sub-blocks (different combination of s, r, t as

key-part or value-part) are used to handle the ambiguity on which part of the knowledge triple is missing in the query question.

inference based on knowledge about “animal loving ba-

nana” to get the answer “monkey”. We also argue that for

some cases such as Figure 1(b), even if the target content is

visible, it may be too small and/or unclear to yield a wrong

recognition result. KB will then act as an probabilistic pri-

or to adjust the decision score on a list of candidates and

output a correct result. We will verify these two cases with

some qualitative examples in our experiments.

Substantial studies have focused on building large-scale

structured Knowledge Bases (KBs) for QA, such as DBpe-

dia [4], Freebase [7], ConcepNet [25], etc. Zhu et al. [51]

even built large-scale multimodal knowledge base for VQA

purpose. A few works [39, 40, 42] also tried to introduced

KBs in the VQA task. Wang et al. [39] proposes “Ahab”

method to reason about the content of an image, which first

detects concepts in the query image and then links them to

the relevant parts of DBpedia KB. It learns the mapping of

images/questions to queries over the constructed knowledge

graph for final question answering. This method is restrict-

ed to questions parsed with manually designed templates.

[40, 42] improve “Ahab” by introducing long-short term

memory (LSTM) and a data-driven approach to learn the

mapping of images/questions to queries with the knowledge

fact meeting the search conditions in a KB.

All these methods only involve one supporting knowl-

edge fact to help the decision, so that they suffer greatly

from the knowledge inaccuracy problem due to the inaccu-

rate extraction procedure. This paper tries to alleviate this

issue with memory network mechanism to handle multiple

knowledge facts expanding from questions.

Memory networks. Memory networks were first proposed

for modern large-scale question answering (QA) system-

s in [41], which introduces a long-term memory block for

reading/writing simple facts when reasoning with inference

components in the QA task. Sukhbaatar et al. [36] im-

prove memory networks with an end-to-end learning fash-

ion, which requires fewer supervision signals during train-

ing stage and has more practicality. To bridge the gap be-

tween KB query/inference and documents reading, Miller

et al. [29] propose Key-Value Memory Networks (KV-

MemNN) which can read documents and answer questions

more viable and effective. The KV-MemNN performs QA

by first storing facts in a key-value structured memory be-

fore reasoning over them for the answer.

Memory networks were later introduced into the VQA

task in the form of dynamic memory networks [43], which

consists of four modules: input module for encoding in-

put with a set of “facts” vectors, question module for de-

riving a vector representation of the question, an episodic

memory module for retrieval attention facts to the question,

and answer module for combining final memory state and

the question vector to predict the output. Similarly, spatial

memory networks [44] also store CNN features from image

grid regions/patches into memory, and selects certain parts

of the information with an explicit attention mechanism for

question answering.

We also try to utilize memory network for VQA. We

have at least two differences to [43, 44]. First, we design

a key-value memory network for visual knowledge atten-

tive features rather than a simple dynamic memory network

as in [43, 44]. Second, the memory network we used focus-

es more on multiple visual knowledge encoding, while [44]

focuses more on spatial patches encoding.

3. Method

3.1. Overview of the Method

We propose the visual knowledge memory network

(VKMN) aiming to answer the visual question more accu-

rately with an auxiliary visual knowledge base. VKMN is

derived from key-value memory network [29], which has

been proven effective in the QA task. VKMN constructs a

visual-question related knowledge base in advance, which

allows great flexibility for designing key and value items

based on the visual features and (part-of) knowledge triples.

Basically, our VKMN model consists of four modules:

(1) Input module, which encodes input images with CNN

model and questions with a RNN model, and further

obtains the query representation by jointly embedding

the output of these two models;
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Figure 3: Diagram of Visual Knowledge Memory Network based VQA system

(2) Knowledge spotting module, which retrieves related

knowledge entries based on query questions or auto-

matic image captions from the pre-built visual knowl-

edge base by sub-graph hashing;

(3) Joint visual and knowledge embedding module, which

embeds visual features and knowledge triples (or part

of the triples) jointly for the ease of storing in key-

value memory networks;

(4) Memory module, which receives query question, reads

the stored key-value to form the visual-knowledge fea-

ture, and predicts the answers.

Figure 2 illustrates how the proposed VKMN model works

on visual question answering, and Figure 3 gives detailed

diagram on how different modules interact in VKMN. We

will elaborate each module separately below.

3.2. Encoding of Image/Question Inputs

The input image I and question q need to be processed

into feature vectors before feeding into memory networks.

We process input images with an ImageNet pre-trained C-

NN model, and questions with a LSTM model. The feature

vectors from two modalities could be jointly embedded into

a single visual attentive description as defined in Eq.1 for

answer prediction. Several methods are proposed to learn

the multimodal joint embedding in an end-to-end manner

for VQA, including the VQA 2016 challenge winner solu-

tion MCB [14], and the state-of-the-art solution MLB [20].

In this paper, we directly leverage MLB for visual-

question pair encoding. We denote the MLB with spatial

attention output (aka the first MLB stage output) as u, and

the LSTM encoded question vector as t, where t is already

projected to the same dimensional space as u with one in-

ternal fully-connection (FC) layer, i.e., t,u ∈ Rd. The

query representation is the joint embedding of t and u with

low-rank bilinear pooling [20] as

q = t⊙ u, (1)

where ⊙ indicates Hadamard product between two vectors

(element-wise product). q is the visual attentive description

of the visual-question pair for query purpose.

3.3. Knowledge Spotting with Sub­graph Hashing

Before elaborating the details of visual knowledge rep-

resentation, we present how to spot knowledge entries re-

lated to the visual question. Firstly, given all the knowl-

edge triples <si, ri, ti > in the pre-built Visual Knowledge

Base, we generate the entity set E = {si, ti}, and relation

set R = {ri}. We call S = E ∪R the entry set, which con-

tains all the different entries in the knowledge base. Then

we extract entries whenever one phrase in questions (or au-

tomatic generated captions) matches one item in the entry

set S using sub-graph hashing methods [8]. To alleviate the

inaccuracy of extracted visual knowledge, we restrict that

each knowledge triple should contain at least two entries

extracted from a question (or automatic generated caption-

s), which is more stringent than that in MemNN [41, 36] and

KV-MemNN [29]. A small subset of N knowledge triples

{<s1, r1, t1>, · · · , <sN , rN , tN>} are created afterwards.

To handle the long-tail effects in the visual knowledge base,

we perform knowledge triple expansion on the knowledge

graph to include the direct neighborhood of those extracted

N knowledge triples. Figure 4 illustrates one example of

subgraph hashing and knowledge triple expansion. Finally,

we setup a memory network which could store M knowl-

edge entries (M > N ). If the size of expanded knowledge

subset is less than M , we append null entries.

3.4. Joint Embedding of Visual and Knowledge

In the QA task [29], people just take the knowledge triple

or part-of-knowledge triple to compose the key-value pair

in key-value memory networks. In VQA, visual contents

are essential to answering the visual questions. Our start

point is the spatial attentive visual feature u from the in-

put module and knowledge entry e from knowledge spot-

ting module. We are required to learn a joint embedding to

combine u ∈ Rd and e together. As e is text representa-

tion, we impose a mapping function Φ(·) to get real-valued

feature vector Φ(e) ∈ Rde . Here Φ(·) could be either bag-

of-words (BoW) representation, word2vec transformation,

or even knowledge embedding like TransE [9]. The feature

dimension of u and Φ(e) are usually different, i.e., d 6= de.

We project them into the same space, and apply MLB [20]
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Who is wearing a red hat?

Hat
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Figure 4: Illustration of knowledge subgraph expansion. We do

question sentence parsing to get the target ‘hat’ and relation ‘wear-

ing’. We expand the subject with query from knowledge-base (re-

sults in yellow), and also expand the target (results in gray) based

on subject plus relation. Dashed-line indicates expansion results.

to capture their joint representation as

x = Ψ(e,u) = σ(WeΦ(e))⊙ σ(Wuu), (2)

where σ(·) is hyperbolic tangent function (favors over sig-

moid function in our experiments), Wu and We are the ma-

trices to project u and Φ(e) into the same dimensional s-

pace. x is called visual knowledge attentive description,

since it integrates visual feature u with knowledge entry e.

We argue that x captures more fine-grained information

about the knowledge than the spatial attentive visual feature

u from MLB, in which the attention is based on the whole

question. We verified this point in the ablation study (see

row 4 & 6 of Table 1).

3.5. Visual Knowledge Memory Network

We presented general joint embedding of visual fea-

tures and knowledge entries in previous subsection. As

VKMN defines memory slots as key-value vector pairs like

(k1,v1), · · · , (kM ,vM ), in this subsection, we discuss the

key-value pair design first, and the inference procedure with

memory networks later.

Key-value design. The design of which part should be

key, and which part should be value is quite flexible. In tra-

ditional QA problem, given the knowledge triple <s, r, t
>, people usually consider the first two (s and r) as key,

while take the last one t as value. However, this is not true

for VQA, as we do not know which part of the knowledge

triple is missing in the visual question. There are three com-

binations of keys while taking the remained item as value:

(1) (s, r) as the key; (2) (s, t) as the key; (3) (r, t) as the

key. In practice, we build three memory blocks for these

three cases separately as shown in Figure 2, and name it

triple replication. This is useful to distinguish questions

like “what is the toothbrush used for?” and “what is used

for brushing teeth?”. For simplicity, we only elaborate the

case (s, r) as the key item and t as the value item in the fol-

lowing study. We can employ Eq.2 to obtain the embedding

of keys and values. Suppose e = (e1, e2, e3), in which e1,

e2 and e3 correspond to s, r, t according to the designed

key-value mapping. To ensure that key representation ki

and value representation vi are of the same dimensionality,

we make the additive assumption similar to the continuous

bag-of-words (CBOW), and derive the ki and vi as below:

ki = Ψ(e1,ui) + Ψ(e2,ui); (3)

vi = Ψ(e3,ui). (4)

This additive assumption also suits for TransE encoding

[9], since it adopts shared weights to encode the knowledge

triple <s, r, t > as a whole, and outputs the same dimen-

sional feature vector for s, r, and t respectively.

With the designed key-value pairs stored in VKMN, the

inference consists of three steps: addressing related knowl-

edge, reading corresponding value and answering the ques-

tion. We discuss them step by step below.

Key addressing. Given a query q, we address each can-

didate memory slot and assign a relevance probability by

comparing the question to each key:

pi = Softmax(q ·Aki), (5)

where · denotes inner product, A is the parameter matrix for

memory networks which projects ki into the same feature

space as q, and Softmax(zi) = e
zi/

∑
j
e
zj .

Value reading. In the value-reading step, the values of

memory slots are read by weight averaging with the ad-

dressing possibilities, and the returned vector o is defined

as:

o =
∑

i
piAvi (6)

The original key-value memory networks [29] supports it-

erative refining the query and reading the memories. In

this paper, we only make one-step update of query with

q′ = q+ o after receiving o.

Question answering. The number of different answers

is fixed for the VQA task so that the question answering

is re-casted to be a classification problem. We predict the

answer based on q′ using a FC layer with weight matrix

Wo as below

â = argmaxSoftmax(Woq
′). (7)

All the parameter matrix Wu, We, A, and Wo in VKMN are

end-to-end trained with stochastic gradient descent (SGD)

based backpropagation algorithm.

4. Experiments

We evaluate the proposed model on the VQA v1.0 [2]

and v2.0[16] datasets. We will elaborate the details of the

dataset, the procedure of building visual knowledge base,

ablation studies on different configurations and the bench-

mark results below separately.
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4.1. Datasets

The VQA v1.0 dataset [2] consists of 204,721 MS-

COCO images [24], with 614,163 associated question-

answer pairs. There are three designed data splits: train

(248,349 questions), validation (121,512 questions) and test

(244,302 questions). In addition, 25% subset of test parti-

tion is splitted as test-dev set.

The VQA v2.0 dataset [16] further balanced the v1.0

dataset by collecting complementary images such that each

question in the balanced dataset has a pair of similar images

but with different answers to the question. It finally con-

sists of 1,105,904 questions from 204,721 images, which is

about twice larger than v1.0 dataset.

For simplicity, we restricted the target answers to the top

2,000 most frequent answers in the train+val set as most

existing works [20, 14]. Therefore, our training data con-

sists of data with the top 2,000 answers in the train+val

set, which covers about 90% question-answer pairs in the

train+val set.

The Visual Genome dataset [22] contains 108,249 im-

ages labeled with question-answer pairs, objects and at-

tributes. An average of 17 question-answer pairs are col-

lected for each image. Moreover, there are Visual Genome

Relationship (VGR) annotations available. VGR provides

relationship descriptions of different objects on images in

the triple form <s, r, t>, which perfectly fits the needs of

our visual knowledge base. Detailed usage settings are giv-

en in section 4.2.

4.2. Building Visual Knowledge Base

As the general purpose knowledge bases like Freebase

contains billions of knowledge facts, while most knowledge

entries are irrelevant to the visual questions, we build our

own knowledge base for the purpose of VQA, in which each

entry has a structure of <s, r, t>. The entries in the knowl-

edge base (named visual knowledge base) come from two

sources: (i) knowledge entries extracted from the question-

answer pairs in the VQA v1.0 train+val set [2]; (ii) knowl-

edge triples from the VGR dataset [22].

First, we perform information extraction from the

question-answer pairs into the VQA v1.0 train+val set, to

obtain a bunch of structured knowledge entries. Compared

to existing knowledge bases like DBpedia [4] and Concept-

Net [25], knowledge entries we extracted are more closely

bound up with questions associated with their images, and

the expression is more precise and compact than original

question-answer pairs in the VQA dataset [2]. The knowl-

edge entry extraction procedure works as below. We first

parse the part-of-speech (POS) tags and dependency tree of

each question via the Stanford Parser [10]. Then we extrac-

t triples from QA pairs using question tags, dependencies,

and answers. All words in the triples are lemmatized so

that inflectional variants of the same word explicitly share

Model All Y/N Num Other

(1) BoW (GLoVe) 65.5 83.8 38.4 56.1

(2) Blind model (text only) 49.3 77.9 34.3 28.3

(3) q only no KB (MLB) [20] 65.1 84.1 38.2 54.9

(4) No triple replication 64.5 84.0 37.3 53.9

Baseline (full VKMN) 66.0 83.7 37.9 57.0

Table 1: Ablation studies of the design choice on the Open-Ended

task of the VQA v1.0 test-dev dataset.

the same representation. Finally, we build a relation set

R = {r}, where r is all possible relation phrases in VGR

dataset[22]. For each extracted triple <s, r, t> from the

VQA dataset, we replace r with the most similar/closed one

in set R. Lemmatisation and relation replacement can help

reducing data sparseness, especially for capturing “long-

tail” entries.

Second, the VGR dataset [22] consists of 1,531,448

knowledge triples describing object relationships, about 14

triples per image. We filter the original triple sets in VGR

dataset to obtain 40,480 unique triples by removing triples

with appearance frequency (either s, r, or t) less than 3.

After combining these two parts together, we obtain a

visual knowledge base with about 159,970 unique triples.

4.3. Implementation Details

We implement our model using the Torch framework

with RNN packages from [23]. In the input module, we

followed MLB [20] and used ResNet-152[17] as the back-

bone network for visual feature extraction. The MLB atten-

tion feature vector u is of 2,400 dimension, and the question

embedding vector t is also projected to the same dimension.

The joint visual and knowledge embedding module output

300-dimensional features by Φ(e). We tried different em-

bedding methods, such as BOW (GloVe) [32], and TransE

[9], and finally pick TransE [9]. In the memory module, we

set the memory-slot number to 8. If the extracted subgraph

size is less than 8, we fill empty slots with zeros.

4.4. Ablation Studies

There are several configurations of VKMN which may

impact the final accuracy, including knowledge encoding

method Φ(·), blind model with text feature only, and the

triple replicated memory blocks, etc. We examine the im-

pact of these configurations with evaluation on the Real Im-

age Open-Ended task using the test-dev split of the VQA

v1.0 dataset. To avoid interaction between these factors,

we adopt the variable-controlling approach to ease our s-

tudy. We take our designed model as baseline, which uses

TransE as knowledge encoding, visual attentive feature u

plus knowledge embedding e to build the keys and values

in VKMN, and the triple replicated memory-blocks as dis-

cussed in Section 3.5 to avoid the ambiguity from knowl-

edge extraction from question.
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Model

test-dev test-standard

Open-Ended MC Open-Ended MC

All Y/N Num Other All All Y/N Num Other All

iBOWIMG[49] 55.7 76.5 35.0 42.6 - 55.9 76.78 35.0 42.6 62.0

DPPnet[31] 57.2 80.7 37.2 41.7 - 57.4 80.23 36.9 42.2 62.7

SMem[44] 58.0 80.9 37.3 43.1 - 58.2 80.9 37.5 43.5 -

AMA[42] 59.2 81.0 38.4 45.2 - 59.4 81.1 37.1 45.8 -

DMN+[43] 60.3 80.5 36.8 48.3 - - - - - -

MRN[19] 61.6 82.2 38.8 49.2 - 61.8 82.4 38.2 49.4 66.3

HieCoAtt[26] 61.8 79.7 38.7 51.7 65.8 62.1 80.0 38.2 52.0 66.1

RAU[31] 63.3 81.9 39.0 53.0 67.7 63.2 81.7 38.2 52.8 67.3

DAN[30] 64.3 83.0 39.1 53.9 69.1 64.2 82.8 38.1 54.0 69.0

MCB+Att[14] 64.2 82.2 37.7 54.8 - - - - - -

MCB+Att+GloVe[14] 64.7 82.5 37.6 56.6 - - - - - -

MLB [20] 65.1 84.1 38.2 54.9 - - - - - -

MFB+CoAtt+GloVe [48] 65.9 84.0 39.8 56.2 - 65.8 83.8 38.9 56.3 -

SVA [50] 66.0 84.3 39.3 56.4 - 65.9 84.4 38.9 55.9 -

VKMN(ours) 66.0 83.7 37.9 57.0 69.1 66.1 84.1 38.1 56.9 69.1

Table 2: Results comparison with state-of-the-art methods on the VQA v1.0 dataset. “-” indicates the result is not available. “Att” indicates

some attention mechanism is used. “CoAtt” means co-attention. “GloVec” indicates that the word embedding method [32] is adopted.

Here all the reported results are obtained with a single model without model ensemble. For each answer-type, the best result is bolded.

We evaluate the contribution of each component by ei-

ther removing it or replacing it with another commonly used

component, with all the other components fixed.

(1) We replace TransE based knowledge encoding in our

design with BOW encoding [32]. Results show that

TransE performs better than BOW, especially on the

“other” answer-type (57.0 vs 56.1).

(2) We remove the visual input and design a blind model

without any visual cues, so that key/value are only text

features, i.e., replacing Eq.2 with

x = Ψ(e, t) = σ(WeΦ(e))⊙ σ(Wtt),

and directly using t as the query. This comparison ver-

ifies the importance of visual attentions in VKMN.

(3) We directly use the joint embedding q = t⊙u for an-

swer prediction without using memory blocks. This is

actually the result by MLB. It is obvious that VKMN

outperforms MLB, especially on the “other” answer-

type (57.0 vs 54.9). The difference is significant ac-

cording to the paired t-test. This study verifies the ef-

fectiveness of the proposed memory network module.

(4) We disable the triple replication mechanism in mem-

ory networks, while only use s and r to build the key

and t as the value. This study shows that the triple

replication mechanism is important to avoid the ambi-

guity in visual-question pair, especially on the “other”

answer-type (57.0 vs 53.9).

Table 1 lists the detailed results of the four cases in compar-

ison to our designed model (baseline) on different question

categories. This ablation study verifies the effectiveness of

our design choice.

4.5. Benchmarking Results

We further list the full benchmark results on both test-

dev and test-standard dataset of the VQA v1.0 dataset in

Table 2. For easy and fair comparison, we also list the

results by state-of-the-art methods with single model. It

shows that VKMN outperforms state-of-the-art results on

both Open-Ended and Multiple-choice tasks, and especial-

ly for the “other” answer-type, which proves that VKM-

N is effective on incorporating external knowledge for an-

swering 6W questions (what, where, when, who, why, and

how). Figure 5 further illustrates some quantitative exam-

ples, in comparison to the state-of-the-art method MLB.

Below each example, we also show the confidence score

of top-5 knowledge triples according to Eq.5. It is obvi-

ous that the VKMN model could attend to highly relevant

knowledge triples. Note that although some top-1 triple is

relevant but not quite accurate (due to appearance frequency

in training-set), the final decision is based on softmax classi-

fier (Eq.7) with weight averaging knowledge representation

(Eq.6), which tends to produce right answers. Besides, we

show some failure cases in Figure 6 along with the MLB at-

tention maps. These cases are related to spatial relationship

reasoning, in which MLB does not get correct attention re-

gions. Problem may be alleviated when resorting to some

advanced attention mechanism such structure attention [50].

We further evaluated our method on VQA v2.0 dataset,

which is about twice larger than VQA v1.0 on question

number, and much more difficult than VQA v1.0. Table 3

listed the comparison results on test-standard set. Single
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Q: Who is wearing a red hat?

MLB: Dog

Ours: Man

0 0.05 0.1 0.15 0.2 0.25 0.3

<she, wear, ponytail>

<rider, wear, helmet>

<male, wear, helmet>

<female, wear, helmet>

<guy, wear, helmet>

top-5 triple scores

Q: Which animal is reflected in the water?

MLB: Dog

Ours: Duck

0 0.1 0.2 0.3 0.4 0.5

<water, reflect, moutain>

<bird, face, water>

<water, reflect, sunlight>

<duck, cross, river>

<animal, cross, river>

top-5 triple scores

Q: What is in the oven?

MLB: Fruit

Ours: Cookies

0 0.05 0.1 0.15 0.2 0.25

<meat, contain, bread>

<bread, inside, oven>

<hotdog, from, oven>

<oven, toasting, cookies>

<meat, bread, fish>

top-5 triple scores

Figure 5: Examples of the predicted answers and top-5 knowledge triple scores for given query images and questions. The predicted

answers by MLB (used as our attention module) is also given as comparison.

Q: What is inside the white object at the top of the picture?   Predicted: Food;  Ground-Truth: Bulb

Q: What color is the horse on the left?   Predicted: White;  Ground-Truth: Brown

Figure 6: Some failure cases with attention maps. Both cases are

due to wrong attention regions.

VKMN model achieves 64.36 overall accuracy, which is

much better than MCB and MLB (ours retrained model and

result submitted by the DCD-ZJU team), especially on the

“other” answer-type. Our ensemble result is based on the

simplest snapshot ensemble [18] of our VKMN model and

the SVA model [50] as we observed that VKMN and SVA

are complementary on different answer-types. Although the

top-3 solutions in the VQA v2.0 challenge show better accu-

racy than our VKMN, they heavily rely on model ensemble,

while their best results are obtained by ensembling dozens

or even hundreds of models. Even for the first place solution

[37], their best single model result is still much worse than

Model All Y/N Num Other

Adelaide-Teney-MSR (30 ensemble)[37] 69.13 85.54 47.45 59.82

Adelaide-Teney-MSR (best single + bottom-up)[37] 65.67 82.20 43.90 56.26

Adelaide-Teney-MSR (best single)[37] 62.27 79.32 39.77 52.59

DLAIT [1] 68.22 83.17 46.66 60.15

HDU-USYD-UNCC [1] 68.09 84.5 45.39 59.01

MCB 62.27 78.82 38.28 53.36

MLB (by DCD-ZJU)[1] 62.54 79.85 38.64 52.95

MLB (our retrained single model, +VG) 63.50 77.73 39.12 56.98

SVA (our retrained single model) [50] 64.55 80.76 42.59 55.73

VKMN (Single) 64.36 83.70 37.90 57.79

VKMN (Ensemble) 66.67 82.88 43.17 57.95

Table 3: Results on VQA v2.0 test-standard set. The first group of

results are from top-3 solutions in the VQA v2.0 challenge. The

second group of results are from some attention based methods

related to us. For our retrained MLB model on VQA v2.0, we

include the external visual genome (VG) data. The final group of

results are from our VKMN.

that of our single VKMN model, especially on the “other”

answer-type, when leaving out the exhaustive bottom-up at-

tention from the object detection results.

5. Conclusion

In this paper, we present the Visual Knowledge Memory

Network (VKMN) method as an efficient way to leverage

pre-built visual knowledge base for accurate visual ques-

tion answering. Experiments show that VKMN achieves

promising results on VQA v1.0 and v2.0 benchmarks, and

outperforms state-of-the-art methods on the knowledge-

reasoning related questions (i.e., the “other” answer-type in

both benchmarks).

Acknowledgements Thanks Zhiqiang Shen for the help of

preparing some illustrations for our early submissions.
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